1
|
Yamaguchi M, Sera Y, Toga-Yamaguchi H, Kanegane H, Iguchi Y, Fujimura K. Knockdown of the Shwachman-Diamond syndrome gene, SBDS, induces galectin-1 expression and impairs cell growth. Int J Hematol 2024; 119:383-391. [PMID: 38240987 DOI: 10.1007/s12185-024-03709-z] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/22/2023] [Revised: 12/18/2023] [Accepted: 01/05/2024] [Indexed: 03/24/2024]
Abstract
Shwachman-Diamond syndrome (SDS) is an autosomal recessive disorder characterized by exocrine pancreatic insufficiency and bone marrow failure. The depletion of SBDS protein by RNA interference has been shown to cause inhibition of cell proliferation in several cell lines. However, the precise mechanism by which the loss of SBDS leads to inhibition of cell growth remains unknown. To evaluate the impaired growth of SBDS-knockdown cells, we analyzed Epstein-Barr virus-transformed lymphoblast cells (LCLs) derived from two patients with SDS (c. 183_184TA > CT and c. 258 + 2 T > C). After 3 days of culture, the growth of LCL-SDS cell lines was considerably less than that of control donor cells. By annealing control primer-based GeneFishing PCR screening, we found that galectin-1 (Gal-1) mRNA expression was elevated in LCL-SDS cells. Western blot analysis showed that the level of Gal-1 protein expression was also increased in LCL-SDS cells as well as in SBDS-knockdown 32Dcl3 murine myeloid cells. We confirmed that recombinant Gal-1 inhibited the proliferation of both LCL-control and LCL-SDS cells and induced apoptosis (as determined by annexin V-positive staining). These results suggest that the overexpression of Gal-1 contributes to abnormal cell growth in SBDS-deficient cells.
Collapse
Affiliation(s)
- Masafumi Yamaguchi
- Laboratory of Physiological Chemistry, Hiroshima International University, 5-1-1 Hirokoshingai, Kure-Shi, Hiroshima, 737-0112, Japan.
| | - Yukihiro Sera
- Laboratory of Physiological Chemistry, Hiroshima International University, 5-1-1 Hirokoshingai, Kure-Shi, Hiroshima, 737-0112, Japan
| | - Hanae Toga-Yamaguchi
- Laboratory of Physiological Chemistry, Hiroshima International University, 5-1-1 Hirokoshingai, Kure-Shi, Hiroshima, 737-0112, Japan
| | - Hirokazu Kanegane
- Department of Child Health and Development, Graduate School of Medical and Dental Sciences, Tokyo Medical and Dental University, 1-5-45, Yushima, BUnkyo-ku, Tokyo, 113-8519, Japan
| | - Yusuke Iguchi
- Laboratory of Physiological Chemistry, Hiroshima International University, 5-1-1 Hirokoshingai, Kure-Shi, Hiroshima, 737-0112, Japan
| | - Kingo Fujimura
- Department of Nursing, Yasuda Women's University, 6-13-1 Yasuhigashi, Asaminami-ku, Hiroshima, 731-0153, Japan
| |
Collapse
|
2
|
Gopinath P, Natarajan A, Sathyanarayanan A, Veluswami S, Gopisetty G. The multifaceted role of Matricellular Proteins in health and cancer, as biomarkers and therapeutic targets. Gene 2022; 815:146137. [PMID: 35007686 DOI: 10.1016/j.gene.2021.146137] [Citation(s) in RCA: 16] [Impact Index Per Article: 5.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/19/2021] [Revised: 12/07/2021] [Accepted: 12/20/2021] [Indexed: 02/07/2023]
Abstract
The extracellular matrix (ECM) is composed of a mesh of proteins, proteoglycans, growth factors, and other secretory components. It constitutes the tumor microenvironment along with the endothelial cells, cancer-associated fibroblasts, adipocytes, and immune cells. The proteins of ECM can be functionally classified as adhesive proteins and matricellular proteins (MCP). In the tumor milieu, the ECM plays a major role in tumorigenesis and therapeutic resistance. The current review encompasses thrombospondins, osteonectin, osteopontin, tenascin C, periostin, the CCN family, laminin, biglycan, decorin, mimecan, and galectins. The matrix metalloproteinases (MMPs) are also discussed as they are an integral part of the ECM with versatile functions in the tumor stroma. In this review, the role of these proteins in tumor initiation, growth, invasion and metastasis have been highlighted, with emphasis on their contribution to tumor therapeutic resistance. Further, their potential as biomarkers and therapeutic targets based on existing evidence are discussed. Owing to the recent advancements in protein targeting, the possibility of agents to modulate MCPs in cancer as therapeutic options are discussed.
Collapse
Affiliation(s)
- Prarthana Gopinath
- Department of Molecular Oncology, Cancer Institute WIA, Chennai, Tamil Nadu, India
| | - Aparna Natarajan
- Department of Molecular Oncology, Cancer Institute WIA, Chennai, Tamil Nadu, India
| | | | - Sridevi Veluswami
- Deaprtment of Surgical Oncology, Cancer Institute (WIA), Chennai, Tamil Nadu, India
| | - Gopal Gopisetty
- Department of Molecular Oncology, Cancer Institute WIA, Chennai, Tamil Nadu, India.
| |
Collapse
|
3
|
Gomes MC, Chen J, Cunha A, Trindade T, Zheng G, Tomé JPC. Complex cellular environments imaged by SERS nanoprobes using sugars as an all-in-one vector. J Mater Chem B 2021; 9:9285-9294. [PMID: 34709285 DOI: 10.1039/d1tb01360b] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/21/2022]
Abstract
Raman spectroscopy coupled with confocal microscopy offers an alternative bioimaging technique overcoming limitations associated with sensitivity, tissue penetration and image resolution. Allied to the surface-enhanced Raman scattering (SERS) properties of gold nanoparticles (AuNP), we designed SERS nanoprobes with enhanced properties and straightforward application as bio-labelling agents for gliomas. The ensuing nanoprobes coated with simple sugar units (galactose or glucose) allowed assessing information about their intracellular localization (vesicular structures), with impressive sensitivity towards complex environments and proved the ability to overcome biological auto-fluorescence and high penetration in tissues. We validate the use of sugars as an all-in-one vector (Raman reporter, conferring high stability, biocompatibility and affinity to glioma cells) as imaging agents using an impressive technique.
