1
|
Fowler JF, Eubank TA, Garey KW. Proton pump inhibitor effect on macrophage and neutrophil function: a systematic review. Front Immunol 2024; 15:1477993. [PMID: 39776898 PMCID: PMC11703997 DOI: 10.3389/fimmu.2024.1477993] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/08/2024] [Accepted: 12/03/2024] [Indexed: 01/11/2025] Open
Abstract
Background Proton pump inhibitors (PPIs) are one of the most used drugs worldwide. While generally considered safe, the usage of PPIs is associated with several adverse outcomes including acute infectious diseases. PPIs influence macrophage and neutrophil function although a systematic review has never been undertaken. The purpose of this systematic review was to determine the potential mechanisms of how PPI-induced inhibition of macrophage and neutrophil function may increase infection risk in susceptible hosts. Methods A database search using Scopus and PubMed was performed to identify studies that investigated the effects of PPIs on neutrophils or macrophage function. Results The final screening yielded 21 English-language research articles that focused on the impacts of PPIs on the function of macrophages and neutrophils. PPI mechanistic effects included cytotoxic effects on polymorphonuclear neutrophils, inhibition of reactive oxygen species (ROS) and reactive nitrogen species, phagocytosis and phagosomal degradation, inhibition of chemotaxis and migration, altering Toll-like receptor signaling and p38 protein phosphorylation in immune cells, and altering neutrophil and macrophage gene expression. Discussion The impact of PPIs on MΦs and neutrophils regarding their role in the immune response to bacterial pathogens was summarized. PPI effects on macrophages and neutrophils occurred due to the therapeutic mechanism of PPIs, the protonation of sulfhydryl groups and the subsequent formation of a disulfide bond, and other pleiotropic manners. Given the common use of PPIs, these results highlight the necessity to optimize PPI use and stewardship to curtail unnecessary drug use.
Collapse
Affiliation(s)
| | | | - Kevin W. Garey
- College of Pharmacy, University of Houston, Houston,
TX, United States
| |
Collapse
|
2
|
Amin N, Abbasi IN, Wu F, Shi Z, Sundus J, Badry A, Yuan X, Zhao BX, Pan J, Mi XD, Luo Y, Geng Y, Fang M. The Janus face of HIF-1α in ischemic stroke and the possible associated pathways. Neurochem Int 2024; 177:105747. [PMID: 38657682 DOI: 10.1016/j.neuint.2024.105747] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/30/2023] [Revised: 03/01/2024] [Accepted: 04/19/2024] [Indexed: 04/26/2024]
Abstract
Stroke is the most devastating disease, causing paralysis and eventually death. Many clinical and experimental trials have been done in search of a new safe and efficient medicine; nevertheless, scientists have yet to discover successful remedies that are also free of adverse effects. This is owing to the variability in intensity, localization, medication routes, and each patient's immune system reaction. HIF-1α represents the modern tool employed to treat stroke diseases due to its functions: downstream genes such as glucose metabolism, angiogenesis, erythropoiesis, and cell survival. Its role can be achieved via two downstream EPO and VEGF strongly related to apoptosis and antioxidant processes. Recently, scientists paid more attention to drugs dealing with the HIF-1 pathway. This review focuses on medicines used for ischemia treatment and their potential HIF-1α pathways. Furthermore, we discussed the interaction between HIF-1α and other biological pathways such as oxidative stress; however, a spotlight has been focused on certain potential signalling contributed to the HIF-1α pathway. HIF-1α is an essential regulator of oxygen balance within cells which affects and controls the expression of thousands of genes related to sustaining homeostasis as oxygen levels fluctuate. HIF-1α's role in ischemic stroke strongly depends on the duration and severity of brain damage after onset. HIF-1α remains difficult to investigate, particularly in ischemic stroke, due to alterations in the acute and chronic phases of the disease, as well as discrepancies between the penumbra and ischemic core. This review emphasizes these contrasts and analyzes the future of this intriguing and demanding field.
