1
|
Fatima M, Khan MR. Jasminum humile (Linn) ameliorates CCl 4-induced oxidative stress by regulating ER stress, inflammatory, and fibrosis markers in rats. Inflammopharmacology 2023; 31:1405-1421. [PMID: 37103691 DOI: 10.1007/s10787-023-01230-z] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/28/2023] [Accepted: 04/08/2023] [Indexed: 04/28/2023]
Abstract
Jasminum humile (Linn) is highly valued for its medicinal properties. The pulp and decoction made from its leaves are effective for skin diseases. Juice prepared from roots is used against ringworm illness. Our current study aims to illustrate the non-toxicity and protective potential of methanol extract of Jasminum humile (JHM) against CCl4-induced oxidative stress in the liver of rats. Qualitative phytochemical screening, total flavonoids (TFC), and total phenolic content (TPC) assays were performed with JHM. The toxicity of the plant was estimated by treating female rats at different JHM doses while to assess anti-inflammatory potential of plant nine groups of male rats (six rats/group) received different treatments such as: CCl4 only (1 ml/kg mixed with olive oil in a ratio of 3:7), silymarin (200 mg/kg) + CCl4, different doses of JHM alone at a ratio of 1:2:4, and JHM (at a ratio of 1:2:4) + CCl4, and were examined for different antioxidant enzymes, serum markers, and histological changes, while mRNA expression of stress, inflammatory and fibrosis markers were assessed by real-time polymerase chain reaction analysis. Different phytochemicals were found in JHM. A high amount of total phenolic and flavonoid content was found (89.71 ± 2.79 mg RE/g and 124.77 ± 2.41 mg GAE/g) in the methanolic extract of the plant. Non-toxicity of JHM was revealed even at higher doses of JHM. Normal levels of serum markers in blood serum and antioxidant enzymes in tissue homogenates were found after co-administration of JHM along with CCl4. However, CCl4 treatment caused oxidative stress in the liver by enhancing the levels of stress and inflammatory markers and reducing antioxidant enzyme levels, while JHM treatment showed significant (P < 0.05) downregulation was in mRNA expression of those markers. Investigation of mechanism of specific signaling pathways related to apoptosis and clinical trials to assess safety and efficacy of optimal dosage of Jasminum humile will be helpful to develop FDA-approved drug.
Collapse
Affiliation(s)
- Mehreen Fatima
- Department of Biochemistry, Faculty of Biological Sciences, Quaid-I-Azam University, Islamabad, Pakistan.
| | - Muhammad Rashid Khan
- Department of Biochemistry, Faculty of Biological Sciences, Quaid-I-Azam University, Islamabad, Pakistan
| |
Collapse
|
2
|
Naz I, Khan MR, Zai JA, Batool R, Maryam S, Majid M. Indigofera linifolia ameliorated CCl 4 induced endoplasmic reticulum stress in liver of rat. JOURNAL OF ETHNOPHARMACOLOGY 2022; 285:114826. [PMID: 34767833 DOI: 10.1016/j.jep.2021.114826] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 03/12/2021] [Revised: 09/21/2021] [Accepted: 11/05/2021] [Indexed: 06/13/2023]
Abstract
ETHNOPHARMACOLOGICAL RELEVANCE Indigofera linifolia (L.f.) Retz. is used in subcontinent for liver disorders, in wounds, febrile eruption and as diuretic. AIM OF STUDY The current study evaluates the protective effects of the methanol extract of Indigofera linifolia (ILM) on CCl4-induced endoplasmic reticulum (ER) stress in liver of rat. METHODS ILM was analyzed for phytochemical classes, total phenolic (TPC) and flavonoid content (TFC) as well as multidimensional in vitro antioxidant assays. Male (Sprague Dawley) rats were dispersed into seven groups (6 rats/group) receiving 0.9% saline (1 ml/kg bw), CCl4 (1 ml/kg bw) diluted in olive oil (3:7 v/v), silymarin (200 mg/kg bw) + CCl4 (30% v/v), ILM (150 mg/kg bw) + CCl4 (30% v/v), ILM (300 mg/kg bw) + CCl4 and ILM alone (either 150 mg/kg bw or 300 mg/kg bw). RESULTS ILM extract was constituted of different phytochemical classes. Co-administration of ILM along with CCl4 to rat revert the level of alanine transaminase (ALT), aspartate transaminase (AST), alkaline phosphatase (ALP) and total bilirubin in blood serum and antioxidant parameters in liver. Further, CCl4 increased the level of ER stress markers and inflammatory mediators while decreased level of GCLC and Nrf-2 in liver tissues of rat. CCl4-induced histopathological variations were reduced with ILM co-administration in liver tissues. CONCLUSION The results suggest that active phyto-constituents of I. linifolia might be responsible for its antioxidant, anti-inflammatory and gene-regulating activities.
Collapse
Affiliation(s)
- Irum Naz
- Department of Biochemistry, Faculty of Biological Sciences, Quaid-i-Azam University, Islamabad, Pakistan; Institute of Biochemistry, Biotechnology and Bioinformatics, Faculty of Sciences, The Islamia University of Bahawalpur, Pakistan.
| | - Muhammad Rashid Khan
- Department of Biochemistry, Faculty of Biological Sciences, Quaid-i-Azam University, Islamabad, Pakistan.
| | - Jawaid Ahmed Zai
- Department of Biochemistry, Faculty of Biological Sciences, Quaid-i-Azam University, Islamabad, Pakistan.
| | - Riffat Batool
- Department of Biochemistry, Faculty of Biological Sciences, Quaid-i-Azam University, Islamabad, Pakistan.
| | - Sonia Maryam
- Department of Biochemistry, Faculty of Biological Sciences, Quaid-i-Azam University, Islamabad, Pakistan.
| | - Muhammad Majid
- Faculty of Pharmacy, Capital University of Science and Technology, Islamabad, Pakistan.
| |
Collapse
|
3
|
Yeon Park S, Cho W, Abd El-Aty A, Hacimuftuoglu A, Hoon Jeong J, Woo Jung T. Valdecoxib attenuates lipid-induced hepatic steatosis through autophagy-mediated suppression of endoplasmic reticulum stress. Biochem Pharmacol 2022; 199:115022. [DOI: 10.1016/j.bcp.2022.115022] [Citation(s) in RCA: 21] [Impact Index Per Article: 7.0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/05/2022] [Revised: 03/22/2022] [Accepted: 03/23/2022] [Indexed: 02/09/2023]
|
4
|
Reza AHMM, Zhu X, Qin J, Tang Y. Microalgae-Derived Health Supplements to Therapeutic Shifts: Redox-Based Study Opportunities with AIE-Based Technologies. Adv Healthc Mater 2021; 10:e2101223. [PMID: 34468087 DOI: 10.1002/adhm.202101223] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/21/2021] [Revised: 08/16/2021] [Indexed: 12/14/2022]
Abstract
Reactive oxygen species (ROS) are highly reactive molecules, serve the normal signaling in different cell types. Targeting ROS as the chemical signals, different stress based strategies have been developed to synthesis different anti-inflammatory molecules in microalgae. These molecules could be utilized as health supplements in human. To provoke the ROS-mediated defence systems, their connotation with the associated conditions must be well understood, therefore, proper tools for studying ROS in natural state are essential. The in vivo detection of ROS with phosphorescent probes offers promising opportunities to study these molecules in a non-invasive manner. Most of the common problems in the traditional fluorescent probes are lower photostability, excitation intensity, slow responsiveness, and the microenvironment that challenge their performance. Some ROS-specific aggregationinduced emission luminogens (AIEgens) with pronounced spatial and temporal resolution have recently demonstrated high selectivity, rapid responsiveness, and efficacies to resolve the aggregation-caused quenching issues. The nanocomposites of some AIE-photosensitizers can also improve the ROS-mediated photodynamic therapy. These AIEgens could be used to induce bioactive components in microalgae through altering the ROS signaling, therefore are more auspicious for biomedical research. This study reviews the prospects of AIEgen-based technologies to understand the ROS mediated bio-physiological processes in microalgae for better healthcare benefits.
Collapse
Affiliation(s)
- A. H. M. Mohsinul Reza
- College of Science and Engineering Flinders University South Australia 5042 Australia
- Institute for NanoScale Science and Technology Medical Device Research Institute College of Science and Engineering Flinders University South Australia 5042 Australia
| | - Xiaochen Zhu
- College of Science and Engineering Flinders University South Australia 5042 Australia
- Institute for NanoScale Science and Technology Medical Device Research Institute College of Science and Engineering Flinders University South Australia 5042 Australia
| | - Jianguang Qin
- College of Science and Engineering Flinders University South Australia 5042 Australia
| | - Youhong Tang
- College of Science and Engineering Flinders University South Australia 5042 Australia
- Institute for NanoScale Science and Technology Medical Device Research Institute College of Science and Engineering Flinders University South Australia 5042 Australia
| |
Collapse
|
5
|
Kim TJ, Lee HJ, Pyun DH, Abd El-Aty AM, Jeong JH, Jung TW. Valdecoxib improves lipid-induced skeletal muscle insulin resistance via simultaneous suppression of inflammation and endoplasmic reticulum stress. Biochem Pharmacol 2021; 188:114557. [PMID: 33844985 DOI: 10.1016/j.bcp.2021.114557] [Citation(s) in RCA: 17] [Impact Index Per Article: 4.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/19/2021] [Revised: 04/03/2021] [Accepted: 04/07/2021] [Indexed: 12/15/2022]
Abstract
Valdecoxib (VAL), a non-steroidal anti-inflammatory drug, has been widely used for treatment of rheumatoid arthritis, osteoarthritis, and menstrual pain. It is a selective cyclooxygenase-2 inhibitor. The suppressive effects of VAL on cardiovascular diseases and neuroinflammation have been documented; however, its impact on insulin signaling in skeletal muscle has not been studied in detail. The aim of this study was to investigate the effects of VAL on insulin resistance in mouse skeletal muscle. Treatment of C2C12 myocytes with VAL reversed palmitate-induced aggravation of insulin signaling and glucose uptake. Further, VAL attenuated palmitate-induced inflammation and endoplasmic reticulum (ER) stress in a concentration-dependent manner. Treatment with VAL concentration-dependently upregulated AMP-activated protein kinase (AMPK) and heat shock protein beta 1 (HSPB1) expression. In line with in vitro experiments, treatment with VAL augmented AMPK phosphorylation and HSPB1 expression, thereby alleviating high-fat diet-induced insulin resistance along with inflammation and ER stress in mouse skeletal muscle. However, small interfering RNA-mediated inhibition of AMPK abolished the effects of VAL on insulin resistance, inflammation, and ER stress. These results suggest that VAL alleviates insulin resistance through AMPK/HSPB1-mediated inhibition of inflammation and ER stress in skeletal muscle under hyperlipidemic conditions. Hence, VAL could be used as an effective pharmacotherapeutic agent for management of insulin resistance and type 2 diabetes.
Collapse
Affiliation(s)
- Tae Jin Kim
- Department of Pharmacology, College of Medicine, Chung-Ang University, Seoul, Republic of Korea
| | - Hyun Jung Lee
- Department of Anatomy and Cell Biology, College of Medicine, Chung-Ang University, Seoul, Republic of Korea; Department of Global Innovative Drugs, Graduate School of Chung-Ang University, Seoul, Republic of Korea
| | - Do Hyeon Pyun
- Department of Pharmacology, College of Medicine, Chung-Ang University, Seoul, Republic of Korea
| | - A M Abd El-Aty
- Department of Pharmacology, Faculty of Veterinary Medicine, Cairo University, 12211-Giza, Egypt; Department of Medical Pharmacology, Medical Faculty, Ataturk University, Erzurum, Turkey.
| | - Ji Hoon Jeong
- Department of Pharmacology, College of Medicine, Chung-Ang University, Seoul, Republic of Korea; Department of Global Innovative Drugs, Graduate School of Chung-Ang University, Seoul, Republic of Korea
| | - Tae Woo Jung
- Department of Pharmacology, College of Medicine, Chung-Ang University, Seoul, Republic of Korea.
| |
Collapse
|
6
|
Wang Y, Zhao H, Nie X, Guo M, Jiang G, Xing M. Zinc application alleviates the adverse renal effects of arsenic stress in a protein quality control way in common carp. ENVIRONMENTAL RESEARCH 2020; 191:110063. [PMID: 32818499 DOI: 10.1016/j.envres.2020.110063] [Citation(s) in RCA: 10] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 05/15/2020] [Revised: 08/05/2020] [Accepted: 08/06/2020] [Indexed: 06/11/2023]
Abstract
The potential antagonistic mechanism between zinc (Zn) and arsenic (As) on renal toxicity was investigated in common carp. The results showed that by increased Zn efflux and retention (as reflected by zinc transporter 1 (ZnT-1), Zrt- and Irt- 1ike protein (ZIP) and metallothionein (MT) expression), Zn co-administration significantly recovered the antioxidant function (catalase, CAT) and the level of renal barrier function (Occludin, Claudins and Zonula Occludens) in comparison to As treatment. Interestingly, Zn co-administration with As resulted in carps undergoing reduction of heat shock response (HSPs), a low induction of autophagy flux (Beclin-1, microtubule-associated protein 1 light chain 3 (LC3) and sequestosome 1 (P62)) and decreased endoplasmic reticulum (ER) stress (activating transcription factor 6 (ATF-6), inositol requiring-1α (IRE1) and PKR-like ER kinase (PERK)) in the aspect of mRNA or protein levels. All these alleviated protein quality control processes induced by Zn under As stress was correlated with the no longer loosen tight connection, less swollen endoplasmic reticulum as well as reduced formation of autophagosomes and autophagic vesicles. Mechanically, post-transcriptional regulated protein quantities compromising phosphatidylinositol-3-kinase (PI3K)/protein kinase B (AKT)/mammalian target of rapamycin (mTOR) pathway was demonstrated true causative forces inside the cell for Zn against As poisoning. In conclusion, we suggested the potential renal protective effect of Zn supplementation against As exposure by the modulation of protein quality control processes.
