1
|
Ventura J, Lobachevsky PN, Palazzolo JS, Forrester H, Haynes NM, Ivashkevich A, Stevenson AW, Hall CJ, Ntargaras A, Kotsaris V, Pollakis GC, Potsi G, Skordylis K, Terzoudi G, Pateras IS, Gorgoulis VG, Georgakilas AG, Sprung CN, Martin OA. Localized Synchrotron Irradiation of Mouse Skin Induces Persistent Systemic Genotoxic and Immune Responses. Cancer Res 2017; 77:6389-6399. [PMID: 29113972 DOI: 10.1158/0008-5472.can-17-1066] [Citation(s) in RCA: 30] [Impact Index Per Article: 3.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/11/2017] [Revised: 08/07/2017] [Accepted: 09/19/2017] [Indexed: 11/16/2022]
Abstract
The importance of nontargeted (systemic) effects of ionizing radiation is attracting increasing attention. Exploiting synchrotron radiation generated by the Imaging and Medical Beamline at the Australian Synchrotron, we studied radiation-induced nontargeted effects in C57BL/6 mice. Mice were locally irradiated with a synchrotron X-ray broad beam and a multiplanar microbeam radiotherapy beam. To assess the influence of the beam configurations and variations in peak dose and irradiated area in the response of normal tissues outside the irradiated field at 1 and 4 days after irradiation, we monitored oxidatively induced clustered DNA lesions (OCDL), DNA double-strand breaks (DSB), apoptosis, and the local and systemic immune responses. All radiation settings induced pronounced persistent systemic effects in mice, which resulted from even short exposures of a small irradiated area. OCDLs were elevated in a wide variety of unirradiated normal tissues. In out-of-field duodenum, there was a trend for elevated apoptotic cell death under most irradiation conditions; however, DSBs were elevated only after exposure to lower doses. These genotoxic events were accompanied by changes in plasma concentrations of macrophage-derived cytokine, eotaxin, IL10, TIMP1, VEGF, TGFβ1, and TGFβ2, along with changes in tissues in frequencies of macrophages, neutrophils, and T lymphocytes. Overall, our findings have implications for the planning of therapeutic and diagnostic radiation treatments to reduce the risk of radiation-related adverse systemic effects. Cancer Res; 77(22); 6389-99. ©2017 AACR.
Collapse
Affiliation(s)
- Jessica Ventura
- Molecular Radiation Biology Laboratory, Peter MacCallum Cancer Centre, Melbourne, Victoria, Australia.,Department of Obstetrics and Gynaecology, Royal Women's Hospital, University of Melbourne, Melbourne, Victoria, Australia
| | - Pavel N Lobachevsky
- Molecular Radiation Biology Laboratory, Peter MacCallum Cancer Centre, Melbourne, Victoria, Australia.,Sir Peter MacCallum Department of Oncology, The University of Melbourne, Melbourne, Victoria, Australia
| | - Jason S Palazzolo
- Molecular Radiation Biology Laboratory, Peter MacCallum Cancer Centre, Melbourne, Victoria, Australia
| | - Helen Forrester
- Centre for Innate Immunity and Infectious Diseases, Hudson Institute of Medical Research and Monash University, Clayton, Victoria, Australia
| | - Nicole M Haynes
- Cancer Therapeutics Program, Peter MacCallum Cancer Centre, Melbourne, Victoria, Australia
| | - Alesia Ivashkevich
- Centre for Innate Immunity and Infectious Diseases, Hudson Institute of Medical Research and Monash University, Clayton, Victoria, Australia.,Radiation Oncology, Canberra Hospital, Garran, Australian Capital Territory, Australia
| | - Andrew W Stevenson
- CSIRO, Clayton, Victoria, Australia.,Australian Synchrotron, Clayton, Victoria, Australia
| | | | - Andreas Ntargaras
- Physics Department, School of Applied Mathematical and Physical Sciences, National Technical University of Athens, Athens, Greece
| | - Vasilis Kotsaris
- Physics Department, School of Applied Mathematical and Physical Sciences, National Technical University of Athens, Athens, Greece