Collapse
Affiliation(s)
- Nashwa Amin
- Center for Rehabilitation Medicine, Department of Neurology, Zhejiang Provincial People's Hospital, Affiliated People's Hospital, Hangzhou Medical College, Hangzhou, Zhejiang, 310014, China; Department of Zoology, Faculty of Science, Aswan University, Egypt; Children's Hospital of Zhejiang University School of Medicine, National Clinical Research Center for Child Health, Hangzhou, China
| | - Irum Naz Abbasi
- Institute of Systemic Medicine, Zhejiang University School of Medicine, Hangzhou, China
| | - Fei Wu
- Institute of Systemic Medicine, Zhejiang University School of Medicine, Hangzhou, China
| | - Zongjie Shi
- Center for Rehabilitation Medicine, Department of Neurology, Zhejiang Provincial People's Hospital, Affiliated People's Hospital, Hangzhou Medical College, Hangzhou, Zhejiang, 310014, China
| | - Javaria Sundus
- Institute of Systemic Medicine, Zhejiang University School of Medicine, Hangzhou, China
| | - Azhar Badry
- Institute of Systemic Medicine, Zhejiang University School of Medicine, Hangzhou, China
| | - Xia Yuan
- Institute of Systemic Medicine, Zhejiang University School of Medicine, Hangzhou, China
| | - Bing-Xin Zhao
- Center for Rehabilitation Medicine, Department of Neurology, Zhejiang Provincial People's Hospital, Affiliated People's Hospital, Hangzhou Medical College, Hangzhou, Zhejiang, 310014, China
| | - Jie Pan
- Center for Rehabilitation Medicine, Department of Neurology, Zhejiang Provincial People's Hospital, Affiliated People's Hospital, Hangzhou Medical College, Hangzhou, Zhejiang, 310014, China
| | - Xiao-Dan Mi
- Center for Rehabilitation Medicine, Rehabilitation & Sports Medicine Research Institute of Zhejiang Province, Department of Rehabilitation Medicine, Zhejiang Provincial People's Hospital, Affiliated People's Hospital, Hangzhou Medical College, Hangzhou, Zhejiang, China
| | - Yuhuan Luo
- Department of Pediatrics, Affiliated Hangzhou First People's Hospital, Zhejiang University School of Medicine, Hangzhou, China
| | - Yu Geng
- Center for Rehabilitation Medicine, Department of Neurology, Zhejiang Provincial People's Hospital, Affiliated People's Hospital, Hangzhou Medical College, Hangzhou, Zhejiang, 310014, China
| | - Marong Fang
- Institute of Systemic Medicine, Zhejiang University School of Medicine, Hangzhou, China; Children's Hospital of Zhejiang University School of Medicine, National Clinical Research Center for Child Health, Hangzhou, China.
| |
Collapse
|
3
|
Kwon EB, Kim B, Kim YS, Choi JG. Anastrozole Protects against Human Coronavirus Infection by Ameliorating the Reactive Oxygen Species-Mediated Inflammatory Response. Antioxidants (Basel) 2024; 13:116. [PMID: 38247540 PMCID: PMC10813058 DOI: 10.3390/antiox13010116] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/24/2023] [Revised: 12/29/2023] [Accepted: 01/10/2024] [Indexed: 01/23/2024] Open
Abstract
The common human coronavirus (HCoV) exhibits mild disease with upper respiratory infection and common cold symptoms. HCoV-OC43, one of the HCoVs, can be used to screen drug candidates against SARS-CoV-2. We determined the antiviral effects of FDA/EMA-approved drug anastrozole (AZ) on two human coronaviruses, HCoV-OC43 and HCoV-229E, using MRC-5 cells in vitro. The AZ exhibited antiviral effects against HCoV-OC43 and HCoV-229E infection. Subsequent studies focused on HCoV-OC43, which is related to the SARS-CoV-2 family. AZ exhibited anti-viral effects and reduced the secretion of inflammatory cytokines, TNF-α, IL-6, and IL-1β. It also inhibited NF-κB translocation to effectively suppress the inflammatory response. AZ reduced intracellular calcium and reactive oxygen species (ROS) levels, including mitochondrial ROS and Ca2+, induced by the virus. AZ inhibited the expression of NLRP3 inflammasome components and cleaved IL-1β, suggesting that it blocks NLRP3 inflammasome activation in HCoV-OC43-infected cells. Moreover, AZ enhanced cell viability and reduced the expression of cleaved gasdermin D (GSDMD), a marker of pyroptosis. Overall, we demonstrated that AZ exhibits antiviral activity against HCoV-OC43 and HCoV-229E. We specifically focused on its efficacy against HCoV-OC43 and showed its potential to reduce inflammation, inhibit NLRP3 inflammasome activation, mitigate mitochondrial dysfunction, and suppress pyroptosis in infected cells.