Collapse
Affiliation(s)
- Yu Wang
- College of Wildlife and Protected Area, Northeast Forestry University, Harbin, 150040, Heilongjiang, PR China.
| | - Hongjing Zhao
- College of Wildlife and Protected Area, Northeast Forestry University, Harbin, 150040, Heilongjiang, PR China.
| | - Xiaopan Nie
- College of Wildlife and Protected Area, Northeast Forestry University, Harbin, 150040, Heilongjiang, PR China
| | - Menghao Guo
- College of Wildlife and Protected Area, Northeast Forestry University, Harbin, 150040, Heilongjiang, PR China
| | - Guangshun Jiang
- College of Wildlife and Protected Area, Northeast Forestry University, Harbin, 150040, Heilongjiang, PR China.
| | - Mingwei Xing
- College of Wildlife and Protected Area, Northeast Forestry University, Harbin, 150040, Heilongjiang, PR China.
| |
Collapse
|
7
|
The antitumour drug ABTL0812 impairs neuroblastoma growth through endoplasmic reticulum stress-mediated autophagy and apoptosis. Cell Death Dis 2020; 11:773. [PMID: 32943619 PMCID: PMC7498451 DOI: 10.1038/s41419-020-02986-w] [Citation(s) in RCA: 6] [Impact Index Per Article: 1.2] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/12/2020] [Revised: 08/26/2020] [Accepted: 08/27/2020] [Indexed: 02/06/2023]
Abstract
Neuroblastoma is the leading cause of cancer death in children aged 1 to 4 years. Particularly, five-year overall survival for high-risk neuroblastoma is below 50% with no curative options when refractory or relapsed. Most of current therapies target cell division and proliferation, thereby inducing DNA damage and programmed cell death. However, aggressive tumours often present alterations of these processes and are resistant to therapy. Therefore, exploring alternative pathways to induce tumour cell death will provide new therapeutic opportunities for these patients. In this study we aimed at testing the therapeutic potential of ABTL0812, a novel anticancer drug that induces cytotoxic autophagy to eliminate cancer cells, which is currently in phase II clinical trials of adult tumours. Here, we show that ABTL0812 impaired the viability of clinical representative neuroblastoma cell lines regardless of genetic alterations associated to bad prognosis and resistance to therapy. Oral administration of ABTL0812 to mice bearing neuroblastoma xenografts impaired tumour growth. Furthermore, our findings revealed that, in neuroblastoma, ABTL0812 induced cancer cell death via induction of endoplasmic reticulum stress, activation of the unfolded protein response, autophagy and apoptosis. Remarkably, ABTL0812 potentiated the antitumour activity of chemotherapies and differentiating agents such as irinotecan and 13-cis-retinoic acid. In conclusion, ABTL0812 distinctive mechanism of action makes it standout to be used alone or in combination in high-risk neuroblastoma patients.
Collapse
|
8
|
Naz I, Khan MR, Zai JA, Batool R, Zahra Z, Tahir A. Pilea umbrosa ameliorate CCl 4 induced hepatic injuries by regulating endoplasmic reticulum stress, pro-inflammatory and fibrosis genes in rat. Environ Health Prev Med 2020; 25:53. [PMID: 32917140 PMCID: PMC7488709 DOI: 10.1186/s12199-020-00893-2] [Citation(s) in RCA: 6] [Impact Index Per Article: 1.2] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/23/2019] [Accepted: 09/01/2020] [Indexed: 01/06/2023] Open
Abstract
BACKGROUND Pilea umbrosa (Urticaceae) is used by local communities (district Abbotabad) for liver disorders, as anticancer, in rheumatism and in skin disorders. METHODS Methanol extract of P. umbrosa (PUM) was investigated for the presence of polyphenolic constituents by HPLC-DAD analysis. PUM (150 mg/kg and 300 mg/kg) was administered on alternate days for eight weeks in rats exposed with carbon tetrachloride (CCl4). Serum analysis was performed for liver function tests while in liver tissues level of antioxidant enzymes and biochemical markers were also studied. In addition, semi quantitative estimation of antioxidant genes, endoplasmic reticulum (ER) induced stress markers, pro-inflammatory cytokines and fibrosis related genes were carried out on liver tissues by RT-PCR analysis. Liver tissues were also studied for histopathological injuries. RESULTS Level of antioxidant enzymes such as catalase (CAT), superoxide dismutase (SOD), peroxidase (POD) and glutathione (GSH) decreased (p < 0.05) whereas level of thiobarbituric acid reactive substance (TBARS), H2O2 and nitrite increased in liver tissues of CCl4 treated rat. Likewise increase in the level of serum markers; alanine transaminase (ALT), aspartate transaminase (AST), alkaline phosphatase (ALP) and total bilirubin was observed. Moreover, CCl4 caused many fold increase in expression of ER stress markers; glucose regulated protein (GRP-78), x-box binding protein1-total (XBP-1 t), x-box binding protein1-unspliced (XBP-1 u) and x-box binding protein1-spliced (XBP-1 s). The level of inflammatory mediators such as tumor necrosis factor-α (TNF-α), interleukin-6 (IL-6) and monocyte chemoattractant protein-1 (MCP-1) was aggregated whereas suppressed the level of antioxidant enzymes; γ-glutamylcysteine ligase (GCLC), protein disulfide isomerase (PDI) and nuclear erythroid 2 p45-related factor 2 (Nrf-2). Additionally, level of fibrosis markers; transforming growth factor-β (TGF-β), Smad-3 and collagen type 1 (Col1-α) increased with CCl4 induced liver toxicity. Histopathological scrutiny depicted damaged liver cells, neutrophils infiltration and dilated sinusoids in CCl4 intoxicated rats. PUM was enriched with rutin, catechin, caffeic acid and apigenin as evidenced by HPLC analysis. Simultaneous administration of PUM and CCl4 in rats retrieved the normal expression of these markers and prevented hepatic injuries. CONCLUSION Collectively these results suggest that PUM constituted of strong antioxidant chemicals and could be a potential therapeutic agent for stress related liver disorders.
Collapse
Affiliation(s)
- Irum Naz
- Faculty of Biological Sciences, Department of Biochemistry, Quaid-i-Azam University, Islamabad, Pakistan
| | - Muhammad Rashid Khan
- Faculty of Biological Sciences, Department of Biochemistry, Quaid-i-Azam University, Islamabad, Pakistan
| | - Jawaid Ahmed Zai
- Faculty of Biological Sciences, Department of Biochemistry, Quaid-i-Azam University, Islamabad, Pakistan
| | - Riffat Batool
- Faculty of Biological Sciences, Department of Biochemistry, Quaid-i-Azam University, Islamabad, Pakistan
| | - Zartash Zahra
- Faculty of Biological Sciences, Department of Biochemistry, Quaid-i-Azam University, Islamabad, Pakistan
| | - Aemin Tahir
- Faculty of Biological Sciences, Department of Biochemistry, Quaid-i-Azam University, Islamabad, Pakistan
| |
Collapse
|
9
|
Liu D, Tang W, Zhang H, Huang H, Zhang Z, Tang D, Jiao F. Icariin protects rabbit BMSCs against OGD-induced apoptosis by inhibiting ERs-mediated autophagy via MAPK signaling pathway. Life Sci 2020; 253:117730. [DOI: 10.1016/j.lfs.2020.117730] [Citation(s) in RCA: 9] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/24/2019] [Revised: 04/10/2020] [Accepted: 04/24/2020] [Indexed: 12/11/2022]
|
10
|
Adacan K, Obakan-Yerlikaya P, Arisan ED, Coker-Gurkan A, Kaya RI, Palavan-Unsal N. Epibrassinolide-induced autophagy occurs in an Atg5-independent manner due to endoplasmic stress induction in MEF cells. Amino Acids 2020; 52:871-891. [PMID: 32449072 DOI: 10.1007/s00726-020-02857-w] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/16/2020] [Accepted: 05/12/2020] [Indexed: 01/10/2023]
Abstract
Epibrassinolide (EBR), a polyhydroxysteroid belongs to plant growth regulator family, brassinosteroids and has been shown to have a similar chemical structure to mammalian steroid hormones. Our findings indicated that EBR could trigger apoptosis in cancer cells via induction of endoplasmic reticulum (ER) stress, caused by protein folding disturbance in the ER. Normal cells exhibited a remarkable resistance to EBR treatment and avoid from apoptotic cell death. The unfolded protein response clears un/misfolded proteins and restore ER functions. When stress is chronic, cells tend to die due to improper cellular functions. To understand the effect of EBR in non-malign cells, mouse embryonic fibroblast (MEF) cells were investigated in detail for ER stress biomarkers, autophagy, and polyamine metabolism in this study. Evolutionary conserved autophagy mechanism is a crucial cellular process to clean damaged organelles and protein aggregates through lysosome under the control of autophagy-related genes (ATGs). Cells tend to activate autophagy to promote cell survival under stress conditions. Polyamines are polycationic molecules playing a role in the homeostasis of important cellular events such as cell survival, growth, and, proliferation. The administration of PAs has been markedly extended the lifespan of various organisms via inducing autophagy and inhibiting oxidative stress. Our data indicated that ER stress is induced following EBR treatment in MEF cells as well as MEF Atg5-/- cells. In addition, autophagy is activated following EBR treatment by targeting PI3K/Akt/mTOR in wildtype (wt) cells. However, EBR-induced autophagy targets ULK1 in MEF cells lacking Atg5 expression. Besides, EBR treatment depleted the PA pool in MEF cells through the alterations of metabolic enzymes. The administration of Spd with EBR further increased autophagic vacuole formation. In conclusion, EBR is an anticancer drug candidate with selective cytotoxicity for cancer cells, in addition the induction of autophagy and PA metabolism are critical for responses of normal cells against EBR.
Collapse
Affiliation(s)
- Kaan Adacan
- Department of Molecular Biology and Genetics, Istanbul Kultur University, Ataköy Campus, Bakirkoy, 34156, Istanbul, Turkey
| | - Pınar Obakan-Yerlikaya
- Department of Molecular Biology and Genetics, Istanbul Kultur University, Ataköy Campus, Bakirkoy, 34156, Istanbul, Turkey.
| | - Elif Damla Arisan
- Institute of Biotechnology, Gebze Technical University, 41400, Gebze, Kocaeli, Turkey
| | - Ajda Coker-Gurkan
- Department of Molecular Biology and Genetics, Istanbul Kultur University, Ataköy Campus, Bakirkoy, 34156, Istanbul, Turkey
| | - Resul Ismail Kaya
- Department of Molecular Biology and Genetics, Istanbul Kultur University, Ataköy Campus, Bakirkoy, 34156, Istanbul, Turkey
| | - Narçın Palavan-Unsal
- Department of Molecular Biology and Genetics, Istanbul Kultur University, Ataköy Campus, Bakirkoy, 34156, Istanbul, Turkey
| |
Collapse
|
11
|
Sun JL, Abd El-Aty AM, Jeong JH, Jung TW. Ginsenoside Rb2 Ameliorates LPS-Induced Inflammation and ER Stress in HUVECs and THP-1 Cells via the AMPK-Mediated Pathway. THE AMERICAN JOURNAL OF CHINESE MEDICINE 2020; 48:967-985. [PMID: 32431178 DOI: 10.1142/s0192415x20500469] [Citation(s) in RCA: 29] [Impact Index Per Article: 5.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 12/14/2022]
Abstract
Inflammation and endoplasmic reticulum (ER) stress have been documented to contribute to the development of atherosclerosis. Ginsenoside Rb2 has been reported to exhibit antidiabetic effects. However, the effects of Rb2 on atherosclerotic responses such as inflammation and ER stress in endothelial cells and monocytes remain unclear. In this study, the expression of inflammation and ER stress markers was determined using a Western blotting method. Concentrations of tumor necrosis factor alpha (TNF[Formula: see text]) and monocyte chemoattractant protein-1 (MCP-1) in culture media were assessed by enzyme-linked immunosorbent assay (ELISA) and apoptosis was evaluated by a cell viability assay and a caspase-3 activity measurement kit. We found that exposure of HUVECs and THP-1 monocytes to Rb2 attenuated inflammation and ER stress, resulting in amelioration of apoptosis and THP-1 cell adhesion to HUVECs under lipopolysaccharide (LPS) condition. Increased AMPK phosphorylation and heme oxygenase (HO)-1 expression, including GPR120 expression were observed in Rb2-treated HUVECs and THP-1 monocytes. Downregulation of both, AMPK phosphorylation and HO-1expression rescued these observed changes. Furthermore, GPR120 siRNA mitigated Rb2-induced AMPK phosphorylation. These results suggest that Rb2 inhibits LPS-mediated apoptosis and THP-1 cell adhesion to HUVECs by GPR120/AMPK/HO-1-associated attenuating inflammation and ER stress. Therefore, Rb2 can be used as a potential therapeutic molecule for treatment of atherosclerosis.
Collapse
Affiliation(s)
- Jaw Long Sun
- Department of Pharmacology, College of Medicine, Chung-Ang University, Seoul, Republic of Korea
| | - A M Abd El-Aty
- Department of Medical Pharmacology, Medical Faculty, Ataturk University, Erzurum, Turkey.,Department of Pharmacology, Faculty of Veterinary Medicine, Cairo University, 12211 Giza, Egypt
| | - Ji Hoon Jeong
- Department of Pharmacology, College of Medicine, Chung-Ang University, Seoul, Republic of Korea
| | - Tae Woo Jung
- Department of Pharmacology, College of Medicine, Chung-Ang University, Seoul, Republic of Korea
| |
Collapse
|
12
|
Woo M, Choi HI, Park SH, Ahn J, Jang YJ, Ha TY, Lee DH, Seo HD, Jung CH. The unc-51 like autophagy activating kinase 1-autophagy related 13 complex has distinct functions in tunicamycin-treated cells. Biochem Biophys Res Commun 2020; 524:744-749. [DOI: 10.1016/j.bbrc.2020.01.160] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/14/2020] [Accepted: 01/29/2020] [Indexed: 12/19/2022]
|
13
|
Chiu HW, Yeh YL, Ho SY, Wu YH, Wang BJ, Huang WJ, Ho YS, Wang YJ, Chen LC, Tu SH. A New Histone Deacetylase Inhibitor Enhances Radiation Sensitivity through the Induction of Misfolded Protein Aggregation and Autophagy in Triple-Negative Breast Cancer. Cancers (Basel) 2019; 11:cancers11111703. [PMID: 31683883 PMCID: PMC6896096 DOI: 10.3390/cancers11111703] [Citation(s) in RCA: 10] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/18/2019] [Revised: 10/27/2019] [Accepted: 10/29/2019] [Indexed: 12/22/2022] Open
Abstract
Radiation therapy (RT) is one of the main treatments for triple-negative breast cancer (TNBC). However, many patients experience RT failure due to the metastatic potential of RT and the radiation resistance of several cancers. Histone deacetylase inhibitors (HDACis) can serve as radiosensitizers. In this study, we investigated whether a novel HDACi, TMU-35435, could reinforce radiosensitivity through the induction of misfolded protein aggregation and autophagy in TNBC. Significantly enhanced toxicity was found for the combination treatment compared with TMU-35435 or irradiation (IR) treatment alone in TNBC cells. The combination treatment induced misfolded protein aggregation and TMU-35435 inhibited the interaction of HDAC6 with dynein. Furthermore, the combined treatment induced endoplasmic reticulum (ER) stress but did not trigger apoptosis. In addition, the combination treatment caused autophagic cell death. Tumor growth in the mouse of model orthotopic breast cancer was suppressed by the combination treatment through the induction of ER stress and autophagy. These findings support the future evaluation of the novel HDACi TMU-35435, as a potent radiosensitizer in TNBC.
Collapse
Affiliation(s)
- Hui-Wen Chiu
- Graduate Institute of Clinical Medicine, College of Medicine, Taipei Medical University, Taipei 11031, Taiwan.
- Division of Nephrology, Department of Internal Medicine, Shuang Ho Hospital, Taipei Medical University, Taipei 11031, Taiwan.
| | - Ya-Ling Yeh
- Department of Environmental and Occupational Health, College of Medicine, National Cheng Kung University, Tainan 70101, Taiwan.
| | - Sheng-Yow Ho
- Department of Radiation Oncology, Chi Mei Medical Center, Tainan 71004, Taiwan.
- Graduate Institute of Medical Sciences, Chang Jung Christian University, Tainan 71101, Taiwan.
| | - Yuan-Hua Wu
- Department of Environmental and Occupational Health, College of Medicine, National Cheng Kung University, Tainan 70101, Taiwan.