| | - Gerasimos Ch Pollakis
- Physics Department, School of Applied Mathematical and Physical Sciences, National Technical University of Athens, Athens, Greece
| | - Gianna Potsi
- Physics Department, School of Applied Mathematical and Physical Sciences, National Technical University of Athens, Athens, Greece
| | - Konstantinos Skordylis
- Physics Department, School of Applied Mathematical and Physical Sciences, National Technical University of Athens, Athens, Greece
| | - Georgia Terzoudi
- Laboratory of Health Physics, Radiobiology and Cytogenetics, Institute of Nuclear and Radiological Sciences and Technology, Energy and Safety, National Center for Scientific Research 'Demokritos', Athens, Greece
| | - Ioannis S Pateras
- Molecular Carcinogenesis Group, Department of Histology and Embryology, School of Medicine, National and Kapodistrian University of Athens, Athens, Greece
| | - Vassilis G Gorgoulis
- Molecular Carcinogenesis Group, Department of Histology and Embryology, School of Medicine, National and Kapodistrian University of Athens, Athens, Greece.,Biomedical Research Foundation of the Academy of Athens, Athens, Greece.,Faculty Institute for Cancer Sciences, Manchester Academic Health Sciences Centre, University of Manchester, Manchester, United Kingdom
| | - Alexandros G Georgakilas
- Physics Department, School of Applied Mathematical and Physical Sciences, National Technical University of Athens, Athens, Greece
| | - Carl N Sprung
- Centre for Innate Immunity and Infectious Diseases, Hudson Institute of Medical Research and Monash University, Clayton, Victoria, Australia
| | - Olga A Martin
- Molecular Radiation Biology Laboratory, Peter MacCallum Cancer Centre, Melbourne, Victoria, Australia. .,Sir Peter MacCallum Department of Oncology, The University of Melbourne, Melbourne, Victoria, Australia.,Division of Radiation Oncology, Peter MacCallum Cancer Centre, Melbourne, Victoria, Australia
| |
Collapse
|
2
|
Koturbash I, Merrifield M, Kovalchuk O. Fractionated exposure to low doses of ionizing radiation results in accumulation of DNA damage in mouse spleen tissue and activation of apoptosis in a p53/Atm-independent manner. Int J Radiat Biol 2016; 93:148-155. [PMID: 27758128 DOI: 10.1080/09553002.2017.1231943] [Citation(s) in RCA: 6] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 10/20/2022]
Abstract
PURPOSE While the effects of high doses of ionizing radiation (IR) are relatively well characterized, the molecular mechanisms underlying cellular responses to prolonged exposure to low doses of radiation remain largely under-investigated. MATERIALS AND METHODS Here, we addressed the DNA damage and apoptotic response in the spleen tissue of C57BL/6 male mice after fractionated exposure to X-rays within the 0.1-0.5 Gy dose range. RESULTS The response to initial exposure to 0.1 Gy of IR was characterized by increased DNA damage and elevated levels of apoptosis. Subsequent exposures (cumulative doses of 0.2 and 0.3 Gy) resulted in adaptive response-like changes, represented as increased proliferation and apoptotic response. Cumulative doses of 0.4 and 0.5 Gy were characterized by accumulation of DNA damage and reactivation of apoptosis and apoptosis-related proteins. Additionally, spleen cells with irreversible damage caused by radiation can undergo apoptosis via activation of p38, which does not necessarily involve the Atm/p53 pathway. CONCLUSIONS Fractionated exposure to low doses of X-rays resulted in accumulation of DNA damage in the murine spleen and induction of apoptotic response in p53/Atm-independent manner. Further studies are needed to understand the outcomes and molecular mechanisms underlying cellular responses and early induction of p38 in response to prolonged exposure to IR.