Collapse
Affiliation(s)
| | | | - Young Soo Kim
- Korean Medicine (KM) Application Center, Korea Institute of Oriental Medicine (KIOM), Dong-gu, Daegu 41062, Republic of Korea; (E.-B.K.); (B.K.)
| | - Jang-Gi Choi
- Korean Medicine (KM) Application Center, Korea Institute of Oriental Medicine (KIOM), Dong-gu, Daegu 41062, Republic of Korea; (E.-B.K.); (B.K.)
| |
Collapse
|
4
|
Yao J, Sterling K, Wang Z, Zhang Y, Song W. The role of inflammasomes in human diseases and their potential as therapeutic targets. Signal Transduct Target Ther 2024; 9:10. [PMID: 38177104 PMCID: PMC10766654 DOI: 10.1038/s41392-023-01687-y] [Citation(s) in RCA: 67] [Impact Index Per Article: 67.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/28/2022] [Revised: 09/18/2023] [Accepted: 10/13/2023] [Indexed: 01/06/2024] Open
Abstract
Inflammasomes are large protein complexes that play a major role in sensing inflammatory signals and triggering the innate immune response. Each inflammasome complex has three major components: an upstream sensor molecule that is connected to a downstream effector protein such as caspase-1 through the adapter protein ASC. Inflammasome formation typically occurs in response to infectious agents or cellular damage. The active inflammasome then triggers caspase-1 activation, followed by the secretion of pro-inflammatory cytokines and pyroptotic cell death. Aberrant inflammasome activation and activity contribute to the development of diabetes, cancer, and several cardiovascular and neurodegenerative disorders. As a result, recent research has increasingly focused on investigating the mechanisms that regulate inflammasome assembly and activation, as well as the potential of targeting inflammasomes to treat various diseases. Multiple clinical trials are currently underway to evaluate the therapeutic potential of several distinct inflammasome-targeting therapies. Therefore, understanding how different inflammasomes contribute to disease pathology may have significant implications for developing novel therapeutic strategies. In this article, we provide a summary of the biological and pathological roles of inflammasomes in health and disease. We also highlight key evidence that suggests targeting inflammasomes could be a novel strategy for developing new disease-modifying therapies that may be effective in several conditions.
Collapse
Affiliation(s)
- Jing Yao
- The National Clinical Research Center for Geriatric Disease, Xuanwu Hospital, Capital Medical University, Beijing, 100053, China
| | - Keenan Sterling
- Townsend Family Laboratories, Department of Psychiatry, Brain Research Center, The University of British Columbia, 2255 Wesbrook Mall, Vancouver, BC, V6T 1Z3, Canada
| | - Zhe Wang
- The National Clinical Research Center for Geriatric Disease, Xuanwu Hospital, Capital Medical University, Beijing, 100053, China
| | - Yun Zhang
- The National Clinical Research Center for Geriatric Disease, Xuanwu Hospital, Capital Medical University, Beijing, 100053, China.
- Key Laboratory of Neurodegenerative Diseases, Ministry of Education, Beijing, P.R. China.
| | - Weihong Song
- The National Clinical Research Center for Geriatric Disease, Xuanwu Hospital, Capital Medical University, Beijing, 100053, China.
- Townsend Family Laboratories, Department of Psychiatry, Brain Research Center, The University of British Columbia, 2255 Wesbrook Mall, Vancouver, BC, V6T 1Z3, Canada.