- Department of Radiation Oncology, National Cheng Kung University Hospital, College of Medicine, National Cheng Kung University, Tainan 70101, Taiwan.
| | - Bour-Jr Wang
- Department of Occupational and Environmental Medicine, National Cheng Kung University Hospital, Tainan 70101, Taiwan.
- Department of Cosmetic Science and Institute of Cosmetic Science, Chia Nan University of Pharmacy and Science, Tainan 71710, Taiwan.
| | - Wei-Jan Huang
- Graduate Institute of Pharmacognosy, Taipei Medical University, Taipei 11031, Taiwan.
| | - Yuan-Soon Ho
- TMU Research Center of Cancer Translational Medicine, Taipei Medical University, Taipei 11031, Taiwan.
- Graduate Institute of Medical Sciences, College of Medicine, Taipei Medical University, Taipei 11031, Taiwan.
- Department of Laboratory Medicine, Taipei Medical University Hospital, Taipei 11031, Taiwan.
- School of Medical Laboratory Science and Biotechnology, College of Medical Science and Technology, Taipei Medical University, Taipei 11031, Taiwan.
| | - Ying-Jan Wang
- Department of Environmental and Occupational Health, College of Medicine, National Cheng Kung University, Tainan 70101, Taiwan.
| | - Li-Ching Chen
- TMU Research Center of Cancer Translational Medicine, Taipei Medical University, Taipei 11031, Taiwan.
- Division of Breast Surgery, Department of Surgery, Taipei Medical University Hospital, Taipei 11031, Taiwan.
- Taipei Cancer Center, Taipei Medical University, Taipei 11031, Taiwan.
| | - Shih-Hsin Tu
- Division of Breast Surgery, Department of Surgery, Taipei Medical University Hospital, Taipei 11031, Taiwan.
- Taipei Cancer Center, Taipei Medical University, Taipei 11031, Taiwan.
- Department of Surgery, School of Medicine, College of Medicine, Taipei Medical University, Taipei 11031, Taiwan.
| |
Collapse
|
14
|
Hsu YH, Chuang HC, Lee YH, Lin YF, Chen YJ, Hsiao TC, Wu MY, Chiu HW. Traffic-related particulate matter exposure induces nephrotoxicity in vitro and in vivo. Free Radic Biol Med 2019; 135:235-244. [PMID: 30878646 DOI: 10.1016/j.freeradbiomed.2019.03.008] [Citation(s) in RCA: 48] [Impact Index Per Article: 8.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 01/01/2019] [Revised: 03/03/2019] [Accepted: 03/09/2019] [Indexed: 12/14/2022]
Abstract
Traffic emission is responsible for most small-sized particulate matter (PM) air pollution in urban areas. Several recent studies have indicated that traffic-related PM may aggravate kidney disease. Furthermore, exposure to particulate air pollution may be related to the risk of chronic kidney disease (CKD). However, the underlying molecular mechanisms have not been adequately addressed. In the present study, we studied the mechanisms of renal damage that might be associated with exposure to PM. In a real world of whole-body exposure to traffic-related PM model for 3-6 months, PM in urban ambient air can affect kidney function and induce autophagy, endoplasmic reticulum (ER) stress and apoptosis in kidney tissues. Exposure to traffic-related diesel particulate matter (DPM) led to a reduction in cell viability in human kidney tubular epithelial cells HK-2. DPM increased mitochondrial reactive oxygen species (ROS) and decreased the mitochondrial membrane potential. Furthermore, DPM induced ER stress and activated the unfolded protein response (UPR) pathway. Eventually, DPM exposure induced caspase pathways and triggered apoptosis. In addition, DPM induced autophagy through the inhibition of the Akt/mTOR pathway. Autophagy inhibition resulted in significantly increased cytotoxicity and apoptosis. These findings suggest that air pollution in urban areas may cause nephrotoxicity and autophagy as a protective role in PM-induced cytotoxicity.
Collapse
Affiliation(s)
- Yung-Ho Hsu
- Division of Nephrology, Department of Internal Medicine, Shuang Ho Hospital, Taipei Medical University, New Taipei City, Taiwan; Division of Nephrology, Department of Internal Medicine, School of Medicine, College of Medicine, Taipei Medical University, Taipei, Taiwan
| | - Hsiao-Chi Chuang
- School of Respiratory Therapy, College of Medicine, Taipei Medical University, Taipei, Taiwan; Division of Pulmonary Medicine, Department of Internal Medicine, Shuang Ho Hospital, Taipei Medical University, New Taipei City, Taiwan; School of Public Health, College of Public Health, Taipei Medical University, Taipei, Taiwan
| | - Yu-Hsuan Lee
- Department of Food Safety/Hygiene &Risk Management, College of Medicine, National Cheng Kung University, Tainan, Taiwan
| | - Yuh-Feng Lin
- Division of Nephrology, Department of Internal Medicine, Shuang Ho Hospital, Taipei Medical University, New Taipei City, Taiwan; Graduate Institute of Clinical Medicine, College of Medicine, Taipei Medical University, Taipei, Taiwan
| | - Yi-Jie Chen
- Division of Nephrology, Department of Internal Medicine, Shuang Ho Hospital, Taipei Medical University, New Taipei City, Taiwan; Graduate Institute of Clinical Medicine, College of Medicine, Taipei Medical University, Taipei, Taiwan
| | - Ta-Chih Hsiao
- Graduate Institute of Environmental Engineering, National Taiwan University, Taipei, Taiwan
| | - Mei-Yi Wu
- Division of Nephrology, Department of Internal Medicine, Shuang Ho Hospital, Taipei Medical University, New Taipei City, Taiwan; Division of Nephrology, Department of Internal Medicine, School of Medicine, College of Medicine, Taipei Medical University, Taipei, Taiwan; Graduate of Institute of Epidemiology and Preventive Medicine, College of Public Health, National Taiwan University, Taipei, Taiwan
| | - Hui-Wen Chiu
- Division of Nephrology, Department of Internal Medicine, Shuang Ho Hospital, Taipei Medical University, New Taipei City, Taiwan; Graduate Institute of Clinical Medicine, College of Medicine, Taipei Medical University, Taipei, Taiwan.
| |
Collapse
|
15
|
Chen P, Geng N, Zhou D, Zhu Y, Xu Y, Liu K, Liu Y, Liu J. The regulatory role of COX-2 in the interaction between Cr(VI)-induced endoplasmic reticulum stress and autophagy in DF-1 cells. ECOTOXICOLOGY AND ENVIRONMENTAL SAFETY 2019; 170:112-119. [PMID: 30529609 DOI: 10.1016/j.ecoenv.2018.11.120] [Citation(s) in RCA: 20] [Impact Index Per Article: 3.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 08/18/2018] [Revised: 10/31/2018] [Accepted: 11/27/2018] [Indexed: 06/09/2023]
Abstract
Hexavalent chromium (Cr(VI)) is a common environmental pollutant. Exposure of Cr(VI) can lead to cell autophagy, but the preventive measures for diminishing Cr(VI)-induced autophagy need further study. COX-2 can be induced by several heavy metals and can lead to endoplasmic reticulum (ER) stress and autophagy; thus, COX-2, ER stress, and autophagy may be related. This study mainly investigated the role of COX-2 in the eIF2α-ATF4 pathway, which is a major pathway in cell autophagy. In this study, Cr(VI) was used as a xenobiotic to determine changes in the parameters of ER stress, autophagy, and COX-2 levels. At the same time, a clear contrast was obtained by assigning positive and negative controls of ER stress and autophagy. The results showed that during Cr(VI) invasion, the parameters of ER stress and autophagy (such as BiP, PERK, p62, LC3-II, and mTOR) were enhanced, similarly to the positive control of ER stress and/or the autophagy controls. Such enhancement is a protective mechanism for cell survival. Additionally, the COX-2 levels increased. Moreover, when COX-2 was inhibited, the PERK level remained high, whereas the LC3-II level decreased. This finding suggests that COX-2 specifically affects the interaction between ER stress and autophagy. Notably, this study reveals that Cr(VI) can induce ER stress and autophagy in DF-1 cells and that COX-2 plays an essential role in the interaction between ER stress and autophagy.
Collapse
Affiliation(s)
- Peng Chen
- College of Veterinary Medicine, Shandong Agricultural University, Tai'an 271018, PR China; Shandong Provincial Engineering Technology Research Center of Animal Disease Control and Prevention, Shandong Agricultural University, 61 Daizong Street, Taian City, Shandong Province 271018, PR China
| | - Na Geng
- Research Center for Animal Disease Control Engineering Shandong Province, Shandong Agricultural University, Tai'an 271018, PR China
| | - Dong Zhou
- College of Veterinary Medicine, Northwest Agriculture and Forestry University, Yangling 712100, PR China
| | - Yiran Zhu
- Shandong Provincial Engineering Technology Research Center of Animal Disease Control and Prevention, Shandong Agricultural University, 61 Daizong Street, Taian City, Shandong Province 271018, PR China
| | - Yuliang Xu
- College of Veterinary Medicine, Shandong Agricultural University, Tai'an 271018, PR China
| | - Kangping Liu
- College of Veterinary Medicine, Shandong Agricultural University, Tai'an 271018, PR China
| | - Yongxia Liu
- Research Center for Animal Disease Control Engineering Shandong Province, Shandong Agricultural University, Tai'an 271018, PR China.
| | - Jianzhu Liu
- College of Veterinary Medicine, Shandong Agricultural University, Tai'an 271018, PR China.
| |
Collapse
|
16
|
Karakas D, Cevatemre B, Oral AY, Yilmaz VT, Ulukaya E. Unfolded Protein Response is Involved in Trans-Platinum (II) Complex-Induced Apoptosis in Prostate Cancer Cells via ROS Accumulation. Anticancer Agents Med Chem 2019; 19:1184-1195. [PMID: 30963984 DOI: 10.2174/1871520619666190409103334] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/31/2018] [Revised: 10/18/2018] [Accepted: 04/02/2019] [Indexed: 12/29/2022]
Abstract
BACKGROUND Prostate cancer is one of the most common cancer types and it is the sixth leading cause of cancer-related death in men worldwide. Even though novel treatment modalities have been developed, it still a lifethreatening disease. Therefore novel compounds are needed to improve the overall survival. METHODS In our study, it was aimed to evaluate the anti-cancer activity of newly synthesized Platinum (II) [Pt(II)] complex on DU145, LNCaP and PC-3 prostate cancer cell lines. The cytotoxic activity of Pt(II) complex was tested by SRB and ATP cell viability assays. To detect the mode of cell death; fluorescent staining, flow cytometry and western blot analyses were performed. RESULTS The Pt(II) complex treatment resulted in a decrease in cell viability and increasing levels of apoptotic markers (pyknotic nuclei, annexin-V, caspase 3/7 activity) and a decrease in mitochondrial membrane potential in a dose dependent manner. Among cell types, tested PC-3 cells were found to be more sensitive to Pt(II) complex, demonstrating elevation of DNA damage in this cell line. In addition, Pt(II) complex induced Endoplasmic Reticulum (ER) stress by triggering ROS generation. More importantly, pre-treatment with NAC alleviated Pt(II) complex-mediated ER stress and cell death in PC-3. CONCLUSION These findings suggest an upstream role of ROS production in Pt(II) complex-induced ER stressmediated apoptotic cell death. Considering the ROS-mediated apoptosis inducing the effect of Pt(II) complex, it warrants further evaluation as a novel metal-containing anticancer drug candidate.
Collapse
Affiliation(s)
- Didem Karakas
- Department of Molecular Biology and Genetics, Faculty of Science and Letters, Istinye University, Istanbul, Turkey.,Department of Biology, Faculty of Arts and Sciences, Uludag University, Bursa, Turkey
| | - Buse Cevatemre
- Department of Biology, Faculty of Arts and Sciences, Uludag University, Bursa, Turkey.,Koc University Research Center for Translational Medicine (KUTTAM), Koc University, Istanbul, Turkey
| | - Arzu Y Oral
- Department of Medical Biochemistry, Faculty of Medicine, Uludag University, Bursa, Turkey
| | - Veysel T Yilmaz
- Department of Chemistry, Faculty of Arts and Sciences, Uludag University, Bursa, Turkey
| | - Engin Ulukaya
- Department of Medical Biochemistry, Faculty of Medical School, Istinye University, Istanbul, Turkey
| |
Collapse
|
17
|
Li L, Li L, Zhou X, Yu Y, Li Z, Zuo D, Wu Y. Silver nanoparticles induce protective autophagy via Ca 2+/CaMKKβ/AMPK/mTOR pathway in SH-SY5Y cells and rat brains. Nanotoxicology 2019; 13:369-391. [PMID: 30729847 DOI: 10.1080/17435390.2018.1550226] [Citation(s) in RCA: 84] [Impact Index Per Article: 14.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/10/2023]
Abstract
Silver nanoparticles (AgNPs) are widely used for manufacturing products containing antibacterial agents, as well as food technologies such as edible films and food packaging. Routes of AgNPs exposure are principally derived by contacting with certain medical sprays, food, toothpaste, and purification products. Previously, we showed that AgNPs induce endoplasmic reticulum (ER) stress and promote apoptosis progression in SH-SY5Y cells; however, whether AgNP-induced ER stress is able to trigger autophagy in vivo and in vitro, and the role of autophagy in AgNP-induced cytotoxicity remain unclear. In the present study, we found that increased intracellular calcium (Ca2+) levels arising from AgNP-induced-ER stress resulted in activation of calmodulin-dependent protein kinase kinase β (CaMKKβ) and adenosine 5'-monophosphate-activated protein kinase (AMPK), which downregulated the level of mammalian target of rapamycin (mTOR) and upregulated Beclin-1 to activate autophagy in SH-SY5Y cells. Specifically, inhibition of autophagy by the addition of chloroquine (CQ) or silencing of Beclin-1 significantly enhanced the cytotoxicity of AgNPs, suggesting that autophagy plays a protective role in AgNP-induced cell apoptosis. Furthermore, we showed that oral administration of AgNPs for 28 continuous days induced ER stress-mediated apoptosis and autophagy in rats via activation of CaMKKβ and AMPK. In summary, this study is the first to report that AgNPs induce protective autophagy via a Ca2+/CaMKKβ/AMPK/mTOR pathway in vivo and in vitro. Therefore, public exposure to AgNPs should arouse concerns regarding environmental safety and human health. Highlight Silver nanoparticle-induced ER stress elicits protective autophagy via a Ca2+-dependent mechanism in SH-SY5Y cells. The Ca2+/CaMKKβ/AMPK/mTOR pathway is involved in autophagy. Orally administered silver nanoparticles induce ER stress-mediated autophagy and apoptosis in rats.
