1
|
Geng XY, Wang MK, Hou XC, Wang ZF, Wang Y, Zhang DY, Danso B, Wei DB, Shou ZY, Xiao L, Yang JS. Comparative Analysis of Tentacle Extract and Nematocyst Venom: Toxicity, Mechanism, and Potential Intervention in the Giant Jellyfish Nemopilema nomurai. Mar Drugs 2024; 22:362. [PMID: 39195478 PMCID: PMC11355847 DOI: 10.3390/md22080362] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/28/2024] [Revised: 08/06/2024] [Accepted: 08/07/2024] [Indexed: 08/29/2024] Open
Abstract
The giant jellyfish Nemopilema nomurai sting can cause local and systemic reactions; however, comparative analysis of the tentacle extract (TE) and nematocyst venom extract (NV), and its toxicity, mechanism, and potential intervention are still limited. This study compared venom from TE and NV for their composition, toxicity, and efficacy in vitro and in vivo used RAW264.7 cells and ICR mice. A total of 239 and 225 toxin proteins were identified in TE and NV by proteomics, respectively. Pathological analysis revealed that TE and NV caused heart and liver damage through apoptosis, necrosis, and inflammation, while TE exhibited higher toxicity ex vivo and in vivo. Biochemical markers indicated TE and NV elevated creatine kinase, lactatedehydrogenase, and aspartate aminotransferase, with the TE group showing a more significant increase. Transcriptomics and Western blotting indicated both venoms increased cytokines expression and MAPK signaling pathways. Additionally, 1 mg/kg PACOCF3 (the phospholipase A2 inhibitor) improved survival from 16.7% to 75% in mice. Our results indicate that different extraction methods impact venom activities, tentacle autolysis preserves toxin proteins and their toxicity, and PACOCF3 is a potential antidote, which establishes a good extraction method of jellyfish venom, expands our understanding of jellyfish toxicity, mechanism, and provides a promising intervention.
Collapse
Affiliation(s)
- Xiao-Yu Geng
- Naval Medical Center of PLA, Naval Medical University, Shanghai 200052, China; (X.-Y.G.); (M.-K.W.)
| | - Ming-Ke Wang
- Naval Medical Center of PLA, Naval Medical University, Shanghai 200052, China; (X.-Y.G.); (M.-K.W.)
| | - Xiao-Chuan Hou
- Faculty of Naval Medicine, Naval Medical University, Shanghai 200433, China; (X.-C.H.); (Z.-F.W.); (Y.W.); (B.D.)
| | - Zeng-Fa Wang
- Faculty of Naval Medicine, Naval Medical University, Shanghai 200433, China; (X.-C.H.); (Z.-F.W.); (Y.W.); (B.D.)
- College of Traditional Chinese Medicine, Jilin Agricultural University, Changchun 130118, China
| | - Yi Wang
- Faculty of Naval Medicine, Naval Medical University, Shanghai 200433, China; (X.-C.H.); (Z.-F.W.); (Y.W.); (B.D.)
- College of Traditional Chinese Medicine, Jilin Agricultural University, Changchun 130118, China
| | - Die-Yu Zhang
- College of Pharmacy, Bengbu Medical University, Bengbu 233030, China;
| | - Blessing Danso
- Faculty of Naval Medicine, Naval Medical University, Shanghai 200433, China; (X.-C.H.); (Z.-F.W.); (Y.W.); (B.D.)
| | - Dun-Biao Wei
- Unit 92196 of the People’s Liberation Army, Qingdao 266000, China;
| | - Zhao-Yong Shou
- Faculty of Health Service, Naval Medical University, Shanghai 200433, China
| | - Liang Xiao
- Faculty of Naval Medicine, Naval Medical University, Shanghai 200433, China; (X.-C.H.); (Z.-F.W.); (Y.W.); (B.D.)
| | - Ji-Shun Yang
- Naval Medical Center of PLA, Naval Medical University, Shanghai 200052, China; (X.-Y.G.); (M.-K.W.)
| |
Collapse
|