- Zhejiang Clinical Research Center for Mental Disorders, Key Laboratory of Alzheimer's Disease of Zhejiang Province, School of Mental Health and The Affiliated Kangning Hospital, Institute of Aging, Wenzhou Medical University, Wenzhou, Zhejiang, 325000, China.
- Oujiang Laboratory (Zhejiang Lab for Regenerative Medicine, Vision and Brain Health), Wenzhou, Zhejiang, 325000, China.
| |
Collapse
|
5
|
Khanna K, Yan H, Mehra M, Rohatgi N, Mbalaviele G, Mellins ED, Faccio R. Tmem178 Negatively Regulates IL-1β Production Through Inhibition of the NLRP3 Inflammasome. Arthritis Rheumatol 2024; 76:107-118. [PMID: 37534578 PMCID: PMC11421209 DOI: 10.1002/art.42666] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/05/2022] [Revised: 06/30/2023] [Accepted: 07/13/2023] [Indexed: 08/04/2023]
Abstract
OBJECTIVE Inflammasomes modulate the release of bioactive interleukin (IL)-1β. Excessive IL-1β levels are detected in patients with systemic juvenile idiopathic arthritis (sJIA) and cytokine storm syndrome (CSS) with mutated and unmutated inflammasome components, raising questions on the mechanisms of IL-1β regulation in these disorders. METHODS To investigate how the NLRP3 inflammasome is modulated in sJIA, we focused on Transmembrane protein 178 (Tmem178), a negative regulator of calcium levels in macrophages, and measured IL-1β and caspase-1 activation in wild-type (WT) and Tmem178-/- macrophages after calcium chelators, silencing of Stim1, a component of store-operated calcium entry (SOCE), or by expressing a Tmem178 mutant lacking the Stromal Interaction Molecule 1 (Stim1) binding site. Mitochondrial function in both genotypes was assessed by measuring oxidative respiration, mitochondrial reactive oxygen species (mtROS), and mitochondrial damage. CSS development was analyzed in Perforin-/- /Tmem178-/- mice infected with lymphocytic choriomeningitis virus (LCMV) in which inflammasome or IL-1β signaling was pharmacologically inhibited. Human TMEM178 and IL1B transcripts were analyzed in data sets of whole blood and peripheral blood monocytes from healthy controls and patients with active sJIA. RESULTS TMEM178 levels are reduced in whole blood and monocytes from patients with sJIA while IL1B levels are increased. Accordingly, Tmem178-/- macrophages produce elevated IL-1β compared with WT cells. The elevated intracellular calcium levels after SOCE activation in Tmem178-/- macrophages induce mitochondrial damage, release mtROS, and ultimately promote NLRP3 inflammasome activation. In vivo, inhibition of inflammasome or IL-1β neutralization prolongs Tmem178-/- mouse survival in LCMV-induced CSS. CONCLUSION Down-regulation of TMEM178 levels may represent a marker of disease activity and help identify patients who could benefit from inflammasome targeting.