Collapse
Affiliation(s)
- Lin Li
- a Department of Pharmacology , Shenyang Pharmaceutical University , Shenyang , P.R.China.,b Department of Pharmacy, The First Affiliated Hospital of College of Medicine , Zhejiang University , Hangzhou , P.R. China
| | - Lu Li
- c Department of Pharmacy, The Affiliated Brain Hospital of Guangzhou Medical University (Guangzhou Huiai Hospital) , Guangzhou , P.R. China
| | - Xuejiao Zhou
- a Department of Pharmacology , Shenyang Pharmaceutical University , Shenyang , P.R.China
| | - Yang Yu
- d Liaoning Medical Device Test Institute , Shenyang , P.R. China
| | - Zengqiang Li
- a Department of Pharmacology , Shenyang Pharmaceutical University , Shenyang , P.R.China
| | - Daiying Zuo
- a Department of Pharmacology , Shenyang Pharmaceutical University , Shenyang , P.R.China
| | - Yingliang Wu
- a Department of Pharmacology , Shenyang Pharmaceutical University , Shenyang , P.R.China
| |
Collapse
|
18
|
Abstract
In 1945, K. R. Porter et al. observed mouse embryonic fibroblasts (MEFs) and found that the cytoplasmic part of the cell had an unreported reticular structure, so it was named endoplasmic reticulum (ER). The major functions of the endoplasmic reticulum are: synthesis of intracellular proteins and the modification and processing of proteins. It is an important organelle in eukaryotic cells. It is a three-dimensional network structure in which complex and closed intracellular tubular intimal systems are intertwined. When cells are subjected to various strong stimulating factors such as nutrient deficiencies, Ca2+ metabolic imbalance, toxin stimulation, and sustained oxidative stress stimulation, the cell homeostasis will be broken. In order to survive, a series of cell self-protection event will be initiated including the endoplasmic reticulum stress (ERS). The UPR can further promote the expression of the proteins which can help the misfolded and unfolded proteins restore to its normal structure through the activation of PERK, IRE1, and ATF6. However, the co-working of UPR and the ubiquitin-proteasome system still cannot make the endoplasmic reticulum restoring to its normal state, when the stimuli persist or are too strong. The damaged endoplasmic reticulum can be partially engulfed by the autophagic vesicles for degradation when the ERS persists. The degraded endoplasmic reticulum fragments can be reassembled into a new endoplasmic reticulum to restore the normal state of it. Hence, it seems that the autophagy has become the last mean to restore the homeostasis of endoplasmic reticulum.
Collapse
|
19
|
Mustaly-Kalimi S, Littlefield AM, Stutzmann GE. Calcium Signaling Deficits in Glia and Autophagic Pathways Contributing to Neurodegenerative Disease. Antioxid Redox Signal 2018; 29:1158-1175. [PMID: 29634342 DOI: 10.1089/ars.2017.7266] [Citation(s) in RCA: 28] [Impact Index Per Article: 4.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Indexed: 12/21/2022]
Abstract
SIGNIFICANCE Numerous cellular processes and signaling mechanisms have been identified that contribute to Alzheimer's disease (AD) pathology; however, a comprehensive or unifying pathway that binds together the major disease features remains elusive. As an upstream mechanism, altered calcium (Ca2+) signaling is a common driving force for many pathophysiological events that emerge during normal aging and development of neurodegenerative disease. Recent Advances: Over the previous three decades, accumulated evidence has validated the concept that intracellular Ca2+ dysregulation is centrally involved in AD pathogenesis, including the aggregation of pathogenic β-amyloid (Aβ) and phospho-τ species, synapse loss and dysfunction, cognitive impairment, and neurotoxicity. CRITICAL ISSUES Although neuronal Ca2+ signaling within the cytosol and endoplasmic reticulum (ER) has been well studied, other critical central nervous system-resident cell types affected by aberrant Ca2+ signaling, such as astrocytes and microglia, have not been considered as thoroughly. In addition, certain intracellular Ca2+-harboring organelles have been well studied, such as the ER and mitochondria; however other critical Ca2+-regulated organelles, such as lysosomes and autophagosomes, have only more recently been investigated. In this review, we examine Ca2+ dysregulation in microglia and astrocytes, as well as key intracellular organelles important for cellular maintenance and protein handling. Ca2+ dysregulation within these non-neuronal cells and organelles is hypothesized to disrupt the effective clearance of misaggregated proteins and cellular signaling pathways needed for memory networks. FUTURE DIRECTIONS Overall, we aim to explore how these disrupted mechanisms could be involved in AD pathology and consider their role as potential therapeutic targets. Antioxid. Redox Signal. 29, 1158-1175.
Collapse
Affiliation(s)
- Sarah Mustaly-Kalimi
- 1 Department of Neuroscience, School of Graduate and Postdoctoral Studies, Rosalind Franklin University of Medicine and Science , North Chicago, Illinois
| | - Alyssa M Littlefield
- 1 Department of Neuroscience, School of Graduate and Postdoctoral Studies, Rosalind Franklin University of Medicine and Science , North Chicago, Illinois
| | - Grace E Stutzmann
- 2 Department of Neuroscience, The Chicago Medical School, Rosalind Franklin University of Medicine and Science , North Chicago, Illinois
| |
Collapse
|
20
|
Jayasooriya RGPT, Dilshara MG, Karunarathne WAHM, Molagoda IMN, Choi YH, Kim GY. Camptothecin enhances c-Myc-mediated endoplasmic reticulum stress and leads to autophagy by activating Ca 2+-mediated AMPK. Food Chem Toxicol 2018; 121:648-656. [PMID: 30266318 DOI: 10.1016/j.fct.2018.09.057] [Citation(s) in RCA: 12] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/08/2018] [Revised: 09/21/2018] [Accepted: 09/24/2018] [Indexed: 02/06/2023]
Abstract
Camptothecin (CPT) from Camptotheca acuminate was discovered for anticancer drugs, which targets topoisomease I. However, whether CPT regulates c-Myc expression has not been understood in endoplasmic reticulum (ER) stress and autophagy. In this study, we found that CPT enhanced c-Myc expression and that the transient knockdown of c-Myc abrogated reactive oxygen species (ROS) generation, which resulted in the accumulation of ER stress-regulating proteins, such as PERK, eIF2α, ATF4, and CHOP. Moreover, the transfection of eIF2α-targeted siRNA attenuated CPT-induced autophagy and decreased the levels of Beclin-1 and Atg7, which indicated that CPT upregulated ER stress-mediated autophagy. In addition, CPT phosphorylated AMPK in response to intracellular Ca2+ release. Ca2+ chelators, ethylene glycol tetraacetic acid and a CaMKII inhibitor, K252a, decreased CPT-induced Beclin-1 and Atg7, and downregulated AMPK phosphorylation, which suggested that CPT-induced Ca2+ release leads to the activation of autophagy through CaMKII-mediated AMPK phosphorylation. CPT also phosphorylated JNK and activated the DNA-binding activity of AP-1; furthermore, knockdown of JNK abolished the expression level of Beclin-1 and Atg7, which implied that the JNK-AP-1 pathway was a potent mediator of CPT-induced autophagy. Our findings indicated that CPT promoted c-Myc-mediated ER stress and ROS generation, which enhances autophagy via the Ca2+-AMPK and JNK-AP-1 pathways.
Collapse
Affiliation(s)
- Rajapaksha Gedara Prasad Tharanga Jayasooriya
- Department of Marine Life Sciences, Jeju National University, Jeju, 63243, Republic of Korea; Department of Bioprocess Technology, Faculty of Technology, University of Rajarata, Mihintale, 50300, Sri Lanka
| | | | | | | | - Yung Hyun Choi
- Department of Biochemistry, College of Oriental Medicine, Dong-Eui University, Busan, 47227, Republic of Korea
| | - Gi-Young Kim
- Department of Marine Life Sciences, Jeju National University, Jeju, 63243, Republic of Korea.
| |
Collapse
|
21
|
IreA Controls Endoplasmic Reticulum Stress-Induced Autophagy and Survival through Homeostasis Recovery. Mol Cell Biol 2018; 38:MCB.00054-18. [PMID: 29632077 DOI: 10.1128/mcb.00054-18] [Citation(s) in RCA: 13] [Impact Index Per Article: 1.9] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/09/2018] [Accepted: 04/01/2018] [Indexed: 02/06/2023] Open
Abstract
The unfolded protein response (UPR) is an adaptive pathway that restores cellular homeostasis after endoplasmic reticulum (ER) stress. The ER-resident kinase/RNase Ire1 is the only UPR sensor conserved during evolution. Autophagy, a lysosomal degradative pathway, also contributes to the recovery of cell homeostasis after ER stress, but the interplay between these two pathways is still poorly understood. We describe the Dictyostelium discoideum ER stress response and characterize its single bona fide Ire1 orthologue, IreA. We found that tunicamycin (TN) triggers a gene-expression reprogramming that increases the protein folding capacity of the ER and alleviates ER protein load. Further, IreA is required for cell survival after TN-induced ER stress and is responsible for nearly 40% of the transcriptional changes induced by TN. The response of Dictyostelium cells to ER stress involves the combined activation of an IreA-dependent gene expression program and the autophagy pathway. These two pathways are independently activated in response to ER stress but, interestingly, autophagy requires IreA at a later stage for proper autophagosome formation. We propose that unresolved ER stress in cells lacking IreA causes structural alterations of the ER, leading to a late-stage blockade of autophagy clearance. This unexpected functional link may critically affect eukaryotic cell survival under ER stress.
Collapse
|
22
|
Li M, Pan B, Shi Y, Fu J, Xue X. Increased expression of CHOP and LC3B in newborn rats with bronchopulmonary dysplasia. Int J Mol Med 2018; 42:1653-1665. [PMID: 29901175 DOI: 10.3892/ijmm.2018.3724] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.4] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/22/2017] [Accepted: 05/09/2018] [Indexed: 11/06/2022] Open
Abstract
Bronchopulmonary dysplasia (BPD) seriously affects the health and prognosis of children, but the efficacy of treatments is poor. The present study aimed to examine the effects of C/EBP homologous protein (CHOP), activating transcription factor 4 (ATF4) and microtubule‑associated protein light chain 3β (LC3B), and the interaction between CHOP and LC3B, in newborn rats with BPD. At 1, 7, 14 and 21 days, the rats in the model [fraction of inspired oxygen (FiO2)=80‑85%] and control groups (FiO2=21%) were randomly sacrificed, and lung samples were collected. Alveolar development was evaluated according to the radial alveolar count (RAC) and alveolar septum thickness. Ultrastructural changes were observed by transmission electron microscopy (TEM), the expression levels of CHOP, ATF4 and LC3B were determined by immunohistochemistry, and western blot and reverse transcription‑quantitative polymerase chain reaction analyses. The co‑localization of CHOP and LC3B in lung tissues was determined by immunofluorescence. The results showed that, compared with the control group, alveolarization arrest was present in the model group. The TEM observations revealed that, at 14 days, type II alveolar epithelial cell (AECII) lamellar bodies were damaged, with an apparent dilation of the endoplasmic reticulum (ER) and autophagy in cells within the model group. Between days 7 and 14, the protein levels of ATF4, CHOP and LC3B were significantly increased in the model group. The mRNA levels of CHOP and LC3B were lower at days 7‑21. CHOP and LC3B were co‑localized in the cells of the lung tissues at day 14 in the model group. Pearson's correlation analysis showed that the protein levels of CHOP and LC3B‑II were positively correlated in the model groups. As in previous studies, the present study demonstrated that BPD damaged the AECII cells, which exhibited detached and sparse microvilli and the vacuolization of lamellar bodies. In addition, it was found that the ER was dilated, with autophagosomes containing ER and other organelles in AECII cells; the expression levels of CHOP and LC3B‑II were upregulated. CHOP and LC3B‑II may have joint involvement in the occurrence and development of BPD.
Collapse
Affiliation(s)
- Mengyun Li
- Department of Pediatrics, Shengjing Hospital of China Medical University, Shenyang, Liaoning 110004, P.R. China
| | - Bingting Pan
- Department of Pediatrics, Shengjing Hospital of China Medical University, Shenyang, Liaoning 110004, P.R. China
| | - Yongyan Shi
- Department of Pediatrics, Shengjing Hospital of China Medical University, Shenyang, Liaoning 110004, P.R. China
| | - Jianhua Fu
- Department of Pediatrics, Shengjing Hospital of China Medical University, Shenyang, Liaoning 110004, P.R. China
| | - Xindong Xue
- Department of Pediatrics, Shengjing Hospital of China Medical University, Shenyang, Liaoning 110004, P.R. China
| |
Collapse
|
23
|
Morris G, Puri BK, Walder K, Berk M, Stubbs B, Maes M, Carvalho AF. The Endoplasmic Reticulum Stress Response in Neuroprogressive Diseases: Emerging Pathophysiological Role and Translational Implications. Mol Neurobiol 2018; 55:8765-8787. [PMID: 29594942 PMCID: PMC6208857 DOI: 10.1007/s12035-018-1028-6] [Citation(s) in RCA: 52] [Impact Index Per Article: 7.4] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/29/2018] [Accepted: 03/20/2018] [Indexed: 02/07/2023]
Abstract
The endoplasmic reticulum (ER) is the main cellular organelle involved in protein synthesis, assembly and secretion. Accumulating evidence shows that across several neurodegenerative and neuroprogressive diseases, ER stress ensues, which is accompanied by over-activation of the unfolded protein response (UPR). Although the UPR could initially serve adaptive purposes in conditions associated with higher cellular demands and after exposure to a range of pathophysiological insults, over time the UPR may become detrimental, thus contributing to neuroprogression. Herein, we propose that immune-inflammatory, neuro-oxidative, neuro-nitrosative, as well as mitochondrial pathways may reciprocally interact with aberrations in UPR pathways. Furthermore, ER stress may contribute to a deregulation in calcium homoeostasis. The common denominator of these pathways is a decrease in neuronal resilience, synaptic dysfunction and even cell death. This review also discusses how mechanisms related to ER stress could be explored as a source for novel therapeutic targets for neurodegenerative and neuroprogressive diseases. The design of randomised controlled trials testing compounds that target aberrant UPR-related pathways within the emerging framework of precision psychiatry is warranted.