Collapse
Affiliation(s)
- Maria C Gomes
- LAQV-REQUINTE and Department of Chemistry, University of Aveiro, 3810-193 Aveiro, Portugal.,Princess Margaret Cancer Center, University Health Network, Toronto, ON, Canada.
| | - Juan Chen
- Princess Margaret Cancer Center, University Health Network, Toronto, ON, Canada.
| | - Angela Cunha
- CESAM and Department of Biology, University of Aveiro, 3810-193 Aveiro, Portugal
| | - Tito Trindade
- CICECO-Aveiro Institute of Materials and Department of Chemistry, University of Aveiro, 3810-193 Aveiro, Portugal
| | - Gang Zheng
- Princess Margaret Cancer Center, University Health Network, Toronto, ON, Canada. .,Department of Medical Biophysics, University of Toronto, Toronto, ON, Canada
| | - João P C Tomé
- LAQV-REQUINTE and Department of Chemistry, University of Aveiro, 3810-193 Aveiro, Portugal.,CQE and Departamento de Engenharia Química, Instituto Superior Técnico, Universidade de Lisboa, 1049-001 Lisboa, Portugal.
| |
Collapse
|
4
|
Autocrine Signaling of NRP1 Ligand Galectin-1 Elicits Resistance to BRAF-Targeted Therapy in Melanoma Cells. Cancers (Basel) 2020; 12:cancers12082218. [PMID: 32784465 PMCID: PMC7463444 DOI: 10.3390/cancers12082218] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/06/2020] [Revised: 07/30/2020] [Accepted: 08/04/2020] [Indexed: 12/15/2022] Open
Abstract
Melanoma cells addicted to mutated BRAF oncogene activity can be targeted by specific kinase inhibitors until they develop resistance to therapy. We observed that the expression of Galectin-1 (Gal-1), a soluble ligand of Neuropilin-1 (NRP1), is upregulated in melanoma tumor samples and melanoma cells resistant to BRAF-targeted therapy. We then demonstrated that Gal-1 is a novel driver of resistance to BRAF inhibitors in melanoma and that its activity is linked to the concomitant upregulation of the NRP1 receptor observed in drug-resistant cells. Mechanistically, Gal-1 sustains increased expression of NRP1 and EGFR in drug-resistant melanoma cells. Moreover, consistent with its role as a NRP1 ligand, Gal-1 negatively controls p27 levels, a mechanism previously found to enable EGFR upregulation in cancer cells. Finally, the combined treatment with a Gal-1 inhibitor and a NRP1 blocking drug enabled resistant melanoma cell resensitization to BRAF-targeted therapy. In summary, we found that the activation of Galectin-1/NRP1 autocrine signaling is a new mechanism conferring independence from BRAF kinase activity to oncogene-addicted melanoma cells.
Collapse
|
5
|
Jiang ZJ, Shen QH, Chen HY, Yang Z, Shuai MQ, Zheng SS. Galectin-1 gene silencing inhibits the activation and proliferation but induces the apoptosis of hepatic stellate cells from mice with liver fibrosis. Int J Mol Med 2018; 43:103-116. [PMID: 30365068 PMCID: PMC6257862 DOI: 10.3892/ijmm.2018.3950] [Citation(s) in RCA: 10] [Impact Index Per Article: 1.4] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/30/2017] [Accepted: 10/09/2018] [Indexed: 12/19/2022] Open
Abstract
Liver fibrosis is a serious threat to human health, and there is currently no effective clinical drug for treatment of the disease. Although Galectin-1 is effective, its role in liver function, inflammation, matrix metalloproteinases and the activation of hepatic stellate cells (HSCs) remains to be elucidated. The aim of the present study was to elucidate the effect of Galectin-1 on the activation, proliferation and apoptosis of HSCs in a mouse model of liver fibrosis. Following successful model establishment and tissue collection, mouse HSCs (mHSCs) were identified and an mHSC line was constructed. Subsequently, to determine the role of Galectin-1 in liver fibrosis, the expression levels of transforming growth factor (TGF)-β1, connective tissue growth factor (CTGF) and α-smooth muscle actin (α-SMA) pre- and post-transfection were evaluated by reverse transcription-quantitative polymerase chain reaction and western blot analyses. In addition, the effects of Galectin-1 on the biological behavior and mitochondrial function of mHSCs were determined using a 3-(4,5-dimethylthiazol-2-yl)-2,5-diphenyltetrazolium bromide assay, flow cytometry and a scratch test. It was first observed that the expression levels of Galectin-1, TGF-β1, CTGF and α-SMA were downregulated by silencing the gene expression of Galectin-1. Additionally, silencing the gene expression of Galectin-1 inhibited cell cycle progression, proliferation and migration but induced the apoptosis of mHSCs from mice with liver fibrosis. Furthermore, the in vivo experimental results suggested that silencing the gene expression of Galectin-1 improved liver fibrosis. Collectively, it was concluded that silencing the gene expression of Galectin-1 ameliorates liver fibrosis and that functionally suppressing Galectin-1 may be a future therapeutic strategy for liver fibrosis.