Collapse
Affiliation(s)
- Kunjan Khanna
- Department of Orthopedics, Washington University in St Louis, MO, USA
- These authors contributed equally
| | - Hui Yan
- Department of Orthopedics, Washington University in St Louis, MO, USA
- Current address: Key Laboratory for Animal Disease-Resistance Nutrition of China Ministry of Education, Ministry of Agriculture and Rural Affairs and Sichuan Province, Animal Nutrition Institute, Sichuan Agricultural University, Chengdu 611130, China
- These authors contributed equally
| | - Muneshwar Mehra
- Department of Neuroscience, Washington University in St Louis, MO, USA
| | - Nidhi Rohatgi
- Department of Pathology and Immunology, Washington University in St Louis, MO, USA
| | | | | | - Roberta Faccio
- Department of Orthopedics, Washington University in St Louis, MO, USA
- Shriners Hospital for Children, St Louis, MO, USA
| |
Collapse
|
6
|
Uemura M, Maeshige N, Yamaguchi A, Ma X, Matsuda M, Nishimura Y, Hasunuma T, Inoue T, Yan J, Wang J, Kondo H, Fujino H. Electrical stimulation facilitates NADPH production in pentose phosphate pathway and exerts an anti-inflammatory effect in macrophages. Sci Rep 2023; 13:17819. [PMID: 37857669 PMCID: PMC10587116 DOI: 10.1038/s41598-023-44886-x] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/30/2023] [Accepted: 10/13/2023] [Indexed: 10/21/2023] Open
Abstract
Macrophages play an important role as effector cells in innate immune system. Meanwhile, macrophages activated in a pro-inflammatory direction alter intracellular metabolism and damage intact tissues by increasing reactive oxygen species (ROS). Electrical stimulation (ES), a predominant physical agent to control metabolism in cells and tissues, has been reported to exert anti-inflammatory effect on immune cells. However, the mechanism underlying the anti-inflammatory effects by ES is unknown. This study aimed to investigate the effect of ES on metabolism in glycolytic-tricarboxylic acid cycle (TCA) cycle and inflammatory responses in macrophages. ES was performed on bone marrow-derived macrophages and followed by a stimulation with LPS. The inflammatory cytokine expression levels were analyzed by real-time polymerase chain reaction and ELISA. ROS production was analyzed by CellRox Green Reagent and metabolites by capillary electrophoresis-mass spectrometry. As a result, ES significantly reduced proinflammatory cytokine expression levels and ROS generation compared to the LPS group and increased glucose-1-phosphate, a metabolite of glycogen. ES also increased intermediate metabolites of the pentose phosphate pathway (PPP); ribulose-5-phosphate, rebose-5 phosphate, and nicotinamide adenine dinucleotide phosphate, a key factor of cellular antioxidation systems, as well as α-Ketoglutarate, an anti-oxidative metabolite in the TCA cycle. Our findings imply that ES enhanced NADPH production with enhancement of PPP, and also decreased oxidative stress and inflammatory responses in macrophages.
Collapse
Affiliation(s)
- Mikiko Uemura
- Department of Rehabilitation Science, Kobe University Graduate School of Health Sciences, 7-10-2 Tomogaoka, Kobe, Hyogo, 654-0142, Japan
- Department of Rehabilitation, Faculty of Health Sciences, Kansai University of Welfare Sciences, Kashiwara, Japan
| | - Noriaki Maeshige
- Department of Rehabilitation Science, Kobe University Graduate School of Health Sciences, 7-10-2 Tomogaoka, Kobe, Hyogo, 654-0142, Japan.
| | - Atomu Yamaguchi
- Department of Rehabilitation Science, Kobe University Graduate School of Health Sciences, 7-10-2 Tomogaoka, Kobe, Hyogo, 654-0142, Japan
| | - Xiaoqi Ma
- Department of Rehabilitation Science, Kobe University Graduate School of Health Sciences, 7-10-2 Tomogaoka, Kobe, Hyogo, 654-0142, Japan
| | - Mami Matsuda
- Graduate School of Science, Technology and Innovation, Kobe University, Kobe, Japan
| | - Yuya Nishimura
- Graduate School of Science, Technology and Innovation, Kobe University, Kobe, Japan
| | - Tomohisa Hasunuma
- Graduate School of Science, Technology and Innovation, Kobe University, Kobe, Japan
- Engineering Biology Research Center, Kobe University, Kobe, Japan
| | - Taketo Inoue
- Department of Emergency, Disaster and Critical Care Medicine, Hyogo Medical University, Nishinomiya, Japan
| | - Jiawei Yan
- School of Life Sciences and Technology, ShanghaiTech University, Shanghai, China
| | - Ji Wang
- Department of Toxicology and Sanitary Chemistry, School of Public Health, Capital Medical University, Beijing, China
| | - Hiroyo Kondo
- Department of Food Science and Nutrition, Nagoya Women's University, Nagoya, Japan