Collapse
Affiliation(s)
- Gerwyn Morris
- Tir Na Nog, Bryn Road seaside 87, Llanelli, Wales, SA15 2LW, UK
- IMPACT Strategic Research Centre, School of Medicine, Deakin University, Geelong, Australia
| | - Basant K Puri
- Department of Medicine, Imperial College London, Hammersmith Hospital, London, England, W12 0HS, UK.
| | - Ken Walder
- The Centre for Molecular and Medical Research, School of Medicine, Deakin University, P.O. Box 291, Geelong, 3220, Australia
| | - Michael Berk
- IMPACT Strategic Research Centre, School of Medicine, Deakin University, Geelong, Australia
- Department of Psychiatry, University of Melbourne, Melbourne, Australia
- Orygen, the National Centre of Excellence in Youth Mental Health, Parkville, Australia
- Centre for Youth Mental Health, University of Melbourne, Melbourne, Australia
- Florey Institute for Neuroscience and Mental Health, Melbourne, Australia
| | - Brendon Stubbs
- Physiotherapy Department, South London and Maudsley NHS Foundation Trust, London, UK
- Health Service and Population Research Department, Institute of Psychiatry, Psychology and Neuroscience, King's College London, London, UK
- Faculty of Health, Social Care and Education, Anglia Ruskin University, Chelmsford, UK
| | - Michael Maes
- IMPACT Strategic Research Centre, School of Medicine, Deakin University, Geelong, Australia
- Department of Psychiatry, Chulalongkorn University, Bangkok, Thailand
| | - André F Carvalho
- Department of Psychiatry, Faculty of Medicine, University of Toronto, Toronto, ON, Canada
- Centre for Addiction & Mental Health (CAMH), Toronto, ON, Canada
| |
Collapse
|
24
|
The endoplasmic reticulum stress-autophagy pathway is involved in apelin-13-induced cardiomyocyte hypertrophy in vitro. Acta Pharmacol Sin 2017; 38:1589-1600. [PMID: 28748915 DOI: 10.1038/aps.2017.97] [Citation(s) in RCA: 33] [Impact Index Per Article: 4.1] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 10/26/2016] [Accepted: 03/12/2017] [Indexed: 01/08/2023]
Abstract
Apelin is the endogenous ligand for the G protein-coupled receptor APJ, and plays important roles in the cardiovascular system. Our previous studies showed that apelin-13 promotes the hypertrophy of H9c2 rat cardiomyocytes through the PI3K-autophagy pathway. The aim of this study was to explore what roles ER stress and autophagy played in apelin-13-induced hypertrophy of cardiomyocytes in vitro. Treatment of H9c2 cells with apelin-13 (0.001-2 μmol/L) dose-dependently increased the production of ROS and the expression levels of NADPH oxidase 4 (NOX4). Knockdown of Nox4 with siRNAs effectively prevented the reduction of GSH/GSSG ratio in apelin-13-treated cells. Furthermore, apelin-13 treatment dose-dependently increased the expression of Bip and CHOP, two ER stress markers, in the cells. Knockdown of APJ or Nox4 with the corresponding siRNAs, or application of NADPH inhibitor DPI blocked apelin-13-induced increases in Bip and CHOP expression. Moreover, apelin-13 treatment increased the formation of autophagosome and ER fragments and the LC3 puncta in the ER of the cells. Knockdown of APJ, Nox4, Bip or CHOP with the corresponding siRNAs, or application of DPI or salubrinal attenuated apelin-13-induced overexpression of LC3-II/I and beclin 1. Finally, knockdown of Nox4, Bip or CHOP with the corresponding siRNAs, or application of salubrinal significantly suppressed apelin-13-induced increases in the cell diameter, volume and protein contents. Our results demonstrate that ER stress-autophagy is involved in apelin-13-induced H9c2 cell hypertrophy.
Collapse
|
25
|
Cheng YC, Chen CA, Chen HC. Endoplasmic reticulum stress-induced cell death in podocytes. Nephrology (Carlton) 2017; 22 Suppl 4:43-49. [DOI: 10.1111/nep.13145] [Citation(s) in RCA: 12] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Accepted: 09/30/2017] [Indexed: 01/07/2023]
Affiliation(s)
- Yu-Chi Cheng
- Division of Nephrology, Department of Internal Medicine; Kaohsiung Medical University Hospital, Kaohsiung Medical University; Kaohsiung Taiwan
| | - Chien-An Chen
- Division of Nephrology; Sinlau Hospital; Tainan Taiwan
| | - Hung-Chun Chen
- Division of Nephrology, Department of Internal Medicine; Kaohsiung Medical University Hospital, Kaohsiung Medical University; Kaohsiung Taiwan
| |
Collapse
|
26
|
Zhu X, Huang L, Gong J, Shi C, Wang Z, Ye B, Xuan A, He X, Long D, Zhu X, Ma N, Leng S. NF- κB pathway link with ER stress-induced autophagy and apoptosis in cervical tumor cells. Cell Death Discov 2017; 3:17059. [PMID: 28904818 PMCID: PMC5592653 DOI: 10.1038/cddiscovery.2017.59] [Citation(s) in RCA: 49] [Impact Index Per Article: 6.1] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/10/2017] [Revised: 06/25/2017] [Accepted: 06/30/2017] [Indexed: 12/11/2022] Open
Abstract
Targeting endoplasmic reticulum (ER) stress is being investigated for its anticancer effect in various cancers, including cervical cancer. However, the molecular pathways whereby ER stress mediates cell death remain to be fully elucidated. In this study, we confirmed that ER stress triggered by compounds such as brefeldin A (BFA), tunicamycin (TM), and thapsigargin (TG) leads to the induction of the unfolded protein response (UPR) in cervical cancer cell lines, which is characterized by elevated levels of inositol-requiring kinase 1α, glucose-regulated protein-78, and C/EBP homologous protein, and swelling of the ER observed by transmission electron microscope (TEM). We found that BFA significantly increased autophagy in tumor cells and induced TC-1 tumor cell death in a dose-dependent manner. BFA increased punctate staining of LC3 and the number of autophagosomes observed by TEM in TC-1 and HeLa cells. The autophagic flux was also assessed. Bafilomycin, which blocked degradation of LC3 in lysosomes, caused both LC3I and LC3II accumulation. BFA initiated apoptosis of TC-1 tumor cells through activation of the caspase-12/caspase-3 pathway. At the same time, BFA enhanced the phosphorylation of IκBα protein and translocation into the nucleus of NF-κB p65. Quinazolinediamine, an NF-κB inhibitor, attenuated both autophagy and apoptosis induced by BFA; meanwhile, it partly enhances survival of cervical cancer cells following BFA treatment. In conclusion, our results indicate that the cross-talk between ER stress, autophagy, apoptosis, and the NF-κB pathways controls the fate of cervical cancer cells. Careful evaluation should be given to the addition of an NF-κB pathway inhibitor to treat cervical cancer in combination with drugs that induce ER stress-mediated cell death.
Collapse
Affiliation(s)
- Xiaolan Zhu
- Department of Human Anatomy, School of Basic Medical Sciences, Guangzhou Medical University, Guangzhou, Guangdong 511436, People's Republic of China
| | - Li Huang
- Department of Human Anatomy, School of Basic Medical Sciences, Guangzhou Medical University, Guangzhou, Guangdong 511436, People's Republic of China
| | - Jie Gong
- Department of Human Anatomy, School of Basic Medical Sciences, Guangzhou Medical University, Guangzhou, Guangdong 511436, People's Republic of China
| | - Chun Shi
- Department of Human Anatomy, School of Basic Medical Sciences, Guangzhou Medical University, Guangzhou, Guangdong 511436, People's Republic of China
| | - Zhiming Wang
- Department of Human Anatomy, School of Basic Medical Sciences, Guangzhou Medical University, Guangzhou, Guangdong 511436, People's Republic of China
| | - Bingkun Ye
- Department of Human Anatomy, School of Basic Medical Sciences, Guangzhou Medical University, Guangzhou, Guangdong 511436, People's Republic of China
| | - Aiguo Xuan
- Department of Human Anatomy, School of Basic Medical Sciences, Guangzhou Medical University, Guangzhou, Guangdong 511436, People's Republic of China
| | - Xiaosong He
- Department of Human Anatomy, School of Basic Medical Sciences, Guangzhou Medical University, Guangzhou, Guangdong 511436, People's Republic of China
| | - Dahong Long
- Department of Human Anatomy, School of Basic Medical Sciences, Guangzhou Medical University, Guangzhou, Guangdong 511436, People's Republic of China
| | - Xiao Zhu
- Guangdong Province Key Laboratory of Medical Molecular Diagnosis, Guangdong Medical College, Zhanjiang/Dongguan, People's Republic of China
| | - Ningfang Ma
- Key Laboratory of Protein Modification and Degradation, School of Basic Medical Sciences, Affiliated Cancer Hospital and Institute of Guangzhou Medical University, Guangzhou 511436, People's Republic of China
| | - Shuilong Leng
- Department of Human Anatomy, School of Basic Medical Sciences, Guangzhou Medical University, Guangzhou, Guangdong 511436, People's Republic of China
| |
Collapse
|
27
|
Dhillon H, Mamidi S, McClean P, Reindl KM. Transcriptome Analysis of Piperlongumine-Treated Human Pancreatic Cancer Cells Reveals Involvement of Oxidative Stress and Endoplasmic Reticulum Stress Pathways. J Med Food 2016; 19:578-85. [PMID: 27119744 PMCID: PMC4904158 DOI: 10.1089/jmf.2015.0152] [Citation(s) in RCA: 19] [Impact Index Per Article: 2.1] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/11/2015] [Accepted: 03/14/2016] [Indexed: 12/22/2022] Open
Abstract
Piperlongumine (PL), an alkaloid obtained from long peppers, displays antitumorigenic properties for a variety of human cell- and animal-based models. The aim of this study was to identify the underlying molecular mechanisms for PL anticancer effects on human pancreatic cancer cells. RNA sequencing (RNA-seq) was used to identify the effects of PL on the transcriptome of MIA PaCa-2 human pancreatic cancer cells. PL treatment of pancreatic cancer cells resulted in differential expression of 683 mRNA transcripts with known protein functions, 351 of which were upregulated and 332 of which were downregulated compared to control-treated cells. Transcripts associated with oxidative stress, endoplasmic reticulum (ER) stress, and unfolded protein response pathways were significantly overexpressed with PL treatment. Reverse transcription-quantitative polymerase chain reaction and western blotting were used to validate the RNA-seq results, which included upregulation of HO-1, IRE1α, cytochrome c, and ASNS. The results provide key insight into the mechanisms by which PL alters cancer cell physiology and identify that activation of oxidative stress and ER stress pathways is a critical avenue for PL anticancer effects.
Collapse
Affiliation(s)
- Harsharan Dhillon
- Department of Biological Sciences, North Dakota State University, Fargo, North Dakota, USA
| | - Sujan Mamidi
- Department of Plant Sciences, North Dakota State University, Fargo, North Dakota, USA
| | - Phillip McClean
- Department of Plant Sciences, North Dakota State University, Fargo, North Dakota, USA
| | - Katie M. Reindl
- Department of Biological Sciences, North Dakota State University, Fargo, North Dakota, USA
| |
Collapse
|
28
|
Hassan H, Tian X, Inoue K, Chai N, Liu C, Soda K, Moeckel G, Tufro A, Lee AH, Somlo S, Fedeles S, Ishibe S. Essential Role of X-Box Binding Protein-1 during Endoplasmic Reticulum Stress in Podocytes. J Am Soc Nephrol 2016; 27:1055-65. [PMID: 26303067 PMCID: PMC4814187 DOI: 10.1681/asn.2015020191] [Citation(s) in RCA: 38] [Impact Index Per Article: 4.2] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/20/2015] [Accepted: 06/24/2015] [Indexed: 12/16/2022] Open
Abstract
Podocytes are terminally differentiated epithelial cells that reside along the glomerular filtration barrier. Evidence suggests that after podocyte injury, endoplasmic reticulum stress response is activated, but the molecular mechanisms involved are incompletely defined. In a mouse model, we confirmed that podocyte injury induces endoplasmic reticulum stress response and upregulated unfolded protein response pathways, which have been shown to mitigate damage by preventing the accumulation of misfolded proteins in the endoplasmic reticulum. Furthermore, simultaneous podocyte-specific genetic inactivation of X-box binding protein-1 (Xbp1), a transcription factor activated during endoplasmic reticulum stress and critically involved in the untranslated protein response, and Sec63, a heat shock protein-40 chaperone required for protein folding in the endoplasmic reticulum, resulted in progressive albuminuria, foot process effacement, and histology consistent with ESRD. Finally, loss of both Sec63 and Xbp1 induced apoptosis in podocytes, which associated with activation of the JNK pathway. Collectively, our results indicate that an intact Xbp1 pathway operating to mitigate stress in the endoplasmic reticulum is essential for the maintenance of a normal glomerular filtration barrier.
Collapse
Affiliation(s)
| | | | | | | | | | | | - Gilbert Moeckel
- Pathology, Yale University School of Medicine, New Haven, Connecticut, and
| | | | - Ann-Hwee Lee
- Department of Pathology and Laboratory Medicine, Weill Cornell Medical College, New York, New York
| | | | | | | |
Collapse
|
29
|
Burggraaf AM, Ram AFJ. Autophagy is dispensable to overcome ER stress in the filamentous fungus Aspergillus niger. Microbiologyopen 2016; 5:647-58. [PMID: 27027276 PMCID: PMC4985598 DOI: 10.1002/mbo3.359] [Citation(s) in RCA: 5] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/29/2015] [Revised: 02/25/2016] [Accepted: 03/08/2016] [Indexed: 02/06/2023] Open
Abstract
Secretory proteins are subjected to stringent quality control systems in the endoplasmic reticulum (ER) which include the targeting of misfolded proteins for proteasomal destruction via the ER‐associated degradation (ERAD) pathway. Since deletion of ERAD genes in the filamentous fungus Aspergillus niger had hardly any effect on growth, this study investigates whether autophagy might function as an alternative process to eliminate misfolded proteins from the ER. We generated A. niger double mutants by deleting genes essential for ERAD (derA) and autophagy (atg1 or atg8), and assessed their growth both under normal and ER stress conditions. Sensitivity toward ER stress was examined by treatment with dithiothreitol (DTT) and by expressing a mutant form of glucoamylase (mtGlaA::GFP) in which disulfide bond sites in GlaA were mutated. Misfolding of mtGlaA::GFP was confirmed, as mtGlaA::GFP accumulated in the ER. Expression of mtGlaA::GFP in ERAD and autophagy mutants resulted in a twofold higher accumulation in ΔderA and ΔderAΔatg1 strains compared to Δatg1 and wild type. As ΔderAΔatg1 mutants did not show increased sensitivity toward DTT, not even when mtGlaA::GFP was expressed, the results indicate that autophagy does not act as an alternative pathway in addition to ERAD for removing misfolded proteins from the ER in A. niger.
Collapse
Affiliation(s)
- Anne-Marie Burggraaf
- Molecular Microbiology and Biotechnology, Institute of Biology Leiden, Leiden University, Sylviusweg 72, 2333 BE, Leiden, The Netherlands
| | - Arthur F J Ram
- Molecular Microbiology and Biotechnology, Institute of Biology Leiden, Leiden University, Sylviusweg 72, 2333 BE, Leiden, The Netherlands
| |
Collapse
|
30
|
Sommeregger W, Mayrhofer P, Steinfellner W, Reinhart D, Henry M, Clynes M, Meleady P, Kunert R. Proteomic differences in recombinant CHO cells producing two similar antibody fragments. Biotechnol Bioeng 2016; 113:1902-12. [PMID: 26913574 PMCID: PMC4985663 DOI: 10.1002/bit.25957] [Citation(s) in RCA: 27] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/05/2015] [Revised: 11/25/2015] [Accepted: 02/14/2016] [Indexed: 12/28/2022]
Abstract
Chinese hamster ovary (CHO) cells are the most commonly used mammalian hosts for the production of biopharmaceuticals. To overcome unfavorable features of CHO cells, a lot of effort is put into cell engineering to improve phenotype. “Omics” studies investigating elevated growth rate and specific productivities as well as extracellular stimulus have already revealed many interesting engineering targets. However, it remains largely unknown how physicochemical properties of the recombinant product itself influence the host cell. In this study, we used quantitative label‐free LC‐MS proteomic analyses to investigate product‐specific proteome differences in CHO cells producing two similar antibody fragments. We established recombinant CHO cells producing the two antibodies, 3D6 and 2F5, both as single‐chain Fv‐Fc homodimeric antibody fragments (scFv‐Fc). We applied three different vector strategies for transgene delivery (i.e., plasmid, bacterial artificial chromosome, recombinase‐mediated cassette exchange), selected two best performing clones from transgene variants and transgene delivery methods and investigated three consecutively passaged cell samples by label‐free proteomic analysis. LC‐MS‐MS profiles were compared in several sample combinations to gain insights into different aspects of proteomic changes caused by overexpression of two different heterologous proteins. This study suggests that not only the levels of specific product secretion but the product itself has a large impact on the proteome of the cell. Biotechnol. Bioeng. 2016;113: 1902–1912. © 2016 The Authors. Biotechnology and Bioengineering Published by Wiley Periodicals, Inc.