Collapse
Affiliation(s)
- Zhi-Jun Jiang
- Department of Hepatobiliary and Pancreatic Surgery, The First Affiliated Hospital, Zhejiang University School of Medicine, Hangzhou, Zhejiang 310003, P.R. China
| | - Qing-Hua Shen
- Department of Hepatobiliary and Pancreatic Surgery, The First Affiliated Hospital, Zhejiang University School of Medicine (Jinyun Branch), Jinyun, Zhejiang 321400, P.R. China
| | - Hai-Yong Chen
- Department of Hepatobiliary and Pancreatic Surgery, The First Affiliated Hospital, Zhejiang University School of Medicine, Hangzhou, Zhejiang 310003, P.R. China
| | - Zhe Yang
- Department of Hepatobiliary and Pancreatic Surgery, The First Affiliated Hospital, Zhejiang University School of Medicine, Hangzhou, Zhejiang 310003, P.R. China
| | - Ming-Qi Shuai
- Department of Hepatobiliary and Pancreatic Surgery, The First Affiliated Hospital, Zhejiang University School of Medicine, Hangzhou, Zhejiang 310003, P.R. China
| | - Shu-Sen Zheng
- Department of Hepatobiliary and Pancreatic Surgery, The First Affiliated Hospital, Zhejiang University School of Medicine, Hangzhou, Zhejiang 310003, P.R. China
| |
Collapse
|
6
|
Koonce NA, Griffin RJ, Dings RPM. Galectin-1 Inhibitor OTX008 Induces Tumor Vessel Normalization and Tumor Growth Inhibition in Human Head and Neck Squamous Cell Carcinoma Models. Int J Mol Sci 2017; 18:ijms18122671. [PMID: 29232825 PMCID: PMC5751273 DOI: 10.3390/ijms18122671] [Citation(s) in RCA: 45] [Impact Index Per Article: 5.6] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/06/2017] [Revised: 12/01/2017] [Accepted: 12/05/2017] [Indexed: 12/23/2022] Open
Abstract
Galectin-1 is a hypoxia-regulated protein and a prognostic marker in head and neck squamous cell carcinomas (HNSCC). Here we assessed the ability of non-peptidic galectin-1 inhibitor OTX008 to improve tumor oxygenation levels via tumor vessel normalization as well as tumor growth inhibition in two human HNSCC tumor models, the human laryngeal squamous carcinoma SQ20B and the human epithelial type 2 HEp-2. Tumor-bearing mice were treated with OTX008, Anginex, or Avastin and oxygen levels were determined by fiber-optics and molecular marker pimonidazole binding. Immuno-fluorescence was used to determine vessel normalization status. Continued OTX008 treatment caused a transient reoxygenation in SQ20B tumors peaking on day 14, while a steady increase in tumor oxygenation was observed over 21 days in the HEp-2 model. A >50% decrease in immunohistochemical staining for tumor hypoxia verified the oxygenation data measured using a partial pressure of oxygen (pO2) probe. Additionally, OTX008 induced tumor vessel normalization as tumor pericyte coverage increased by approximately 40% without inducing any toxicity. Moreover, OTX008 inhibited tumor growth as effectively as Anginex and Avastin, except in the HEp-2 model where Avastin was found to suspend tumor growth. Galectin-1 inhibitor OTX008 transiently increased overall tumor oxygenation via vessel normalization to various degrees in both HNSCC models. These findings suggest that targeting galectin-1—e.g., by OTX008—may be an effective approach to treat cancer patients as stand-alone therapy or in combination with other standards of care.
Collapse
Affiliation(s)
- Nathan A Koonce
- Department of Radiation Oncology, University of Arkansas for Medical Sciences, Little Rock, AR 72205, USA.
- National Center for Toxicological Research, Food and Drug Administration, Jefferson, AR 72079, USA.
| | - Robert J Griffin
- Department of Radiation Oncology, University of Arkansas for Medical Sciences, Little Rock, AR 72205, USA.
| | - Ruud P M Dings
- Department of Radiation Oncology, University of Arkansas for Medical Sciences, Little Rock, AR 72205, USA.
| |
Collapse
|
7
|
Yang N, Zhang W, He T, Xing Y. Silencing of galectin-1 inhibits retinal neovascularization and ameliorates retinal hypoxia in a murine model of oxygen-induced ischemic retinopathy. Exp Eye Res 2017; 159:1-15. [PMID: 28257831 DOI: 10.1016/j.exer.2017.02.015] [Citation(s) in RCA: 18] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/13/2016] [Revised: 02/08/2017] [Accepted: 02/27/2017] [Indexed: 11/25/2022]
|
8
|
Sensitization of glioblastoma tumor micro-environment to chemo- and immunotherapy by Galectin-1 intranasal knock-down strategy. Sci Rep 2017; 7:1217. [PMID: 28450700 PMCID: PMC5430862 DOI: 10.1038/s41598-017-01279-1] [Citation(s) in RCA: 108] [Impact Index Per Article: 13.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/06/2017] [Accepted: 03/27/2017] [Indexed: 01/16/2023] Open
Abstract
In this study, we evaluated the consequences of reducing Galectin-1 (Gal-1) in the tumor micro-environment (TME) of glioblastoma multiforme (GBM), via nose-to-brain transport. Gal-1 is overexpressed in GBM and drives chemo- and immunotherapy resistance. To promote nose-to-brain transport, we designed siRNA targeting Gal-1 (siGal-1) loaded chitosan nanoparticles that silence Gal-1 in the TME. Intranasal siGal-1 delivery induces a remarkable switch in the TME composition, with reduced myeloid suppressor cells and regulatory T cells, and increased CD4+ and CD8+ T cells. Gal-1 knock-down reduces macrophages’ polarization switch from M1 (pro-inflammatory) to M2 (anti-inflammatory) during GBM progression. These changes are accompanied by normalization of the tumor vasculature and increased survival for tumor bearing mice. The combination of siGal-1 treatment with temozolomide or immunotherapy (dendritic cell vaccination and PD-1 blocking) displays synergistic effects, increasing the survival of tumor bearing mice. Moreover, we could confirm the role of Gal-1 on lymphocytes in GBM patients by matching the Gal-1 expression and their T cell signatures. These findings indicate that intranasal siGal-1 nanoparticle delivery could be a valuable adjuvant treatment to increase the efficiency of immune-checkpoint blockade and chemotherapy.