| | - Hidemi Fujino
- Department of Rehabilitation Science, Kobe University Graduate School of Health Sciences, 7-10-2 Tomogaoka, Kobe, Hyogo, 654-0142, Japan
| |
Collapse
|
7
|
Nopparat C, Boontor A, Kutpruek S, Govitrapong P. The role of melatonin in amyloid beta-induced inflammation mediated by inflammasome signaling in neuronal cell lines. Sci Rep 2023; 13:17841. [PMID: 37857668 PMCID: PMC10587142 DOI: 10.1038/s41598-023-45220-1] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/26/2023] [Accepted: 10/17/2023] [Indexed: 10/21/2023] Open
Abstract
Alzheimer's disease (AD) is the most prevalent neurodegenerative disorder. In addition to amyloid beta (Aβ) and tau, neuroinflammation is a crucial element in the etiology of this disease. However, the relevance of inflammasome-induced pyroptosis to AD is unknown. We aimed to clarify whether the anti-inflammatory effects of melatonin could prevent Aβ-mediated activation of the inflammasome. We demonstrated that Aβ upregulated NOD-like receptor family pyrin domain-containing 3 (NLRP3), apoptosis-associated speck-like protein containing a CARD, and cysteinyl aspartate-specific proteinase caspase (caspase 1) expression in SH-SY5Y neuroblastoma cells, resulting in the release of proinflammatory cytokines, including interleukin-1β (IL-1β), interleukin-18 (IL-18) and tumor necrosis factor (TNF-α). Melatonin prevented inflammasome signaling and excessive cytokine release caused by Aβ. We found that ethyl 2[(2-chlorophenyl)(hydroxy) methyl]acrylate (INF-4E, NLRP3 and caspase 1 inhibitor) significantly abolished Aβ-induced proinflammatory cytokine expression. The increase in cleaved-caspase 1, pro-IL18, and cleaved-IL18 caused by Aβ suggested the occurrence of pyroptosis, which was further confirmed by the increased expression of N-terminal gasdermin D (N-GSDMD). Melatonin plays a protective role against Aβ-induced inflammation via an inflammasome-associated mechanism that is essential in inducing the active forms of cytokines and pyroptosis. The ability of melatonin to inhibit inflammasome may represent a turning point in the treatment of AD progression.
Collapse
Affiliation(s)
- Chutikorn Nopparat
- Innovative Learning Center, Srinakharinwirot University, Sukhumvit 23, Bangkok, 10110, Thailand
| | - Anuttree Boontor
- Chulabhorn Graduate Institute, Chulabhorn Royal Academy, Laksi, Bangkok, Thailand
| | - Suchanoot Kutpruek
- Chulabhorn Graduate Institute, Chulabhorn Royal Academy, Laksi, Bangkok, Thailand
| | - Piyarat Govitrapong
- Chulabhorn Graduate Institute, Chulabhorn Royal Academy, Laksi, Bangkok, Thailand.
| |
Collapse
|
8
|
Fu J, Zong X, Jin M, Min J, Wang F, Wang Y. Mechanisms and regulation of defensins in host defense. Signal Transduct Target Ther 2023; 8:300. [PMID: 37574471 PMCID: PMC10423725 DOI: 10.1038/s41392-023-01553-x] [Citation(s) in RCA: 55] [Impact Index Per Article: 27.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/29/2022] [Revised: 04/11/2023] [Accepted: 06/26/2023] [Indexed: 08/15/2023] Open
Abstract
As a family of cationic host defense peptides, defensins are mainly synthesized by Paneth cells, neutrophils, and epithelial cells, contributing to host defense. Their biological functions in innate immunity, as well as their structure and activity relationships, along with their mechanisms of action and therapeutic potential, have been of great interest in recent years. To highlight the key research into the role of defensins in human and animal health, we first describe their research history, structural features, evolution, and antimicrobial mechanisms. Next, we cover the role of defensins in immune homeostasis, chemotaxis, mucosal barrier function, gut microbiota regulation, intestinal development and regulation of cell death. Further, we discuss their clinical relevance and therapeutic potential in various diseases, including infectious disease, inflammatory bowel disease, diabetes and obesity, chronic inflammatory lung disease, periodontitis and cancer. Finally, we summarize the current knowledge regarding the nutrient-dependent regulation of defensins, including fatty acids, amino acids, microelements, plant extracts, and probiotics, while considering the clinical application of such regulation. Together, the review summarizes the various biological functions, mechanism of actions and potential clinical significance of defensins, along with the challenges in developing defensins-based therapy, thus providing crucial insights into their biology and potential clinical utility.