Collapse
Affiliation(s)
- Wolfgang Sommeregger
- Vienna Institute of BioTechnology (VIBT), University of Natural Resources and Life Sciences, Muthgasse 18, B, 5th Floor, 1190 Vienna, Austria.,Polymun Scientific GmbH, Klosterneuburg, Austria.,Bilfinger Industrietechnik Salzburg GmbH, Salzburg, Austria
| | - Patrick Mayrhofer
- Vienna Institute of BioTechnology (VIBT), University of Natural Resources and Life Sciences, Muthgasse 18, B, 5th Floor, 1190 Vienna, Austria
| | - Willibald Steinfellner
- Vienna Institute of BioTechnology (VIBT), University of Natural Resources and Life Sciences, Muthgasse 18, B, 5th Floor, 1190 Vienna, Austria
| | - David Reinhart
- Vienna Institute of BioTechnology (VIBT), University of Natural Resources and Life Sciences, Muthgasse 18, B, 5th Floor, 1190 Vienna, Austria
| | - Michael Henry
- National Institute for Cellular Biotechnology (NICB), Dublin City University, Dublin 9, Ireland
| | - Martin Clynes
- National Institute for Cellular Biotechnology (NICB), Dublin City University, Dublin 9, Ireland
| | - Paula Meleady
- National Institute for Cellular Biotechnology (NICB), Dublin City University, Dublin 9, Ireland.
| | - Renate Kunert
- Vienna Institute of BioTechnology (VIBT), University of Natural Resources and Life Sciences, Muthgasse 18, B, 5th Floor, 1190 Vienna, Austria.
| |
Collapse
|
31
|
Autophagy protects podocytes from sublytic complement induced injury. Exp Cell Res 2016; 341:132-8. [PMID: 26883468 DOI: 10.1016/j.yexcr.2016.02.009] [Citation(s) in RCA: 17] [Impact Index Per Article: 1.9] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/07/2015] [Revised: 02/10/2016] [Accepted: 02/12/2016] [Indexed: 11/22/2022]
Abstract
Podocyte injury induced by sublytic complement attack is the main feature of membranous nephropathy (MN). This study aimed at investigating the impact of sublytic complement attack-related autophagy on podocyte injury in vitro. Here, we show that sublytic complement attack enhances MPC5 podocyte autophagy in vitro. Inhibition of autophagy by treatment with 3-methyladenine (3-MA) significantly increased sublytic complement attack-induced changes in the injury-related morphology, stress fiber, and podocyte apoptosis, but decreased the survival and adhesion of MPC5 podocytes. In contrast, promotion of autophagy by treatment with rapamycin mitigated sublytic complement attack-induced changes in the injury-related morphology, stress fiber, and podocyte apoptosis, but increased the survival and adhesion of MPC5 podocytes. These data suggest that autophagy may protect podocytes from sublytic complement attack-induced injury in vitro.
Collapse
|
32
|
Bhardwaj M, Paul S, Jakhar R, Kang SC. Potential role of vitexin in alleviating heat stress-induced cytotoxicity: Regulatory effect of Hsp90 on ER stress-mediated autophagy. Life Sci 2015; 142:36-48. [DOI: 10.1016/j.lfs.2015.10.012] [Citation(s) in RCA: 23] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/06/2015] [Revised: 09/25/2015] [Accepted: 10/10/2015] [Indexed: 12/19/2022]
|
33
|
Zhang XY, Yang SM, Zhang HP, Yang Y, Sun SB, Chang JP, Tao XC, Yang TY, Liu C, Yang YM. Endoplasmic reticulum stress mediates the arsenic trioxide-induced apoptosis in human hepatocellular carcinoma cells. Int J Biochem Cell Biol 2015; 68:158-65. [DOI: 10.1016/j.biocel.2015.09.009] [Citation(s) in RCA: 18] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/09/2015] [Revised: 09/13/2015] [Accepted: 09/22/2015] [Indexed: 01/16/2023]
|
34
|
Tiwari RV, Parajuli P, Sylvester PW. γ-Tocotrienol-induced endoplasmic reticulum stress and autophagy act concurrently to promote breast cancer cell death. Biochem Cell Biol 2015; 93:306-20. [PMID: 25844964 DOI: 10.1139/bcb-2014-0123] [Citation(s) in RCA: 33] [Impact Index Per Article: 3.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/19/2022] Open
Abstract
The anticancer effects of γ-tocotrienol are associated with the induction of autophagy and endoplasmic reticulum (ER) stress-mediated apoptosis, but a direct relationship between these events has not been established. Treatment with 40 μmol/L of γ-tocotrienol caused a time-dependent decrease in cancer cell viability that corresponds to a concurrent increase in autophagic and endoplasmic reticulum (ER) stress markers in MCF-7 and MDA-MB-231 human breast cancer cells. γ-Tocotrienol treatment was found to cause a time-dependent increase in early phase (Beclin-1, LC3B-II) and late phase (LAMP-1 and cathepsin-D) autophagy markers, and pretreatment with autophagy inhibitors Beclin-1 siRNA, 3-MA or Baf1 blocked these effects. Furthermore, blockage of γ-tocotrienol-induced autophagy with Beclin-1 siRNA, 3-MA, or Baf1 induced a modest, but significant, reduction in γ-tocotrienol-induced cytotoxicity. γ-Tocotrienol treatment was also found to cause a decrease in mitogenic Erk1/2 signaling, an increase in stress-dependent p38 and JNK1/2 signaling, as well as an increase in ER stress apoptotic markers, including phospho-PERK, phospho-eIF2α, Bip, IRE1α, ATF-4, CHOP, and TRB3. In summary, these finding demonstrate that γ-tocotrienol-induced ER stress and autophagy occur concurrently, and together act to promote human breast cancer cell death.
Collapse
Affiliation(s)
- Roshan V Tiwari
- School of Pharmacy, University of Louisiana at Monroe, 700 University Avenue, Monroe LA 71209, USA.,School of Pharmacy, University of Louisiana at Monroe, 700 University Avenue, Monroe LA 71209, USA
| | - Parash Parajuli
- School of Pharmacy, University of Louisiana at Monroe, 700 University Avenue, Monroe LA 71209, USA.,School of Pharmacy, University of Louisiana at Monroe, 700 University Avenue, Monroe LA 71209, USA
| | - Paul W Sylvester
- School of Pharmacy, University of Louisiana at Monroe, 700 University Avenue, Monroe LA 71209, USA.,School of Pharmacy, University of Louisiana at Monroe, 700 University Avenue, Monroe LA 71209, USA
| |
Collapse
|
35
|
Numan MS, Brown JP, Michou L. Impact of air pollutants on oxidative stress in common autophagy-mediated aging diseases. INTERNATIONAL JOURNAL OF ENVIRONMENTAL RESEARCH AND PUBLIC HEALTH 2015; 12:2289-305. [PMID: 25690002 PMCID: PMC4344726 DOI: 10.3390/ijerph120202289] [Citation(s) in RCA: 21] [Impact Index Per Article: 2.1] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Subscribe] [Scholar Register] [Received: 11/22/2014] [Revised: 01/13/2015] [Accepted: 02/11/2015] [Indexed: 12/11/2022]
Abstract
Atmospheric pollution-induced cellular oxidative stress is probably one of the pathogenic mechanisms involved in most of the common autophagy-mediated aging diseases, including neurodegenerative diseases such as amyotrophic lateral sclerosis (ALS), Alzheimer's, disease, as well as Paget's disease of bone with or without frontotemporal dementia and inclusion body myopathy. Oxidative stress has serious damaging effects on the cellular contents: DNA, RNA, cellular proteins, and cellular organelles. Autophagy has a pivotal role in recycling these damaged non-functional organelles and misfolded or unfolded proteins. In this paper, we highlight, through a narrative review of the literature, that when autophagy processes are impaired during aging, in presence of cumulative air pollution-induced cellular oxidative stress and due to a direct effect on air pollutant, autophagy-mediated aging diseases may occur.
Collapse
Affiliation(s)
- Mohamed Saber Numan
- Department of Endocrinology and Nephrology, Centre Hospitalier Universitaire de Québec Research Centre, Québec, QC, G1V 4G2, Canada.
- Division of Rheumatology, Department of Medicine, University Laval, Québec, QC, G1V 4G2, Canada.
| | - Jacques P Brown
- Department of Endocrinology and Nephrology, Centre Hospitalier Universitaire de Québec Research Centre, Québec, QC, G1V 4G2, Canada.
- Division of Rheumatology, Department of Medicine, University Laval, Québec, QC, G1V 4G2, Canada.
- Department of Rheumatology, Centre Hospitalier Universitaire de Québec, Québec, QC, G1V 4G2, Canada.
| | - Laëtitia Michou
- Department of Endocrinology and Nephrology, Centre Hospitalier Universitaire de Québec Research Centre, Québec, QC, G1V 4G2, Canada.
- Division of Rheumatology, Department of Medicine, University Laval, Québec, QC, G1V 4G2, Canada.
- Department of Rheumatology, Centre Hospitalier Universitaire de Québec, Québec, QC, G1V 4G2, Canada.
| |
Collapse
|
36
|
Chiu HW, Tseng YC, Hsu YH, Lin YF, Foo NP, Guo HR, Wang YJ. Arsenic trioxide induces programmed cell death through stimulation of ER stress and inhibition of the ubiquitin-proteasome system in human sarcoma cells. Cancer Lett 2015; 356:762-772. [PMID: 25449439 DOI: 10.1016/j.canlet.2014.10.025] [Citation(s) in RCA: 39] [Impact Index Per Article: 3.9] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/24/2014] [Accepted: 10/23/2014] [Indexed: 01/21/2023]
Abstract
Sarcoma is a rare form of cancer that differs from the much more common carcinomas because it occurs in a distinct type of tissue. Many patients of sarcoma have poor response to chemotherapy and an increased risk for local recurrence. Arsenic trioxide (ATO) is used to treat certain types of leukemia. Recently, data have revealed that ATO induces sarcoma cell death in several types of solid tumor cell lines. In the present study, we investigated whether ATO induces cancer cell death and elucidated the underlying anti-cancer mechanisms. Our results showed that ATO caused concentration- and time-dependent cell death in human osteosarcoma and fibrosarcoma cells. The types of cell death that were induced by ATO were primarily autophagy and apoptosis. Furthermore, ATO activated p38, JNK and AMPK and inhibited the Akt/mTOR signaling pathways. Specifically, we found that ATO induced endoplasmic reticulum (ER) stress and suppressed proteasome activation in two types of sarcoma cell lines. However, the level of proteasome inhibition in osteosarcoma cells was lower than in fibrosarcoma cells. Thus, we used combined treatment with ATO and a proteasome inhibitor to examine the antitumor activity in fibrosarcoma cells. The data indicated showed that the combination treatment of ATO and MG132 (a proteasome inhibitor) resulted in synergistic cytotoxicity. In a fibrosarcoma xenograft mouse model, the combined treatment significantly reduced tumor progression. Immunohistochemical studies revealed that combined treatment induced autophagy and apoptosis. In summary, our results suggest a potential clinical application of ATO in sarcoma therapy and that combined treatment with a proteasome inhibitor can increase the therapeutic efficacy.
Collapse
Affiliation(s)
- Hui-Wen Chiu
- Department of Environmental and Occupational Health, National Cheng Kung University, Tainan, Taiwan; Division of Nephrology, Department of Internal Medicine, Shuang Ho Hospital, Taipei Medical University, Taiwan; Graduate Institute of Clinical Medicine, Taipei Medical University, Taipei, Taiwan
| | - Yin-Chiu Tseng
- Department of Environmental and Occupational Health, National Cheng Kung University, Tainan, Taiwan
| | - Yung-Ho Hsu
- Division of Nephrology, Department of Internal Medicine, Shuang Ho Hospital, Taipei Medical University, Taiwan
| | - Yuh-Feng Lin
- Division of Nephrology, Department of Internal Medicine, Shuang Ho Hospital, Taipei Medical University, Taiwan; Graduate Institute of Clinical Medicine, Taipei Medical University, Taipei, Taiwan
| | - Ning-Ping Foo
- Department of Environmental and Occupational Health, National Cheng Kung University, Tainan, Taiwan; Department of Emergency Medicine, Chi-Mei Medical Center, Liouying, Tainan, Taiwan; Department of Emergency Medicine, China Medical University-An Nan Hospital, Tainan, Taiwan
| | - How-Ran Guo
- Department of Environmental and Occupational Health, National Cheng Kung University, Tainan, Taiwan; Department of Occupational and Environmental Medicine, National Cheng Kung University Hospital, Tainan, Taiwan.
| | - Ying-Jan Wang
- Department of Environmental and Occupational Health, National Cheng Kung University, Tainan, Taiwan; Department of Biomedical Informatics, Asia University, Taichung, Taiwan; Department of Medical Research, China Medical University Hospital, China Medical University, Taichung, Taiwan.
| |
Collapse
|
37
|
Chiu HW, Xia T, Lee YH, Chen CW, Tsai JC, Wang YJ. Cationic polystyrene nanospheres induce autophagic cell death through the induction of endoplasmic reticulum stress. NANOSCALE 2015; 7:736-46. [PMID: 25429417 DOI: 10.1039/c4nr05509h] [Citation(s) in RCA: 146] [Impact Index Per Article: 14.6] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 05/18/2023]
Abstract
Nanoparticles (NPs) have been used to produce a wide range of products that have applications in imaging and drug delivery in medicine. Due to their chemical stability, well-controlled sizes and surface charges, polystyrene (PS) NPs have been developed as biosensors and drug delivery carriers. However, the possible adverse biological effects and underlying mechanisms are still unclear. Recently, autophagy has been implicated in the regulation of cell death. In this study, we evaluated a library of PS NPs with different surface charges. We found that NH2-labeled polystyrene (NH2-PS) nanospheres were highly toxic with enhanced uptake in macrophage (RAW 264.7) and lung epithelial (BEAS-2B) cells. Furthermore, NH2-PS could induce autophagic cell death. NH2-PS increased autophagic flux due to reactive oxygen species (ROS) generation and endoplasmic reticulum (ER) stress caused by misfolded protein aggregation. The inhibition of ER stress decreased cytotoxicity and autophagy in the NH2-PS-treated cells. In addition, the Akt/mTOR and AMPK signaling pathways were involved in the regulation of NH2-PS-triggered autophagic cell death. These results suggest an important role of autophagy in cationic NP-induced cell death and provide mechanistic insights into the inhibition of the toxicity and safe material design.