Collapse
Affiliation(s)
- Igor Koturbash
- a Department of Biological Sciences , University of Lethbridge , Lethbridge , Alberta , Canada
| | - Matt Merrifield
- a Department of Biological Sciences , University of Lethbridge , Lethbridge , Alberta , Canada
| | - Olga Kovalchuk
- a Department of Biological Sciences , University of Lethbridge , Lethbridge , Alberta , Canada
| |
Collapse
|
3
|
Shimizu N, Ooka M, Takagi T, Takeda S, Hirota K. Distinct DNA Damage Spectra Induced by Ionizing Radiation in Normoxic and Hypoxic Cells. Radiat Res 2015; 184:442-8. [DOI: 10.1667/rr14117.1] [Citation(s) in RCA: 8] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/03/2022]
|
4
|
Hassim F, Papadopoulos AO, Kana BD, Gordhan BG. A combinatorial role for MutY and Fpg DNA glycosylases in mutation avoidance in Mycobacterium smegmatis. Mutat Res 2015; 779:24-32. [PMID: 26125998 DOI: 10.1016/j.mrfmmm.2015.06.002] [Citation(s) in RCA: 8] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/12/2014] [Revised: 05/26/2015] [Accepted: 06/01/2015] [Indexed: 10/23/2022]
Abstract
Hydroxyl radical (OH) among reactive oxygen species cause damage to nucleobases with thymine being the most susceptible, whilst in contrast, the singlet oxygen ((1)02) targets only guanine bases. The high GC content of mycobacterial genomes predisposes these organisms to oxidative damage of guanine. The exposure of cellular DNA to OH and one-electron oxidants results in the formation of two main degradation products, the pro-mutagenic 8-oxo-7,8-dihydroguanine (8-oxoGua) and the cytotoxic 2,6-diamino-4-hydroxy-5-formamidopyrimidine (FapyGua). These lesions are repaired through the base excision repair (BER) pathway and we previously, demonstrated a combinatorial role for the mycobacterial Endonuclease III (Nth) and the Nei family of DNA glycosylases in mutagenesis. In addition, the formamidopyrimidine (Fpg/MutM) and MutY DNA glycosylases have also been implicated in mutation avoidance and BER in mycobacteria. In this study, we further investigate the combined role of MutY and the Fpg/Nei DNA glycosylases in Mycobacterium smegmatis and demonstrate that deletion of mutY resulted in enhanced sensitivity to oxidative stress, an effect which was not exacerbated in Δfpg1 Δfpg2 or Δnei1 Δnei2 double mutant backgrounds. However, combinatorial loss of the mutY, fpg1 and fpg2 genes resulted in a significant increase in mutation rates suggesting interplay between these enzymes. Consistent with this, there was a significant increase in C → A mutations with a corresponding change in cell morphology of rifampicin resistant mutants in the Δfpg1 Δfpg2 ΔmutY deletion mutant. In contrast, deletion of mutY together with the nei homologues did not result in any growth/survival defects or changes in mutation rates. Taken together these data indicate that the mycobacterial mutY, in combination with the Fpg DNA N-glycosylases, plays an important role in controlling mutagenesis under oxidative stress.
Collapse
Affiliation(s)
- Farzanah Hassim
- DST/NRF Centre of Excellence for Biomedical TB Research, School of Pathology, Faculty of Health Sciences, University of the Witwatersrand and the National Health Laboratory Service, P.O. Box 1038, Johannesburg 2000, South Africa
| | - Andrea O Papadopoulos
- DST/NRF Centre of Excellence for Biomedical TB Research, School of Pathology, Faculty of Health Sciences, University of the Witwatersrand and the National Health Laboratory Service, P.O. Box 1038, Johannesburg 2000, South Africa
| | - Bavesh D Kana
- DST/NRF Centre of Excellence for Biomedical TB Research, School of Pathology, Faculty of Health Sciences, University of the Witwatersrand and the National Health Laboratory Service, P.O. Box 1038, Johannesburg 2000, South Africa
| | - Bhavna G Gordhan
- DST/NRF Centre of Excellence for Biomedical TB Research, School of Pathology, Faculty of Health Sciences, University of the Witwatersrand and the National Health Laboratory Service, P.O. Box 1038, Johannesburg 2000, South Africa.