Collapse
Affiliation(s)
- Jie Fu
- Key Laboratory of Molecular Animal Nutrition, Ministry of Education, College of Animal Sciences, Zhejiang University, Hangzhou, China
- Key Laboratory of Animal Nutrition and Feed Science in Eastern China, Ministry of Agriculture, Hangzhou, Zhejiang Province, China
| | - Xin Zong
- Key Laboratory of Molecular Animal Nutrition, Ministry of Education, College of Animal Sciences, Zhejiang University, Hangzhou, China
- Key Laboratory of Animal Nutrition and Feed Science in Eastern China, Ministry of Agriculture, Hangzhou, Zhejiang Province, China
| | - Mingliang Jin
- Key Laboratory of Molecular Animal Nutrition, Ministry of Education, College of Animal Sciences, Zhejiang University, Hangzhou, China
- Key Laboratory of Animal Nutrition and Feed Science in Eastern China, Ministry of Agriculture, Hangzhou, Zhejiang Province, China
| | - Junxia Min
- The First Affiliated Hospital, Institute of Translational Medicine, Zhejiang University School of Medicine, Hangzhou, 310058, China
| | - Fudi Wang
- The Second Affiliated Hospital, School of Public Health, State Key Laboratory of Experimental Hematology, Zhejiang University School of Medicine, Hangzhou, China.
- The First Affiliated Hospital, Basic Medical Sciences, School of Public Health, Hengyang Medical School, University of South China, Hengyang, China.
| | - Yizhen Wang
- Key Laboratory of Molecular Animal Nutrition, Ministry of Education, College of Animal Sciences, Zhejiang University, Hangzhou, China.
- Key Laboratory of Animal Nutrition and Feed Science in Eastern China, Ministry of Agriculture, Hangzhou, Zhejiang Province, China.
| |
Collapse
|
9
|
Pampuscenko K, Morkuniene R, Krasauskas L, Smirnovas V, Brown GC, Borutaite V. Extracellular tau stimulates phagocytosis of living neurons by activated microglia via Toll-like 4 receptor-NLRP3 inflammasome-caspase-1 signalling axis. Sci Rep 2023; 13:10813. [PMID: 37402829 DOI: 10.1038/s41598-023-37887-3] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/28/2022] [Accepted: 06/29/2023] [Indexed: 07/06/2023] Open
Abstract
In tauopathies, abnormal deposition of intracellular tau protein followed by gradual elevation of tau in cerebrospinal fluids and neuronal loss has been documented, however, the mechanism how actually neurons die under tau pathology is largely unknown. We have previously shown that extracellular tau protein (2N4R isoform) can stimulate microglia to phagocytose live neurons, i.e. cause neuronal death by primary phagocytosis, also known as phagoptosis. Here we show that tau protein induced caspase-1 activation in microglial cells via 'Toll-like' 4 (TLR4) receptors and neutral sphingomyelinase. Tau-induced neuronal loss was blocked by caspase-1 inhibitors (Ac-YVAD-CHO and VX-765) as well as by TLR4 antibodies. Inhibition of caspase-1 by Ac-YVAD-CHO prevented tau-induced exposure of phosphatidylserine on the outer leaflet of neuronal membranes and reduced microglial phagocytic activity. We also show that suppression of NLRP3 inflammasome, which is down-stream of TLR4 receptors and mediates caspase-1 activation, by a specific inhibitor (MCC550) also prevented tau-induced neuronal loss. Moreover, NADPH oxidase is also involved in tau-induced neurotoxicity since neuronal loss was abolished by its pharmacological inhibitor. Overall, our data indicate that extracellular tau protein stimulates microglia to phagocytose live neurons via Toll-like 4 receptor-NLRP3 inflammasome-caspase-1 axis and NADPH oxidase, each of which may serve as a potential molecular target for pharmacological treatment of tauopathies.