Collapse
Affiliation(s)
- Hui-Wen Chiu
- Department of Environmental and Occupational Health, National Cheng Kung University, Tainan, Taiwan.
| | | | | | | | | | | |
Collapse
|
38
|
Cheng YC, Chang JM, Chen CA, Chen HC. Autophagy modulates endoplasmic reticulum stress-induced cell death in podocytes: a protective role. Exp Biol Med (Maywood) 2014; 240:467-76. [PMID: 25322957 DOI: 10.1177/1535370214553772] [Citation(s) in RCA: 33] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/14/2014] [Accepted: 08/04/2014] [Indexed: 01/13/2023] Open
Abstract
Endoplasmic reticulum stress occurs in a variety of patho-physiological mechanisms and there has been great interest in managing this pathway for the treatment of clinical diseases. Autophagy is closely interconnected with endoplasmic reticulum stress to counteract the possible injurious effects related with the impairment of protein folding. Studies have shown that glomerular podocytes exhibit high rate of autophagy to maintain as terminally differentiated cells. In this study, podocytes were exposed to tunicamycin and thapsigargin to induce endoplasmic reticulum stress. Thapsigargin/tunicamycin treatment induced a significant increase in endoplasmic reticulum stress and of cell death, represented by higher GADD153 and GRP78 expression and propidium iodide flow cytometry, respectively. However, thapsigargin/tunicamycin stimulation also enhanced autophagy development, demonstrated by monodansylcadaverine assay and LC3 conversion. To evaluate the regulatory effects of autophagy on endoplasmic reticulum stress-induced cell death, rapamycin (Rap) or 3-methyladenine (3-MA) was added to enhance or inhibit autophagosome formation. Endoplasmic reticulum stress-induced cell death was decreased at 6 h, but was not reduced at 24 h after Rap+TG or Rap+TM treatment. In contrast, endoplasmic reticulum stress-induced cell death increased at 6 and 24 h after 3-MA+TG or 3-MA+TM treatment. Our study demonstrated that thapsigargin/tunicamycin treatment induced endoplasmic reticulum stress which resulted in podocytes death. Autophagy, which counteracted the induced endoplasmic reticulum stress, was simultaneously enhanced. The salvational role of autophagy was supported by adding Rap/3-MA to mechanistically regulate the expression of autophagy and autophagosome formation. In summary, autophagy helps the podocytes from cell death and may contribute to sustain the longevity as a highly differentiated cell lineage.
Collapse
Affiliation(s)
- Yu-Chi Cheng
- Graduate Institute of Medicine, Kaohsiung Medical University, Kaohsiung 80708, Taiwan
| | - Jer-Ming Chang
- Department of Internal Medicine, Kaohsiung Municipal Hsiao-Kang Hospital, Kaohsiung 80708, Taiwan Division of Nephrology, Kaohsiung Medical University Hospital, Kaohsiung 80708, Taiwan Faculty of Renal Care, College of Medicine, Kaohsiung Medical University, Kaohsiung 80708, Taiwan
| | - Chien-An Chen
- Division of Nephrology, Tainan Sinlau Hospital, Tainan 70142, Taiwan
| | - Hung-Chun Chen
- Division of Nephrology, Kaohsiung Medical University Hospital, Kaohsiung 80708, Taiwan Faculty of Renal Care, College of Medicine, Kaohsiung Medical University, Kaohsiung 80708, Taiwan
| |
Collapse
|
39
|
Chaudhari N, Talwar P, Parimisetty A, Lefebvre d'Hellencourt C, Ravanan P. A molecular web: endoplasmic reticulum stress, inflammation, and oxidative stress. Front Cell Neurosci 2014; 8:213. [PMID: 25120434 PMCID: PMC4114208 DOI: 10.3389/fncel.2014.00213] [Citation(s) in RCA: 464] [Impact Index Per Article: 42.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/21/2014] [Accepted: 07/15/2014] [Indexed: 12/13/2022] Open
Abstract
Execution of fundamental cellular functions demands regulated protein folding homeostasis. Endoplasmic reticulum (ER) is an active organelle existing to implement this function by folding and modifying secretory and membrane proteins. Loss of protein folding homeostasis is central to various diseases and budding evidences suggest ER stress as being a major contributor in the development or pathology of a diseased state besides other cellular stresses. The trigger for diseases may be diverse but, inflammation and/or ER stress may be basic mechanisms increasing the severity or complicating the condition of the disease. Chronic ER stress and activation of the unfolded-protein response (UPR) through endogenous or exogenous insults may result in impaired calcium and redox homeostasis, oxidative stress via protein overload thereby also influencing vital mitochondrial functions. Calcium released from the ER augments the production of mitochondrial Reactive Oxygen Species (ROS). Toxic accumulation of ROS within ER and mitochondria disturbs fundamental organelle functions. Sustained ER stress is known to potentially elicit inflammatory responses via UPR pathways. Additionally, ROS generated through inflammation or mitochondrial dysfunction could accelerate ER malfunction. Dysfunctional UPR pathways have been associated with a wide range of diseases including several neurodegenerative diseases, stroke, metabolic disorders, cancer, inflammatory disease, diabetes mellitus, cardiovascular disease, and others. In this review, we have discussed the UPR signaling pathways, and networking between ER stress-induced inflammatory pathways, oxidative stress, and mitochondrial signaling events, which further induce or exacerbate ER stress.
Collapse
Affiliation(s)
- Namrata Chaudhari
- Apoptosis and Cell Death Research Lab, School of Biosciences and Technology, Vellore Institute of Technology University , Vellore , India
| | - Priti Talwar
- Apoptosis and Cell Death Research Lab, School of Biosciences and Technology, Vellore Institute of Technology University , Vellore , India
| | - Avinash Parimisetty
- Groupe d'Etude sur l'Inflammation Chronique et l'Obésité, EA 41516, Plateforme CYROI, Université de La Réunion , Saint Denis de La Réunion , France
| | - Christian Lefebvre d'Hellencourt
- Groupe d'Etude sur l'Inflammation Chronique et l'Obésité, EA 41516, Plateforme CYROI, Université de La Réunion , Saint Denis de La Réunion , France
| | - Palaniyandi Ravanan
- Apoptosis and Cell Death Research Lab, School of Biosciences and Technology, Vellore Institute of Technology University , Vellore , India
| |
Collapse
|
40
|
Seo YR, Yeo AR, Noh HM, Chung DY, Kim TI, Seo KY, Kim EK, Lee HK. Transmission Electron Microscopic Findings of Lacrimal Gland Acinar Cells Induced byIn VivoDry Eye. JOURNAL OF THE KOREAN OPHTHALMOLOGICAL SOCIETY 2014. [DOI: 10.3341/jkos.2014.55.8.1187] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.2] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/23/2022]
Affiliation(s)
- Yu Ri Seo
- Institute of Vision Research, Department of Ophthalmology, Yonsei University College of Medicine, Seoul, Korea
| | - A Reum Yeo
- Institute of Vision Research, Department of Ophthalmology, Yonsei University College of Medicine, Seoul, Korea
| | - Hye Mi Noh
- Institute of Vision Research, Department of Ophthalmology, Yonsei University College of Medicine, Seoul, Korea
| | - Dong Yong Chung
- Morphology Lab., Yonsei Biomedical Research Institute, Seoul, Korea
| | - Tae Im Kim
- Institute of Vision Research, Department of Ophthalmology, Yonsei University College of Medicine, Seoul, Korea
- Institute of Corneal Dystrophy Research, Department of Ophthalmology, Yonsei University College of Medicine, Seoul, Korea
| | - Kyoung Yul Seo
- Institute of Vision Research, Department of Ophthalmology, Yonsei University College of Medicine, Seoul, Korea
- Institute of Corneal Dystrophy Research, Department of Ophthalmology, Yonsei University College of Medicine, Seoul, Korea
| | - Eung Kweon Kim
- Institute of Vision Research, Department of Ophthalmology, Yonsei University College of Medicine, Seoul, Korea
- Institute of Corneal Dystrophy Research, Department of Ophthalmology, Yonsei University College of Medicine, Seoul, Korea
| | - Hyung Keun Lee
- Institute of Vision Research, Department of Ophthalmology, Yonsei University College of Medicine, Seoul, Korea
- Institute of Corneal Dystrophy Research, Department of Ophthalmology, Yonsei University College of Medicine, Seoul, Korea
| |
Collapse
|
41
|
Yang Z, Xu Y, Xu L, Maccauro G, Rossi B, Chen Y, Li H, Zhang J, Sun H, Yang Y, Xu D, Liu X. Regulation of autophagy via PERK-eIF2α effectively relieve the radiation myelitis induced by iodine-125. PLoS One 2013; 8:e76819. [PMID: 24223705 PMCID: PMC3818370 DOI: 10.1371/journal.pone.0076819] [Citation(s) in RCA: 13] [Impact Index Per Article: 1.1] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/30/2013] [Accepted: 08/28/2013] [Indexed: 11/18/2022] Open
Abstract
Radiation myelitis is the most serious complication in clinical radiotherapy for spinal metastases. We previously showed that 125I brachytherapy induced apoptosis of spinal cord neurons accompanied by autophagy. In this study, we further investigated the mechanism by which 125I radiation triggered autophagy in neural cells. We found that autophagy induced by 125I radiation was involved in endoplasmic reticulum (ER) stress and mainly dependent on PERK-eIF2α pathway. The expressions of LC3II, ATG12 and PI3K were significantly suppressed in PERK knockout neural cells. Meanwhile, the expressions of phosphorylated-Akt s473 and caspase3/8 all significantly increased in neural cells transfected with a PERK siRNA and which enhanced apoptosis of neurons after 125I radiation. The results were consistent with that by MTT and Annexin-FITC/PT staining. In annimal model of banna pigs with radiation myelitis caused by 125I brachytherapy, we have successfully decreased PERK expression by intrathecal administration of the lentivirus vector. The apoptosis rate was significantly higher than that in control group and which deteriorated radiation myelitis of banna pigs. Thus, autophagy caused by 125I radiation was mainly as an attempt of cell survival at an early stage, but it would be a self-destructive process and promoted the process of apoptosis and necrosis radiated by 125I for more than 72 hours. The study would be useful and helpful to maximize efficiency of radiation therapy in clinical therapy.
Collapse
Affiliation(s)
- Zuozhang Yang
- Department of Orthopaedics, Kunming General Hospital of Chengdu Military Command, the Third Affiliated Hospital of Kunming Medical University, Kunming, Yunnan, P. R. China
- Department of Orthopaedic Oncology, Agostino Gemelli Hospital, Catholic University of Rome, Largo Francesco Vito 1, Rome, Italy
- * E-mail:
| | - Yongqing Xu
- Department of Orthopaedics, Kunming General Hospital of Chengdu Military Command, the Third Affiliated Hospital of Kunming Medical University, Kunming, Yunnan, P. R. China
| | - Lei Xu
- Department of Orthopaedics, Kunming General Hospital of Chengdu Military Command, the Third Affiliated Hospital of Kunming Medical University, Kunming, Yunnan, P. R. China
| | - Giulio Maccauro
- Department of Orthopaedic Oncology, Agostino Gemelli Hospital, Catholic University of Rome, Largo Francesco Vito 1, Rome, Italy
| | - Barbara Rossi
- Department of Orthopaedic Oncology, Agostino Gemelli Hospital, Catholic University of Rome, Largo Francesco Vito 1, Rome, Italy
| | - Yanjin Chen
- Department of Orthopaedics, Kunming General Hospital of Chengdu Military Command, the Third Affiliated Hospital of Kunming Medical University, Kunming, Yunnan, P. R. China
| | - Hongjun Li
- Institute of Medical Biology, Peking Union Medical College, Chinese Academy of Medical Science, Kunming, Yunnan, P. R. China
| | - Jing Zhang
- Department of Orthopaedics, Kunming General Hospital of Chengdu Military Command, the Third Affiliated Hospital of Kunming Medical University, Kunming, Yunnan, P. R. China
| | - Hongpu Sun
- Department of Orthopaedics, Kunming General Hospital of Chengdu Military Command, the Third Affiliated Hospital of Kunming Medical University, Kunming, Yunnan, P. R. China
| | - Yihao Yang
- Department of Orthopaedics, Kunming General Hospital of Chengdu Military Command, the Third Affiliated Hospital of Kunming Medical University, Kunming, Yunnan, P. R. China
| | - Da Xu
- Department of Orthopaedics, Kunming General Hospital of Chengdu Military Command, the Third Affiliated Hospital of Kunming Medical University, Kunming, Yunnan, P. R. China
| | - Xuefeng Liu
- Department of Orthopaedics, Kunming General Hospital of Chengdu Military Command, the Third Affiliated Hospital of Kunming Medical University, Kunming, Yunnan, P. R. China
| |
Collapse
|
42
|
Tomar D, Prajapati P, Sripada L, Singh K, Singh R, Singh AK, Singh R. TRIM13 regulates caspase-8 ubiquitination, translocation to autophagosomes and activation during ER stress induced cell death. BIOCHIMICA ET BIOPHYSICA ACTA-MOLECULAR CELL RESEARCH 2013; 1833:3134-3144. [PMID: 24021263 DOI: 10.1016/j.bbamcr.2013.08.021] [Citation(s) in RCA: 50] [Impact Index Per Article: 4.2] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 04/12/2013] [Revised: 08/28/2013] [Accepted: 08/30/2013] [Indexed: 01/06/2023]
Abstract
The emerging evidences suggest that endoplasmic (ER) stress is involved in onset of many pathological conditions like cancer and neurodegeneration. The persistent ER stress results in misfolded protein aggregates, which are degraded through the process of autophagy or lead to cell death through activation of caspases. The regulation of crosstalk of autophagy and cell death during ER stress is emerging. Ubiquitination plays regulatory role in crosstalk of autophagy and cell death. In the current study, we describe the role of TRIM13, RING E3 ubiquitin ligase, in regulation of ER stress induced cell death. The expression of TRIM13 sensitizes cells to ER stress induced death. TRIM13 induced autophagy is essential for ER stress induced caspase activation and cell death. TRIM13 induces K63 linked poly-ubiquitination of caspase-8, which results in its stabilization and activation during ER stress. TRIM13 regulates translocation of caspase-8 to autophagosome and its fusion with lysosome during ER stress. This study first time demonstrated the role of TRIM13 as novel regulator of caspase-8 activation and cell death during ER stress.