| |
Collapse
|
5
|
Nikitaki Z, Hellweg CE, Georgakilas AG, Ravanat JL. Stress-induced DNA damage biomarkers: applications and limitations. Front Chem 2015; 3:35. [PMID: 26082923 PMCID: PMC4451417 DOI: 10.3389/fchem.2015.00035] [Citation(s) in RCA: 106] [Impact Index Per Article: 10.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/23/2015] [Accepted: 05/07/2015] [Indexed: 11/13/2022] Open
Abstract
A variety of environmental stresses like chemicals, UV and ionizing radiation and organism's endogenous processes such as replication stress and metabolism can lead to the generation of reactive oxygen and nitrogen species (ROS/RNS) that can attack cellular vital components like DNA, proteins and lipid membranes. Among them, much attention has been focused on DNA since DNA damage plays a role in several biological disorders and aging processes. Thus, DNA damage can be used as a biomarker in a reliable and accurate way to quantify for example radiation exposure and can indicate its possible long term effects and cancer risk. Based on the type of DNA lesions detected one can hypothesize on the most probable mechanisms involved in the formation of these lesions for example in the case of UV and ionizing radiation (e.g., X- or α-, γ-rays, energetic ions, neutrons). In this review we describe the most accepted chemical pathways for DNA damage induction and the different types of DNA lesions, i.e., single, complex DNA lesions etc. that can be used as DNA damage biomarkers. We critically compare DNA damage detection methods and their limitations. In addition, we suggest the use of DNA repair gene products as biomarkes for identification of different types of stresses i.e., radiation, oxidative, or replication stress, based on bioinformatic approaches and meta-analysis of literature data.
Collapse
Affiliation(s)
- Zacharenia Nikitaki
- DNA Damage and Repair Laboratory, Physics Department, School of Applied Mathematical and Physical Sciences, National Technical University of Athens Athens, Greece
| | - Christine E Hellweg
- Radiation Biology Department, German Aerospace Center (DLR), Institute of Aerospace Medicine Köln, Germany
| | - Alexandros G Georgakilas
- DNA Damage and Repair Laboratory, Physics Department, School of Applied Mathematical and Physical Sciences, National Technical University of Athens Athens, Greece
| | - Jean-Luc Ravanat
- Laboratoire des Lésions des Acides Nucléiques, Institut des Nanosciences et Cryogénie, Service de Chimie Inorgranique et Biologique, Université Grenoble Alpes Grenoble, France ; CEA, Institut des Nanosciences et Cryogénie, Service de Chimie Inorgranique et Biologique Grenoble, France
| |
Collapse
|
6
|
Systemic DNA damage accumulation under in vivo tumor growth can be inhibited by the antioxidant Tempol. Cancer Lett 2014; 353:248-57. [PMID: 25069035 DOI: 10.1016/j.canlet.2014.07.030] [Citation(s) in RCA: 21] [Impact Index Per Article: 1.9] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/29/2014] [Revised: 07/16/2014] [Accepted: 07/16/2014] [Indexed: 12/18/2022]
Abstract
Recently we found that mice bearing subcutaneous non-metastatic tumors exhibited elevated levels of two types of complex DNA damage, i.e., double-strand breaks and oxidatively-induced clustered DNA lesions in various tissues throughout the body, both adjacent to and distant from the tumor site. This DNA damage was dependent on CCL2, a cytokine involved in the recruitment and activation of macrophages, suggesting that this systemic DNA damage was mediated via tumor-induced chronic inflammatory responses involving cytokines, activation of macrophages, and consequent free radical production. If free radicals are involved, then a diet containing an antioxidant may decrease the distant DNA damage. Here we repeated our standard protocol in cohorts of two syngeneic tumor-bearing C57BL/6NCr mice that were on a Tempol-supplemented diet. We show that double-strand break and oxidatively-induced clustered DNA lesion levels were considerably decreased, about two- to three fold, in the majority of tissues studied from the tumor-bearing mice fed the antioxidant Tempol compared to the control tumor-bearing mice. Similar results were also observed in nude mice suggesting that the Tempol effects are independent of functioning adaptive immunity. This is the first in vivo study demonstrating the effect of a dietary antioxidant on abscopal DNA damage in tissues distant from a localized source of genotoxic stress. These findings may be important for understanding the mechanisms of genomic instability and carcinogenesis caused by chronic stress-induced systemic DNA damage and for developing preventative strategies.