Collapse
|
9
|
Melanoma and the Unfolded Protein Response. Cancers (Basel) 2016; 8:cancers8030030. [PMID: 26927180 PMCID: PMC4810114 DOI: 10.3390/cancers8030030] [Citation(s) in RCA: 35] [Impact Index Per Article: 3.9] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/23/2015] [Revised: 02/03/2016] [Accepted: 02/18/2016] [Indexed: 12/11/2022] Open
Abstract
The UPR (unfolded protein response) has been identified as a key factor in the progression and metastasis of cancers, notably melanoma. Several mediators of the UPR are upregulated in cancers, e.g., high levels of GRP78 (glucose-regulator protein 78 kDa) correlate with progression and poor outcome in melanoma patients. The proliferative burden of cancer induces stress and activates several cellular stress responses. The UPR is a tightly orchestrated stress response that is activated upon the accumulation of unfolded proteins within the ER (endoplasmic reticulum). The UPR is designed to mediate two conflicting outcomtes, recovery and apoptosis. As a result, the UPR initiates a widespread signaling cascade to return the cell to homeostasis and failing to achieve cellular recovery, initiates UPR-induced apoptosis. There is evidence that ER stress and subsequently the UPR promote tumourigenesis and metastasis. The complete role of the UPR has yet to be defined. Understanding how the UPR allows for adaption to stress and thereby assists in cancer progression is important in defining an archetype of melanoma pathology. In addition, elucidation of the mechanisms of the UPR may lead to development of effective treatments of metastatic melanoma.
Collapse
|
10
|
Cieckiewicz E, Mathieu V, Angenot L, Gras T, Dejaegher B, de Tullio P, Pirotte B, Frédérich M. Semisynthesis and in Vitro Photodynamic Activity Evaluations of Halogenated and Glycosylated Derivatives of Pheophorbidea. European J Org Chem 2015. [DOI: 10.1002/ejoc.201500387] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/24/2022]
|
11
|
Ebrahim AH, Alalawi Z, Mirandola L, Rakhshanda R, Dahlbeck S, Nguyen D, Jenkins M, Grizzi F, Cobos E, Figueroa JA, Chiriva-Internati M. Galectins in cancer: carcinogenesis, diagnosis and therapy. ANNALS OF TRANSLATIONAL MEDICINE 2014. [PMID: 25405163 DOI: 10.3978/2fj.issn.2305-5839.2014.09.12] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Subscribe] [Scholar Register] [Indexed: 05/15/2023]
Abstract
A major breakthrough in the field of medical oncology has been the discovery of galectins and their role in cancer development, progression and metastasis. In this review article we have condensed the results of a number of studies published over the past decade in an effort to shed some light on the unique role played by the galectin family of proteins in neoplasia, and how this knowledge may alter the approach to cancer diagnosis as well as therapy in the future. In this review we have also emphasized the potential use of galectin inhibitors or modulators in the treatment of cancer and how this novel treatment modality may affect patient outcomes in the future. Based on current pre-clinical models we believe the use of galectin inhibitors/modulators will play a significant role in cancer treatment in the future. Early clinical studies are underway to evaluate the utility of these promising agents in cancer patients.