Collapse
Affiliation(s)
- Dhanendra Tomar
- Department of Cell Biology, School of Biological Sciences and Biotechnology, Indian Institute of Advanced Research, Gandhinagar, Gujarat, India
| | - Paresh Prajapati
- Department of Cell Biology, School of Biological Sciences and Biotechnology, Indian Institute of Advanced Research, Gandhinagar, Gujarat, India
| | - Lakshmi Sripada
- Department of Cell Biology, School of Biological Sciences and Biotechnology, Indian Institute of Advanced Research, Gandhinagar, Gujarat, India
| | - Kritarth Singh
- Department of Cell Biology, School of Biological Sciences and Biotechnology, Indian Institute of Advanced Research, Gandhinagar, Gujarat, India
| | - Rochika Singh
- Department of Cell Biology, School of Biological Sciences and Biotechnology, Indian Institute of Advanced Research, Gandhinagar, Gujarat, India
| | - Arun Kumar Singh
- Department of Cell Biology, School of Biological Sciences and Biotechnology, Indian Institute of Advanced Research, Gandhinagar, Gujarat, India
| | - Rajesh Singh
- Department of Cell Biology, School of Biological Sciences and Biotechnology, Indian Institute of Advanced Research, Gandhinagar, Gujarat, India.
| |
Collapse
|
43
|
Cybulsky AV. The intersecting roles of endoplasmic reticulum stress, ubiquitin–proteasome system, and autophagy in the pathogenesis of proteinuric kidney disease. Kidney Int 2013; 84:25-33. [DOI: 10.1038/ki.2012.390] [Citation(s) in RCA: 124] [Impact Index Per Article: 10.3] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/29/2012] [Revised: 08/27/2012] [Accepted: 09/07/2012] [Indexed: 12/12/2022]
|
44
|
Beuzelin C, Evnouchidou I, Rigolet P, Cauvet-Burgevin A, Girard PM, Dardalhon D, Culina S, Gdoura A, van Endert P, Francesconi S. Deletion of the fission yeast homologue of human insulinase reveals a TORC1-dependent pathway mediating resistance to proteotoxic stress. PLoS One 2013; 8:e67705. [PMID: 23826334 PMCID: PMC3691139 DOI: 10.1371/journal.pone.0067705] [Citation(s) in RCA: 9] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/05/2013] [Accepted: 05/21/2013] [Indexed: 01/06/2023] Open
Abstract
Insulin Degrading Enzyme (IDE) is a protease conserved through evolution with a role in diabetes and Alzheimer's disease. The reason underlying its ubiquitous expression including cells lacking identified IDE substrates remains unknown. Here we show that the fission yeast IDE homologue (Iph1) modulates cellular sensitivity to endoplasmic reticulum (ER) stress in a manner dependent on TORC1 (Target of Rapamycin Complex 1). Reduced sensitivity to tunicamycin was associated with a smaller number of cells undergoing apoptosis. Wild type levels of tunicamycin sensitivity were restored in iph1 null cells when the TORC1 complex was inhibited by rapamycin or by heat inactivation of the Tor2 kinase. Although Iph1 cleaved hallmark IDE substrates including insulin efficiently, its role in the ER stress response was independent of its catalytic activity since expression of inactive Iph1 restored normal sensitivity. Importantly, wild type as well as inactive human IDE complemented gene-invalidated yeast cells when expressed at the genomic locus under the control of iph1+ promoter. These results suggest that IDE has a previously unknown function unrelated to substrate cleavage, which links sensitivity to ER stress to a pro-survival role of the TORC1 pathway.
Collapse
Affiliation(s)
- Clémentine Beuzelin
- Institut Curie, Centre de Recherche, Orsay, France
- Centre Nationale de la Recherche Scientifique, Unité Mixte de Recherche 3348, Centre Universitaire, Orsay, France
- Université Paris-sud XI, Orsay, France
- Université Paris Descartes, Sorbonne Paris Cité, Faculté de Médecine, Paris, France
- Institut National de la Santé et de la Recherche Médicale, Unité 1013, Paris, France
| | - Irini Evnouchidou
- Université Paris Descartes, Sorbonne Paris Cité, Faculté de Médecine, Paris, France
- Institut National de la Santé et de la Recherche Médicale, Unité 1013, Paris, France
| | - Pascal Rigolet
- Institut Curie, Centre de Recherche, Orsay, France
- Université Paris-sud XI, Orsay, France
| | - Anne Cauvet-Burgevin
- Université Paris Descartes, Sorbonne Paris Cité, Faculté de Médecine, Paris, France
- Institut National de la Santé et de la Recherche Médicale, Unité 1013, Paris, France
| | - Pierre-Marie Girard
- Institut Curie, Centre de Recherche, Orsay, France
- Centre Nationale de la Recherche Scientifique, Unité Mixte de Recherche 3348, Centre Universitaire, Orsay, France
| | - Delphine Dardalhon
- Institut Curie, Centre de Recherche, Orsay, France
- Centre Nationale de la Recherche Scientifique, Unité Mixte de Recherche 3348, Centre Universitaire, Orsay, France
| | - Slobodan Culina
- Université Paris Descartes, Sorbonne Paris Cité, Faculté de Médecine, Paris, France
- Institut National de la Santé et de la Recherche Médicale, Unité 1013, Paris, France
| | - Abdelaziz Gdoura
- Université Paris Descartes, Sorbonne Paris Cité, Faculté de Médecine, Paris, France
- Institut National de la Santé et de la Recherche Médicale, Unité 1013, Paris, France
| | - Peter van Endert
- Université Paris Descartes, Sorbonne Paris Cité, Faculté de Médecine, Paris, France
- Institut National de la Santé et de la Recherche Médicale, Unité 1013, Paris, France
| | - Stefania Francesconi
- Institut Curie, Centre de Recherche, Orsay, France
- Centre Nationale de la Recherche Scientifique, Unité Mixte de Recherche 3348, Centre Universitaire, Orsay, France
- * E-mail:
| |
Collapse
|
45
|
MA TAI, LI YUANYUAN, ZHU JIE, FAN LULU, DU WEIDONG, WU CHANGHAO, SUN GUOPING, LI JIABIN. Enhanced autophagic flux by endoplasmic reticulum stress in human hepatocellular carcinoma cells contributes to the maintenance of cell viability. Oncol Rep 2013; 30:433-40. [DOI: 10.3892/or.2013.2474] [Citation(s) in RCA: 8] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/22/2013] [Accepted: 04/26/2013] [Indexed: 11/05/2022] Open
|
46
|
Regulation of inositol 1,4,5-trisphosphate receptors during endoplasmic reticulum stress. BIOCHIMICA ET BIOPHYSICA ACTA-MOLECULAR CELL RESEARCH 2013; 1833:1612-24. [PMID: 23380704 DOI: 10.1016/j.bbamcr.2013.01.026] [Citation(s) in RCA: 85] [Impact Index Per Article: 7.1] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Received: 10/21/2012] [Revised: 01/13/2013] [Accepted: 01/21/2013] [Indexed: 12/15/2022]
Abstract
The endoplasmic reticulum (ER) performs multiple functions in the cell: it is the major site of protein and lipid synthesis as well as the most important intracellular Ca(2+) reservoir. Adverse conditions, including a decrease in the ER Ca(2+) level or an increase in oxidative stress, impair the formation of new proteins, resulting in ER stress. The subsequent unfolded protein response (UPR) is a cellular attempt to lower the burden on the ER and to restore ER homeostasis by imposing a general arrest in protein synthesis, upregulating chaperone proteins and degrading misfolded proteins. This response can also lead to autophagy and, if the stress can not be alleviated, to apoptosis. The inositol 1,4,5-trisphosphate (IP3) receptor (IP3R) and IP3-induced Ca(2+) signaling are important players in these processes. Not only is the IP3R activity modulated in a dual way during ER stress, but also other key proteins involved in Ca(2+) signaling are modulated. Changes also occur at the structural level with a strengthening of the contacts between the ER and the mitochondria, which are important determinants of mitochondrial Ca(2+) uptake. The resulting cytoplasmic and mitochondrial Ca(2+) signals will control cellular decisions that either promote cell survival or cause their elimination via apoptosis. This article is part of a Special Issue entitled: 12th European Symposium on Calcium.
Collapse
|
47
|
Gandesiri M, Chakilam S, Ivanovska J, Benderska N, Ocker M, Di Fazio P, Feoktistova M, Gali-Muhtasib H, Rave-Fränk M, Prante O, Christiansen H, Leverkus M, Hartmann A, Schneider-Stock R. DAPK plays an important role in panobinostat-induced autophagy and commits cells to apoptosis under autophagy deficient conditions. Apoptosis 2012; 17:1300-1315. [PMID: 23011180 DOI: 10.1007/s10495-012-0757-7] [Citation(s) in RCA: 47] [Impact Index Per Article: 3.6] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/07/2023]
Abstract
The histone deacetylase inhibitor (HDACi) LBH589 has been verified as an effective anticancer agent. The identification and characterization of new targets for LBH589 action would further enhance our understanding of the molecular mechanisms involved in HDACi therapy. The role of the tumor suppressor death-associated protein kinase (DAPK) in LBH589-induced cytotoxicity has not been investigated to date. Stable DAPK knockdown (shRNA) and DAPK overexpressing (DAPK+++) cell lines were generated from HCT116 wildtype colon cancer cells. LBH589 inhibited cell proliferation, reduced the long-term survival, and up-regulated and activated DAPK in colorectal cancer cells. Moreover, LBH589 significantly suppressed the growth of colon tumor xenografts and in accordance with the in vitro studies, increased DAPK levels were detected immunohistochemically. LBH589 induced a DAPK-dependent autophagy as assessed by punctuate accumulation of LC3-II, the formation of acidic vesicular organelles, and degradation of p62 protein. LBH589-induced autophagy seems to be predominantly caused by DAPK protein interactions than by its kinase activity. Caspase inhibitor zVAD increased autophagosome formation, decreased the cleavage of caspase 3 and PARP but didn't rescue the cells from LBH589-induced cell death in crystal violet staining suggesting both caspase-dependent as well as caspase-independent apoptosis pathways. Pre-treatment with the autophagy inhibitor Bafilomycin A1 caused caspase 3-mediated apoptosis in a DAPK-dependent manner. Altogether our data suggest that DAPK induces autophagy in response to HDACi-treatment. In autophagy deficient cells, DAPK plays an essential role in committing cells to HDACi-induced apoptosis.
Collapse
Affiliation(s)
- Muktheshwar Gandesiri
- Experimental Tumorpathology, Department of Pathology, University of Erlangen-Nürnberg, Universitätsstr. 22, 91054 Erlangen, Germany
| | | | | | | | | | | | | | | | | | | | | | | | | | | |
Collapse
|
48
|
Huang H, Kang R, Wang J, Luo G, Yang W, Zhao Z. Hepatitis C virus inhibits AKT-tuberous sclerosis complex (TSC), the mechanistic target of rapamycin (MTOR) pathway, through endoplasmic reticulum stress to induce autophagy. Autophagy 2012; 9:175-95. [PMID: 23169238 DOI: 10.4161/auto.22791] [Citation(s) in RCA: 119] [Impact Index Per Article: 9.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/15/2022] Open
Abstract
Hepatitis C virus (HCV) is able to induce autophagy via endoplasmic reticulum (ER) stress, but the exact molecular signaling pathway is not well understood. We found that the activity of the mechanistic target of rapamycin complex 1 (MTORC1) was inhibited in Huh7 cells either harboring HCV-N (genotype 1b) full-genomic replicon or infected with JFH1 (genotype 2a) virus, which led to the activation of UNC-51-like kinase 1 (ULK1) and thus to autophagy. We then analyzed activity upstream of MTORC1, and found that both protein kinase, AMP-activated, α (PRKAA, including PRKAA1 and PRKAA2, also known as AMP-activated protein kinase, AMPKα) and AKT (refers to pan AKT, including three isoforms of AKT1-3, also known as protein kinase B, PKB) were inhibited by HCV infection. The inhibition of the AKT-TSC-MTORC1 pathway contributed to upregulating autophagy, but inhibition of PRKAA downregulated autophagy. The net effect on autophagy was from AKT, which overrode the inhibition effect from PRKAA. It was further found that HCV-induced ER stress was responsible for the inhibition of the AKT pathway. Metformin, a PRKAA agonist, inhibited HCV replication not only by activating PRKAA as previously reported, but also by activating AKT independently of the autophagy pathway. Taken together, our data suggested HCV inhibited the AKT-TSC-MTORC1 pathway via ER stress, resulting in autophagy, which may contribute to the establishment of the HCV-induced autophagy.
Collapse
Affiliation(s)
- He Huang
- MOH Key Laboratory of Systems Biology of Pathogens, Institute of Pathogen Biology, Chinese Academy of Medical Sciences & Peking Union Medical College, Beijing, China
| | | | | | | | | | | |
Collapse
|
49
|
Parys JB, Decuypere JP, Bultynck G. Role of the inositol 1,4,5-trisphosphate receptor/Ca2+-release channel in autophagy. Cell Commun Signal 2012; 10:17. [PMID: 22770472 PMCID: PMC3413604 DOI: 10.1186/1478-811x-10-17] [Citation(s) in RCA: 85] [Impact Index Per Article: 6.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/24/2012] [Accepted: 07/06/2012] [Indexed: 01/07/2023] Open
Abstract
Autophagy is an important cell-biological process responsible for the disposal of long-lived proteins, protein aggregates, defective organelles and intracellular pathogens. It is activated in response to cellular stress and plays a role in development, cell differentiation, and ageing. Moreover, it has been shown to be involved in different pathologies, including cancer and neurodegenerative diseases. It is a long standing issue whether and how the Ca2+ ion is involved in its regulation. The role of the inositol 1,4,5-trisphosphate receptor, the main intracellular Ca2+-release channel, in apoptosis is well recognized, but its role in autophagy only recently emerged and is therefore much less well understood. Positive as well as negative effects on autophagy have been reported for both the inositol 1,4,5-trisphosphate receptor and Ca2+. This review will critically present the evidence for a role of the inositol 1,4,5-trisphosphate receptor/Ca2+-release channel in autophagy and will demonstrate that depending on the cellular conditions it can either suppress or promote autophagy. Suppression occurs through Ca2+ signals directed to the mitochondria, fueling ATP production and decreasing AMP-activated kinase activity. In contrast, Ca2+-induced autophagy can be mediated by several pathways including calmodulin-dependent kinase kinase β, calmodulin-dependent kinase I, protein kinase C θ, and/or extracellular signal-regulated kinase.
Collapse
Affiliation(s)
- Jan B Parys
- Laboratory of Molecular and Cellular Signaling, Department of Cellular and Molecular Medicine, KU Leuven, Campus Gasthuisberg O/N-1 bus 802, Herestraat 49, BE-3000, Leuven, Belgium
| | - Jean-Paul Decuypere
- Laboratory of Molecular and Cellular Signaling, Department of Cellular and Molecular Medicine, KU Leuven, Campus Gasthuisberg O/N-1 bus 802, Herestraat 49, BE-3000, Leuven, Belgium
| | - Geert Bultynck
- Laboratory of Molecular and Cellular Signaling, Department of Cellular and Molecular Medicine, KU Leuven, Campus Gasthuisberg O/N-1 bus 802, Herestraat 49, BE-3000, Leuven, Belgium
| |
Collapse
|
50
|
Monascuspiloin enhances the radiation sensitivity of human prostate cancer cells by stimulating endoplasmic reticulum stress and inducing autophagy. PLoS One 2012; 7:e40462. [PMID: 22802963 PMCID: PMC3389026 DOI: 10.1371/journal.pone.0040462] [Citation(s) in RCA: 40] [Impact Index Per Article: 3.1] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/17/2012] [Accepted: 05/18/2012] [Indexed: 12/30/2022] Open
Abstract
Prostate cancer is a very common cancer among males. Traditional treatments for prostate cancer have limited efficacy; therefore, new therapeutic strategies and/or new adjuvant drugs must be explored. Red yeast rice (RYR) is a traditional food spice made in Asia by fermenting white rice with Monascus purpureus Went yeast. Accumulating evidence indicates that RYR has antitumor activity. In this study, PC-3 cells (human prostate cancer cells) were used to investigate the anti-cancer effects of ionizing radiation (IR) combined with monascuspiloin (MP, a yellow pigment isolated from Monascus pilosus M93-fermented rice) and to determine the underlying mechanisms of these effects in vitro and in vivo. We found that IR combined with MP showed increased therapeutic efficacy when compared with either treatment alone in PC-3 cells. In addition, the combined treatment enhanced DNA damage and endoplasmic reticulum (ER) stress. The combined treatment induced primarily autophagy in PC-3 cells, and the cell death that was induced by the combined treatment was chiefly the result of inhibition of the Akt/mTOR signaling pathways. In an in vivo study, the combination treatment showed greater anti-tumor growth effects. These novel findings suggest that the combined treatment could be a potential therapeutic strategy for prostate cancer.
Collapse
|