Collapse
|
7
|
Cadet J, Wagner JR, Shafirovich V, Geacintov NE. One-electron oxidation reactions of purine and pyrimidine bases in cellular DNA. Int J Radiat Biol 2014; 90:423-32. [PMID: 24369822 DOI: 10.3109/09553002.2013.877176] [Citation(s) in RCA: 115] [Impact Index Per Article: 10.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/05/2023]
Abstract
PURPOSE The aim of this survey is to critically review the available information on one-electron oxidation reactions of nucleobases in cellular DNA with emphasis on damage induced through the transient generation of purine and pyrimidine radical cations. Since the indirect effect of ionizing radiation mediated by hydroxyl radical is predominant in cells, efforts have been made to selectively ionize bases using suitable one-electron oxidants that consist among others of high intensity UVC laser pulses. Thus, the main oxidation product in cellular DNA was found to be 8-oxo-7,8-dihydroguanine as a result of direct bi-photonic ionization of guanine bases and indirect formation of guanine radical cations through hole transfer reactions from other base radical cations. The formation of 8-oxo-7,8-dihydroguanine and other purine and pyrimidine degradation products was rationalized in terms of the initial generation of related radical cations followed by either hydration or deprotonation reactions in agreement with mechanistic pathways inferred from detailed mechanistic studies. The guanine radical cation has been shown to be implicated in three other nucleophilic additions that give rise to DNA-protein and DNA-DNA cross-links in model systems. Evidence was recently provided for the occurrence of these three reactions in cellular DNA. CONCLUSION There is growing evidence that one-electron oxidation reactions of nucleobases whose mechanisms have been characterized in model studies involving aqueous solutions take place in a similar way in cells. It may also be pointed out that the above cross-linked lesions are only produced from the guanine radical cation and may be considered as diagnostic products of the direct effect of ionizing radiation.
Collapse
Affiliation(s)
- Jean Cadet
- Institut Nanosciences & Cryogénie, CEA/Grenoble , Grenoble , France
| | | | | | | |
Collapse
|
8
|
Ivashkevich A, Redon CE, Nakamura AJ, Martin RF, Martin OA. Use of the γ-H2AX assay to monitor DNA damage and repair in translational cancer research. Cancer Lett 2012; 327:123-33. [PMID: 22198208 PMCID: PMC3329565 DOI: 10.1016/j.canlet.2011.12.025] [Citation(s) in RCA: 367] [Impact Index Per Article: 28.2] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/20/2011] [Revised: 12/11/2011] [Accepted: 12/14/2011] [Indexed: 12/30/2022]
Abstract
Formation of γ-H2AX in response to DNA double stranded breaks (DSBs) provides the basis for a sensitive assay of DNA damage in human biopsies. The review focuses on the application of γ-H2AX-based methods to translational studies to monitor the clinical response to DNA targeted therapies such as some forms of chemotherapy, external beam radiotherapy, radionuclide therapy or combinations thereof. The escalating attention on radiation biodosimetry has also highlighted the potential of the assay including renewed efforts to assess the radiosensitivity of prospective radiotherapy patients. Finally the γ-H2AX response has been suggested as a basis for an in vivo imaging modality.