Collapse
Affiliation(s)
- Ali Hasan Ebrahim
- 1 Department of Surgery, 2 Internal Medicine Department, Salmaniya Medical Complex, Kingdom of Bahrain ; 3 Department of Internal Medicine, Division of Hematology & Oncology, Texas Tech University Health Sciences Center, Lubbock, TX, USA ; 4 Laura W. Bush Institute for Women's Health and Center for Women's Health and Gender-Based Medicine, Amarillo, TX, USA ; 5 Division of Surgical Oncology, Texas Tech University Medical Center, Amarillo, TX, USA ; 6 Kiromic, LLC, TX, USA ; 7 Humanitas Clinical and Research Center, Milan, Italy
| | - Zainab Alalawi
- 1 Department of Surgery, 2 Internal Medicine Department, Salmaniya Medical Complex, Kingdom of Bahrain ; 3 Department of Internal Medicine, Division of Hematology & Oncology, Texas Tech University Health Sciences Center, Lubbock, TX, USA ; 4 Laura W. Bush Institute for Women's Health and Center for Women's Health and Gender-Based Medicine, Amarillo, TX, USA ; 5 Division of Surgical Oncology, Texas Tech University Medical Center, Amarillo, TX, USA ; 6 Kiromic, LLC, TX, USA ; 7 Humanitas Clinical and Research Center, Milan, Italy
| | - Leonardo Mirandola
- 1 Department of Surgery, 2 Internal Medicine Department, Salmaniya Medical Complex, Kingdom of Bahrain ; 3 Department of Internal Medicine, Division of Hematology & Oncology, Texas Tech University Health Sciences Center, Lubbock, TX, USA ; 4 Laura W. Bush Institute for Women's Health and Center for Women's Health and Gender-Based Medicine, Amarillo, TX, USA ; 5 Division of Surgical Oncology, Texas Tech University Medical Center, Amarillo, TX, USA ; 6 Kiromic, LLC, TX, USA ; 7 Humanitas Clinical and Research Center, Milan, Italy
| | - Rahman Rakhshanda
- 1 Department of Surgery, 2 Internal Medicine Department, Salmaniya Medical Complex, Kingdom of Bahrain ; 3 Department of Internal Medicine, Division of Hematology & Oncology, Texas Tech University Health Sciences Center, Lubbock, TX, USA ; 4 Laura W. Bush Institute for Women's Health and Center for Women's Health and Gender-Based Medicine, Amarillo, TX, USA ; 5 Division of Surgical Oncology, Texas Tech University Medical Center, Amarillo, TX, USA ; 6 Kiromic, LLC, TX, USA ; 7 Humanitas Clinical and Research Center, Milan, Italy
| | - Scott Dahlbeck
- 1 Department of Surgery, 2 Internal Medicine Department, Salmaniya Medical Complex, Kingdom of Bahrain ; 3 Department of Internal Medicine, Division of Hematology & Oncology, Texas Tech University Health Sciences Center, Lubbock, TX, USA ; 4 Laura W. Bush Institute for Women's Health and Center for Women's Health and Gender-Based Medicine, Amarillo, TX, USA ; 5 Division of Surgical Oncology, Texas Tech University Medical Center, Amarillo, TX, USA ; 6 Kiromic, LLC, TX, USA ; 7 Humanitas Clinical and Research Center, Milan, Italy
| | - Diane Nguyen
- 1 Department of Surgery, 2 Internal Medicine Department, Salmaniya Medical Complex, Kingdom of Bahrain ; 3 Department of Internal Medicine, Division of Hematology & Oncology, Texas Tech University Health Sciences Center, Lubbock, TX, USA ; 4 Laura W. Bush Institute for Women's Health and Center for Women's Health and Gender-Based Medicine, Amarillo, TX, USA ; 5 Division of Surgical Oncology, Texas Tech University Medical Center, Amarillo, TX, USA ; 6 Kiromic, LLC, TX, USA ; 7 Humanitas Clinical and Research Center, Milan, Italy
| | - Marjorie Jenkins
- 1 Department of Surgery, 2 Internal Medicine Department, Salmaniya Medical Complex, Kingdom of Bahrain ; 3 Department of Internal Medicine, Division of Hematology & Oncology, Texas Tech University Health Sciences Center, Lubbock, TX, USA ; 4 Laura W. Bush Institute for Women's Health and Center for Women's Health and Gender-Based Medicine, Amarillo, TX, USA ; 5 Division of Surgical Oncology, Texas Tech University Medical Center, Amarillo, TX, USA ; 6 Kiromic, LLC, TX, USA ; 7 Humanitas Clinical and Research Center, Milan, Italy
| | - Fabio Grizzi
- 1 Department of Surgery, 2 Internal Medicine Department, Salmaniya Medical Complex, Kingdom of Bahrain ; 3 Department of Internal Medicine, Division of Hematology & Oncology, Texas Tech University Health Sciences Center, Lubbock, TX, USA ; 4 Laura W. Bush Institute for Women's Health and Center for Women's Health and Gender-Based Medicine, Amarillo, TX, USA ; 5 Division of Surgical Oncology, Texas Tech University Medical Center, Amarillo, TX, USA ; 6 Kiromic, LLC, TX, USA ; 7 Humanitas Clinical and Research Center, Milan, Italy
| | - Everardo Cobos
- 1 Department of Surgery, 2 Internal Medicine Department, Salmaniya Medical Complex, Kingdom of Bahrain ; 3 Department of Internal Medicine, Division of Hematology & Oncology, Texas Tech University Health Sciences Center, Lubbock, TX, USA ; 4 Laura W. Bush Institute for Women's Health and Center for Women's Health and Gender-Based Medicine, Amarillo, TX, USA ; 5 Division of Surgical Oncology, Texas Tech University Medical Center, Amarillo, TX, USA ; 6 Kiromic, LLC, TX, USA ; 7 Humanitas Clinical and Research Center, Milan, Italy
| | - Jose A Figueroa
- 1 Department of Surgery, 2 Internal Medicine Department, Salmaniya Medical Complex, Kingdom of Bahrain ; 3 Department of Internal Medicine, Division of Hematology & Oncology, Texas Tech University Health Sciences Center, Lubbock, TX, USA ; 4 Laura W. Bush Institute for Women's Health and Center for Women's Health and Gender-Based Medicine, Amarillo, TX, USA ; 5 Division of Surgical Oncology, Texas Tech University Medical Center, Amarillo, TX, USA ; 6 Kiromic, LLC, TX, USA ; 7 Humanitas Clinical and Research Center, Milan, Italy
| | - Maurizio Chiriva-Internati
- 1 Department of Surgery, 2 Internal Medicine Department, Salmaniya Medical Complex, Kingdom of Bahrain ; 3 Department of Internal Medicine, Division of Hematology & Oncology, Texas Tech University Health Sciences Center, Lubbock, TX, USA ; 4 Laura W. Bush Institute for Women's Health and Center for Women's Health and Gender-Based Medicine, Amarillo, TX, USA ; 5 Division of Surgical Oncology, Texas Tech University Medical Center, Amarillo, TX, USA ; 6 Kiromic, LLC, TX, USA ; 7 Humanitas Clinical and Research Center, Milan, Italy
| |
Collapse
|
12
|
Ebrahim AH, Alalawi Z, Mirandola L, Rakhshanda R, Dahlbeck S, Nguyen D, Jenkins M, Grizzi F, Cobos E, Figueroa JA, Chiriva-Internati M. Galectins in cancer: carcinogenesis, diagnosis and therapy. ANNALS OF TRANSLATIONAL MEDICINE 2014; 2:88. [PMID: 25405163 PMCID: PMC4205868 DOI: 10.3978/j.issn.2305-5839.2014.09.12] [Citation(s) in RCA: 53] [Impact Index Per Article: 4.8] [Reference Citation Analysis] [Abstract] [Key Words] [Subscribe] [Scholar Register] [Received: 09/16/2014] [Accepted: 09/16/2014] [Indexed: 12/22/2022]
Abstract
A major breakthrough in the field of medical oncology has been the discovery of galectins and their role in cancer development, progression and metastasis. In this review article we have condensed the results of a number of studies published over the past decade in an effort to shed some light on the unique role played by the galectin family of proteins in neoplasia, and how this knowledge may alter the approach to cancer diagnosis as well as therapy in the future. In this review we have also emphasized the potential use of galectin inhibitors or modulators in the treatment of cancer and how this novel treatment modality may affect patient outcomes in the future. Based on current pre-clinical models we believe the use of galectin inhibitors/modulators will play a significant role in cancer treatment in the future. Early clinical studies are underway to evaluate the utility of these promising agents in cancer patients.