Collapse
Affiliation(s)
- Alesia Ivashkevich
- Laboratory of Molecular Radiation Biology, Peter MacCallum Cancer Centre, Melbourne, Australia
| | - Christophe E. Redon
- Laboratory of Molecular Pharmacology, Center for Cancer Research, National Cancer Institute, Bethesda, USA
| | - Asako J. Nakamura
- Department of Anatomy and Cell Biology, Osaka Medical College, Osaka, Japan
| | - Roger F. Martin
- Laboratory of Molecular Radiation Biology, Peter MacCallum Cancer Centre, Melbourne, Australia
| | - Olga A. Martin
- Laboratory of Molecular Radiation Biology, Peter MacCallum Cancer Centre, Melbourne, Australia
- Department of Radiation Oncology, Peter MacCallum Cancer Centre, Melbourne, Australia
| |
Collapse
|
9
|
Cheng SB, Wu LC, Hsieh YC, Wu CH, Chan YJ, Chang LH, Chang CMJ, Hsu SL, Teng CL, Wu CC. Supercritical carbon dioxide extraction of aromatic turmerone from Curcuma longa Linn. induces apoptosis through reactive oxygen species-triggered intrinsic and extrinsic pathways in human hepatocellular carcinoma HepG2 cells. JOURNAL OF AGRICULTURAL AND FOOD CHEMISTRY 2012; 60:9620-9630. [PMID: 22946656 DOI: 10.1021/jf301882b] [Citation(s) in RCA: 37] [Impact Index Per Article: 2.8] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 06/01/2023]
Abstract
The mechanisms underlying the antiproliferative and antitumor activities of aromatic turmerone (ar-turmerone), a volatile turmeric oil isolated from Curcuma longa Linn., have been largely unknown. In this study, 86% pure ar-turmerone was extracted by supercritical carbon dioxide and liquid-solid chromatography and its potential effects and molecular mechanisms on cell proliferation studied in human hepatocellular carcinoma cell lines. Ar-turmerone exhibited significant antiproliferative activity, with 50% inhibitory concentrations of 64.8 ± 7.1, 102.5 ± 11.5, and 122.2 ± 7.6 μg/mL against HepG2, Huh-7, and Hep3B cells, respectively. Ar-turmerone-induced apoptosis, confirmed by increased annexin V binding and DNA fragmentation, was accompanied by reactive oxygen species (ROS) production, mitochondrial membrane potential dissipation, increased Bax and p53 up-regulated modulator of apoptosis (PUMA) levels, Bax mitochondrial translocation, cytochrome c release, Fas and death receptor 4 (DR4) augmentation, and caspase-3, -8, and -9 activation. Exposure to caspase inhibitors, Fas-antagonistic antibody, DR4 antagonist, and furosemide (a blocker of Bax translocation) effectively abolished ar-turmerone-triggered apoptosis. Moreover, ar-turmerone stimulated c-Jun N-terminal kinase (JNK) and extracellular signal-related kinase (ERK) phosphorylation and activation; treatment with JNK and ERK inhibitors markedly reduced PUMA, Bax, Fas, and DR4 levels and reduced apoptosis but not ROS generation. Furthermore, antioxidants attenuated ar-turmerone-mediated ROS production; mitochondrial dysfunction; JNK and ERK activation; PUMA, Bax, Fas, and DR4 expression; and apoptosis. Taken together, these results suggest that ar-turmerone-induced apoptosis in HepG2 cells is through ROS-mediated activation of ERK and JNK kinases and triggers both intrinsic and extrinsic caspase activation, leading to apoptosis. On the basis of these observations, ar-turmerone deserves further investigation as a natural anticancer and cancer-preventive agent.
Collapse
Affiliation(s)
- Shao-Bin Cheng
- Division of General Surgery, Department of Surgery, Taichung Veterans General Hospital , Taiwan
| | | | | | | | | | | | | | | | | | | |
Collapse
|
10
|
Dickey JS, Baird BJ, Redon CE, Avdoshina V, Palchik G, Wu J, Kondratyev A, Bonner WM, Martin OA. Susceptibility to bystander DNA damage is influenced by replication and transcriptional activity. Nucleic Acids Res 2012; 40:10274-86. [PMID: 22941641 PMCID: PMC3488239 DOI: 10.1093/nar/gks795] [Citation(s) in RCA: 41] [Impact Index Per Article: 3.2] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/20/2022] Open
Abstract
Direct cellular DNA damage may lead to genome destabilization in unexposed, bystander, cells sharing the same milieu with directly damaged cells by means of the bystander effect. One proposed mechanism involves double strand break (DSB) formation in S phase cells at sites of single strand lesions in the DNA of replication complexes, which has a more open structure compared with neighboring DNA. The DNA in transcription complexes also has a more open structure, and hence may be susceptible to bystander DSB formation from single strand lesions. To examine whether transcription predisposes non-replicating cells to bystander effect-induced DNA DSBs, we examined two types of primary cells that exhibit high levels of transcription in the absence of replication, rat neurons and human lymphocytes. We found that non-replicating bystander cells with high transcription rates exhibited substantial levels of DNA DSBs, as monitored by γ-H2AX foci formation. Additionally, as reported in proliferating cells, TGF-β and NO were found to mimic bystander effects in cell populations lacking DNA synthesis. These results indicate that cell vulnerability to bystander DSB damage may result from transcription as well as replication. The findings offer insights into which tissues may be vulnerable to bystander genomic destabilization in vivo.
Collapse
Affiliation(s)
- Jennifer S Dickey
- Laboratory of Molecular Pharmacology, Center for Cancer Research, National Cancer Institute, National Institutes of Health, Bethesda, MD 20952, USA.
| | | | | | | | | | | | | | | | | |
Collapse
|
11
|
Thabayneh KM, Jazzar MM. Radioactivity levels in plant samples in Tulkarem district, Palestine and its impact on human health. RADIATION PROTECTION DOSIMETRY 2012; 153:467-474. [PMID: 22798274 DOI: 10.1093/rpd/ncs122] [Citation(s) in RCA: 5] [Impact Index Per Article: 0.4] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 06/01/2023]
Abstract
The activity concentrations of naturally occurring radioactive materials such as (226)Ra, (238)U, (232)Th, (40)K and (137)Cs were measured for 44 plant samples collected from different locations in the northwestern region of the West Bank, Palestine, using high-resolution gamma ray spectroscopy. The activity concentrations of radionuclides in the investigated plant samples ranged from 7.5 to 157.6 Bq kg(-1) for (226)Ra, 7.5 to 66.1 Bq kg(-1) for (238)U, 1.8 to 48.5 Bq kg(-1) for (232)Th, 14.3 to 1622 Bq kg(-1) for (40)K and <0.1 to 4.7 Bq kg(-1) for (137)Cs. The average values of these activities were 48.3, 26.5, 10.1, 288.0 and 2.2 Bq kg(-1), for (226)Ra, (238)U, (232)Th, (40)K and (137)Cs, respectively. The study presents the total gamma radiation dose rate assessed from natural radionuclides,(137)Cs and cosmic radiation, the dose rate of each radionuclide and the effective dose for all the samples. The radiological health implication to the population that may result from these doses is found to be low, except in few cases. The measurements have been taken as representing a baseline database of values of these radionuclides in the plants in the area.
Collapse
Affiliation(s)
- Kaleel M Thabayneh
- Faculty of Science and Technology, Hebron University, PO Box 40, Hebron, Palestine.
| | | |
Collapse
|
12
|
Cadet J, Douki T, Ravanat JL, Wagner JR. Measurement of oxidatively generated base damage to nucleic acids in cells: facts and artifacts. ACTA ACUST UNITED AC 2012. [DOI: 10.1007/s12566-012-0029-6] [Citation(s) in RCA: 27] [Impact Index Per Article: 2.1] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/05/2023]
|
13
|
The mutagenic potential of 8-oxoG/single strand break-containing clusters depends on their relative positions. Mutat Res 2012; 732:34-42. [PMID: 22261346 DOI: 10.1016/j.mrfmmm.2011.12.009] [Citation(s) in RCA: 17] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/09/2011] [Revised: 12/12/2011] [Accepted: 12/22/2011] [Indexed: 11/20/2022]
Abstract
The biological consequences of clusters containing a single strand break and base lesion(s) remain largely unknown. In the present study we determined the mutagenicities of two- and three-lesion clustered damage sites containing a 1-nucleotide gap (GAP) and 8-oxo-7,8-dihydroguanine(s) (8-oxoG(s)) in Escherichia coli. The mutation frequencies (MFs) of bi-stranded two-lesion clusters (GAP/8-oxoG), especially in mutY-deficient strains, were high and were similar to those for bi-stranded clusters with 8-oxoG and base lesions/AP sites, suggesting that the GAP is processed with an efficiency similar to the efficiency of processing a base lesion or an AP site within a cluster. The MFs of tandem two-lesion clusters comprised of a GAP and an 8-oxoG on the same strand were comparable to or less than the MF of a single 8-oxoG. The mutagenic potential of three-lesion clusters, which were comprised of a tandem lesion (a GAP and an 8-oxoG) and an opposing single 8-oxoG, was higher than that of a single 8-oxoG, but was no more than that of a bi-stranded 8-oxoGs. We suggest that incorporation of a nucleotide opposite 8-oxoG is less mutagenic when a GAP is present in a cluster than when a GAP is absent. Our observations indicate that the repair of a GAP is retarded by an opposing 8-oxoG, but not by a tandem 8-oxoG, and that the extent of GAP repair determines the biological consequences.