Collapse
|
13
|
Boone BA, Lotze MT. Targeting damage-associated molecular pattern molecules (DAMPs) and DAMP receptors in melanoma. Methods Mol Biol 2014; 1102:537-52. [PMID: 24258998 DOI: 10.1007/978-1-62703-727-3_29] [Citation(s) in RCA: 15] [Impact Index Per Article: 1.4] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/23/2022]
Abstract
Damage-associated molecular pattern molecules (DAMPs) are proteins released from cells under stress due to nutrient deprivation, hypoxia, trauma, or treatment with chemotherapy, among a variety of other causes. When released, DAMPs activate innate immunity, providing a pathway to a systemic inflammatory response in the absence of infection. By regulating inflammation in the tumor microenvironment, promoting angiogenesis, and increasing autophagy with evasion of apoptosis, DAMPs facilitate cancer growth. DAMPs and DAMP receptors have a key role in melanoma pathogenesis. Due to their crucial role in the development of melanoma and chemoresistance, DAMPs represent intriguing targets at a time when novel treatments are desperately needed.
Collapse
Affiliation(s)
- Brian A Boone
- Department of Surgery, Hillman Cancer Center, University of Pittsburgh Cancer Institute, Pittsburgh, PA, USA
| | | |
Collapse
|
14
|
Bacigalupo ML, Manzi M, Rabinovich GA, Troncoso MF. Hierarchical and selective roles of galectins in hepatocarcinogenesis, liver fibrosis and inflammation of hepatocellular carcinoma. World J Gastroenterol 2013; 19:8831-8849. [PMID: 24379606 PMCID: PMC3870534 DOI: 10.3748/wjg.v19.i47.8831] [Citation(s) in RCA: 60] [Impact Index Per Article: 5.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 08/15/2013] [Revised: 11/02/2013] [Accepted: 11/18/2013] [Indexed: 02/06/2023] Open
Abstract
Hepatocellular carcinoma (HCC) represents a global health problem. Infections with hepatitis B or C virus, non-alcoholic steatohepatitis disease, alcohol abuse, or dietary exposure to aflatoxin are the major risk factors to the development of this tumor. Regardless of the carcinogenic insult, HCC usually develops in a context of cirrhosis due to chronic inflammation and advanced fibrosis. Galectins are a family of evolutionarily-conserved proteins defined by at least one carbohydrate recognition domain with affinity for β-galactosides and conserved sequence motifs. Here, we summarize the current literature implicating galectins in the pathogenesis of HCC. Expression of "proto-type" galectin-1, "chimera-type" galectin-3 and "tandem repeat-type" galectin-4 is up-regulated in HCC cells compared to their normal counterparts. On the other hand, the "tandem-repeat-type" lectins galectin-8 and galectin-9 are down-regulated in tumor hepatocytes. The abnormal expression of these galectins correlates with tumor growth, HCC cell migration and invasion, tumor aggressiveness, metastasis, postoperative recurrence and poor prognosis. Moreover, these galectins have important roles in other pathological conditions of the liver, where chronic inflammation and/or fibrosis take place. Galectin-based therapies have been proposed to attenuate liver pathologies. Further functional studies are required to delineate the precise molecular mechanisms through which galectins contribute to HCC.