Collapse
|
14
|
Aziz K, Nowsheen S, Pantelias G, Iliakis G, Gorgoulis VG, Georgakilas AG. Targeting DNA damage and repair: embracing the pharmacological era for successful cancer therapy. Pharmacol Ther 2011; 133:334-50. [PMID: 22197993 DOI: 10.1016/j.pharmthera.2011.11.010] [Citation(s) in RCA: 76] [Impact Index Per Article: 5.4] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/28/2011] [Accepted: 11/30/2011] [Indexed: 12/19/2022]
Abstract
DNA is under constant assault from genotoxic agents which creates different kinds of DNA damage. The precise replication of the genome and the continuous surveillance of its integrity are critical for survival and the avoidance of carcinogenesis. Cells have evolved an arsenal of repair pathways and cell cycle checkpoints to detect and repair DNA damage. When repair fails, typically cell cycle progression is halted and apoptosis is initiated. Here, we review the different sources and types of DNA damage including DNA replication stress and oxidative stress, the repair pathways that cells utilize to repair damaged DNA, and discuss their biological significance, especially with reference to cancer induction and cancer therapy. We also describe the main methodologies currently used for the detection of DNA damage with their strengths and limitations. We conclude with an outline as to how this information can be used to identify novel pharmacological targets for DNA repair pathways or enhancers of DNA damage to develop improved treatment strategies that will benefit cancer patients.
Collapse
Affiliation(s)
- K Aziz
- Department of Radiation Oncology & Molecular Radiation Sciences, Johns Hopkins School of Medicine, Sidney Kimmel Comprehensive Cancer Center, Baltimore, MD 21231, USA
| | | | | | | | | | | |
Collapse
|
15
|
Nowsheen S, Aziz K, Panayiotidis MI, Georgakilas AG. Molecular markers for cancer prognosis and treatment: have we struck gold? Cancer Lett 2011; 327:142-52. [PMID: 22120674 DOI: 10.1016/j.canlet.2011.11.022] [Citation(s) in RCA: 26] [Impact Index Per Article: 1.9] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/03/2011] [Revised: 11/16/2011] [Accepted: 11/17/2011] [Indexed: 12/22/2022]
Abstract
The last decade has witnessed an emerging role for molecular or biochemical markers indicating a specific cellular mechanism or tissue function, often called 'biomarkers'. Biomarkers such as altered DNA, proteins and inflammatory cytokines are critical in cancer research and strategizing treatment in the clinic. In this review we look at the application of biological indicators to cancer research and highlight their roles in cancer detection and treatment. With technological advances in gene expression, genomic and proteomic analysis, biomarker discovery is expanding fast. We focus on some of the predominantly used markers in different types of malignancies, their advantages, and their limitations. Finally we conclude by looking at the future of biomarkers, their utility in the tumorigenic studies, and the progress towards personalized treatment strategies.
Collapse
Affiliation(s)
- Somaira Nowsheen
- Department of Radiation Oncology, University of Alabama at Birmingham Comprehensive Cancer Center, 35294, USA
| | | | | | | |
Collapse
|