Collapse
|
15
|
Xu GF, Xie WF. Effect of ERBB2 expression on invasiveness of glioma TJ905 cells. ASIAN PAC J TROP MED 2013; 6:964-7. [DOI: 10.1016/s1995-7645(13)60172-8] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.1] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/10/2013] [Revised: 10/15/2013] [Accepted: 11/15/2013] [Indexed: 11/16/2022] Open
|
16
|
Epple LM, Dodd RD, Merz AL, Dechkovskaia AM, Herring M, Winston BA, Lencioni AM, Russell RL, Madsen H, Nega M, Dusto NL, White J, Bigner DD, Nicchitta CV, Serkova NJ, Graner MW. Induction of the unfolded protein response drives enhanced metabolism and chemoresistance in glioma cells. PLoS One 2013; 8:e73267. [PMID: 24039668 PMCID: PMC3748289 DOI: 10.1371/journal.pone.0073267] [Citation(s) in RCA: 52] [Impact Index Per Article: 4.3] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/26/2012] [Accepted: 07/22/2013] [Indexed: 02/07/2023] Open
Abstract
The unfolded protein response (UPR) is an endoplasmic reticulum (ER)-based cytoprotective mechanism acting to prevent pathologies accompanying protein aggregation. It is frequently active in tumors, but relatively unstudied in gliomas. We hypothesized that UPR stress effects on glioma cells might protect tumors from additional exogenous stress (ie, chemotherapeutics), postulating that protection was concurrent with altered tumor cell metabolism. Using human brain tumor cell lines, xenograft tumors, human samples and gene expression databases, we determined molecular features of glioma cell UPR induction/activation, and here report a detailed analysis of UPR transcriptional/translational/metabolic responses. Immunohistochemistry, Western and Northern blots identified elevated levels of UPR transcription factors and downstream ER chaperone targets in gliomas. Microarray profiling revealed distinct regulation of stress responses between xenograft tumors and parent cell lines, with gene ontology and network analyses linking gene expression to cell survival and metabolic processes. Human glioma samples were examined for levels of the ER chaperone GRP94 by immunohistochemistry and for other UPR components by Western blotting. Gene and protein expression data from patient gliomas correlated poor patient prognoses with increased expression of ER chaperones, UPR target genes, and metabolic enzymes (glycolysis and lipogenesis). NMR-based metabolomic studies revealed increased metabolic outputs in glucose uptake with elevated glycolytic activity as well as increased phospholipid turnover. Elevated levels of amino acids, antioxidants, and cholesterol were also evident upon UPR stress; in particular, recurrent tumors had overall higher lipid outputs and elevated specific UPR arms. Clonogenicity studies following temozolomide treatment of stressed or unstressed cells demonstrated UPR-induced chemoresistance. Our data characterize the UPR in glioma cells and human tumors, and link the UPR to chemoresistance possibly via enhanced metabolism. Given the role of the UPR in the balance between cell survival and apoptosis, targeting the UPR and/or controlling metabolic activity may prove beneficial for malignant glioma therapeutics.
Collapse
Affiliation(s)
- Laura M. Epple
- Department of Neurosurgery, Anschutz Medical Center, University of Colorado Denver, Aurora, Colorado, United States of America
- Cell and Molecular Biology Program, Cancer Biology, College of Veterinary Medicine and Biomedical Sciences, Colorado State University, Fort Collins, Colorado, United States of America
| | - Rebecca D. Dodd
- Department of Radiation Oncology, Duke University Medical Center, Durham, North Carolina, United States of America
| | - Andrea L. Merz
- Cancer Center Metabolomics Core, Anschutz Medical Center, University of Colorado Denver, Aurora, Colorado, United States of America
| | - Anjelika M. Dechkovskaia
- Department of Surgery, Duke University Medical Center, Durham, North Carolina, United States of America
| | - Matthew Herring
- Department of Neurosurgery, Anschutz Medical Center, University of Colorado Denver, Aurora, Colorado, United States of America
| | - Benjamin A. Winston
- Department of Neurosurgery, Anschutz Medical Center, University of Colorado Denver, Aurora, Colorado, United States of America
| | - Alex M. Lencioni
- Department of Neurosurgery, Anschutz Medical Center, University of Colorado Denver, Aurora, Colorado, United States of America
| | - Rae L. Russell
- Department of Neurosurgery, Anschutz Medical Center, University of Colorado Denver, Aurora, Colorado, United States of America
| | - Helen Madsen
- Department of Neurosurgery, Anschutz Medical Center, University of Colorado Denver, Aurora, Colorado, United States of America
| | - Meheret Nega
- Department of Neurosurgery, Anschutz Medical Center, University of Colorado Denver, Aurora, Colorado, United States of America
| | - Nathaniel L. Dusto
- Department of Neurosurgery, Anschutz Medical Center, University of Colorado Denver, Aurora, Colorado, United States of America
| | - Jason White
- Department of Neurosurgery, Anschutz Medical Center, University of Colorado Denver, Aurora, Colorado, United States of America
| | - Darell D. Bigner
- Department of Pathology, Duke University Medical Center, Durham, North Carolina, United States of America
- The Preston Robert Tisch Brain Tumor Center, Duke University Medical Center, Durham, North Carolina, United States of America
| | - Christopher V. Nicchitta
- Department of Cell Biology, Duke University Medical Center, Durham, North Carolina, United States of America
| | - Natalie J. Serkova
- Cancer Center Metabolomics Core, Anschutz Medical Center, University of Colorado Denver, Aurora, Colorado, United States of America
- Department of Anesthesiology, Anschutz Medical Center, University of Colorado Denver, Aurora, Colorado, United States of America
| | - Michael W. Graner
- Cell and Molecular Biology Program, Cancer Biology, College of Veterinary Medicine and Biomedical Sciences, Colorado State University, Fort Collins, Colorado, United States of America
- * E-mail:
| |
Collapse
|
17
|
Regulation of NKG2D-ligand cell surface expression by intracellular calcium after HDAC-inhibitor treatment. Mol Immunol 2013; 53:255-64. [DOI: 10.1016/j.molimm.2012.08.011] [Citation(s) in RCA: 8] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/01/2012] [Revised: 08/07/2012] [Accepted: 08/13/2012] [Indexed: 01/05/2023]
|
18
|
Dings RPM, Kumar N, Miller MC, Loren M, Rangwala H, Hoye TR, Mayo KH. Structure-based optimization of angiostatic agent 6DBF7, an allosteric antagonist of galectin-1. J Pharmacol Exp Ther 2013; 344:589-99. [PMID: 23232447 PMCID: PMC3583509 DOI: 10.1124/jpet.112.199646] [Citation(s) in RCA: 36] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/27/2012] [Accepted: 12/10/2012] [Indexed: 11/22/2022] Open
Abstract
Galectin-1 (gal-1), which binds β-galactoside groups on various cell surface receptors, is crucial to cell adhesion and migration, and is found to be elevated in several cancers. Previously, we reported on 6DBF7, a dibenzofuran (DBF)-based peptidomimetic of the gal-1 antagonist anginex. In the present study, we used a structure-based approach to optimize 6DBF7. Initial NMR studies showed that 6DBF7 binds to gal-1 on one side of the β-sandwich away from the lectin's carbohydrate binding site. Although an alanine scan of 6DBF7 showed that the two cationic groups (lysines) in the partial peptide are crucial to its angiostatic activity, it is the hydrophobic face of the amphipath that appears to interact directly with the surface of gal-1. Based on this structural information, we designed and tested additional DBF analogs. In particular, substitution of the C-terminal Asp for alanine and branched alkyl side chains (Val, Leu, Ile) for linear ones (Nle, Nva) rendered the greatest improvements in activity. Flow cytometry with gal-1(-/-) splenocytes showed that 6DBF7 and two of its more potent analogs (DB16 and DB21) can fully inhibit fluorescein isothiocyanate-gal-1 binding. Moreover, heteronuclear single-quantum coherence NMR titrations showed that the presence of DB16 decreases gal-1 affinity for lactose, indicating that the peptidomimetic targets gal-1 as a noncompetitive, allosteric inhibitor of glycan binding. Using tumor mouse models (B16F10 melanoma, LS174 lung, and MA148 ovarian), we found that DB21 inhibits tumor angiogenesis and tumor growth significantly better than 6DBF7, DB16, or anginex. DB21 is currently being developed further and holds promise for the management of human cancer in the clinic.
Collapse
Affiliation(s)
- Ruud P M Dings
- Department of Biochemistry, University of Minnesota, 321 Church Street, Minneapolis, MN 55455, USA
| | | | | | | | | | | | | |
Collapse
|
19
|
Ye J, Liu H, Hu Y, Wan G, Li J, Wang Z, Li P, Zhang G, Li Y. The clinical implication of tumoral Gal-1 expression in laryngeal squamous cell carcinomas. Clin Transl Oncol 2013; 15:608-18. [PMID: 23359172 DOI: 10.1007/s12094-012-0975-z] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.1] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/27/2012] [Accepted: 11/18/2012] [Indexed: 12/25/2022]
Abstract
PURPOSE To explore the expression of tumoral Gal-1 in association with clinical parameters and outcome in a large population with laryngeal squamous cell carcinomas (LSCCs). METHODS A total of 187 patients with LSCC were retrospectively enrolled. Immunohistochemistry was performed to evaluate the tumoral expression of Gal-1, apoptosis-related proteins and the density of tumor infiltrating lymphocytes (TILs) in tumor tissues before any intervene. Survival curves were estimated by the Kaplan-Meier method, and differences in survival between groups were determined using the log-rank test. Prognostic effects were evaluated by Cox regression analysis. RESULTS A total of 102 carcinomas (54.5 %) were identified as high Gal-1 expression, and 85 carcinomas (45.5 %) as low expression. Tumoral Gal-1 expression was not significantly related with clinical stage and histology differentiation. No correlation of Gal-1 expression with apoptosis-related protein was identified. Instead, Gal-1 status was correlated positively with the ratio of FOXP3(+)/CD8(+) TILs (P = 0.024). In multivariate regression analysis, advanced clinical stage and the presence of metastases were identified as the independent predictors for poor survival in entire cohort. Especially, the statistical correlation between the Gal-1 expression and prognosis was particularly due to the late-stage tumors (P < 0.05). CONCLUSION Current results represent valuable advancements in Gal-1 research and provided further support for using Gal-1 as a diagnostic biomarker and immunotherapeutic target for LSCC.
Collapse
Affiliation(s)
- J Ye
- Department of Otolaryngology, Head and Neck Surgery, The Third Affiliated Hospital of Sun Yat-sen University, No. 600 Tianhe Street, Guangzhou, 510630, Guangdong, China.
| | | | | | | | | | | | | | | | | |
Collapse
|
20
|
|
21
|
Braeuer RR, Shoshan E, Kamiya T, Bar-Eli M. The sweet and bitter sides of galectins in melanoma progression. Pigment Cell Melanoma Res 2012; 25:592-601. [DOI: 10.1111/j.1755-148x.2012.01026.x] [Citation(s) in RCA: 32] [Impact Index Per Article: 2.5] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/28/2022]
|
22
|
|
23
|
Klyosov AA, Traber PG. Galectins in Disease and Potential Therapeutic Approaches. ACS SYMPOSIUM SERIES 2012. [DOI: 10.1021/bk-2012-1115.ch001] [Citation(s) in RCA: 16] [Impact Index Per Article: 1.2] [Reference Citation Analysis] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 02/11/2023]
Affiliation(s)
- Anatole A. Klyosov
- Galectin Therapeutics, Inc., 4960 Peachtree Industrial Blvd., Suite 240, Norcross, Georgia 30071
| | - Peter G. Traber
- Galectin Therapeutics, Inc., 4960 Peachtree Industrial Blvd., Suite 240, Norcross, Georgia 30071
| |
Collapse
|