Collapse
Affiliation(s)
- Katryna Pampuscenko
- Neuroscience Institute, Lithuanian University of Health Sciences, 50161, Kaunas, Lithuania.
| | - Ramune Morkuniene
- Neuroscience Institute, Lithuanian University of Health Sciences, 50161, Kaunas, Lithuania
| | - Lukas Krasauskas
- Life Sciences Center, Institute of Biotechnology, Vilnius University, 10257, Vilnius, Lithuania
| | - Vytautas Smirnovas
- Life Sciences Center, Institute of Biotechnology, Vilnius University, 10257, Vilnius, Lithuania
| | - Guy C Brown
- Department of Biochemistry, University of Cambridge, Cambridge, CB2 1QW, UK
| | - Vilmante Borutaite
- Neuroscience Institute, Lithuanian University of Health Sciences, 50161, Kaunas, Lithuania
| |
Collapse
|
10
|
Khanna K, Yan H, Mehra M, Rohatgi N, Mbalaviele G, Faccio R. Tmem178 negatively regulates IL-1β production through inhibition of the NLRP3 inflammasome. BIORXIV : THE PREPRINT SERVER FOR BIOLOGY 2023:2023.03.07.531385. [PMID: 36945522 PMCID: PMC10028891 DOI: 10.1101/2023.03.07.531385] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 03/09/2023]
Abstract
Objective Inflammasomes modulate the release of bioactive IL-1β. Excessive IL-1β levels are detected in patients with systemic juvenile idiopathic arthritis (sJIA) and cytokine storm syndrome (CSS) with mutated and unmutated inflammasome components, raising questions on the mechanisms of IL-1β regulation in these disorders. Methods To investigate how the NLRP3 inflammasome is modulated in sJIA, we focused on Tmem178, a negative regulator of calcium levels in macrophages, and measured IL-1β and caspase-1 activation in wild-type (WT) and Tmem178 -/- macrophages following calcium chelators, silencing of Stim1, a component of store-operated calcium entry (SOCE), or by expressing a Tmem178 mutant lacking Stim1 binding site. Mitochondrial function in both genotypes was assessed by measuring oxidative respiration, mitochondrial reactive oxygen species (mtROS), and mitochondrial damage. CSS development was analyzed in Perforin -/- /Tmem178 -/- mice infected with LCMV in which inflammasome or IL-1 signaling was pharmacologically inhibited. Human TMEM178 and IL-1B transcripts were analyzed in a dataset of peripheral blood monocytes from healthy controls and active sJIA patients. Results TMEM178 levels are reduced in monocytes from sJIA patients while IL-1B show increased levels. Accordingly, Tmem178 -/- macrophages produce elevated IL-1β compared to WT cells. The elevated intracellular calcium levels following SOCE activation in Tmem178 -/- macrophages induce mitochondrial damage, release mtROS, and ultimately, promote NLRP3 inflammasome activation. In vivo , inhibition of inflammasome or IL-1 neutralization prolongs Tmem178 -/- mouse survival to LCMV-induced CSS. Conclusion Downregulation of Tmem178 levels may represent a new biomarker to identify sJIA/CSS patients that could benefit from receiving drugs targeting inflammasome signaling.
Collapse
|
11
|
Szychowski KA, Skóra B, Tabęcka-Łonczyńska A. Calcium channel antagonists interfere with the mechanism of action of elastin-derived peptide VGVAPG in mouse cortical astrocytes in vitro. Neurochem Int 2022; 159:105405. [DOI: 10.1016/j.neuint.2022.105405] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/31/2022] [Revised: 07/21/2022] [Accepted: 07/25/2022] [Indexed: 11/26/2022]
|
12
|
Espitia-Corredor JA, Boza P, Espinoza-Pérez C, Lillo JM, Rimassa-Taré C, Machuca V, Osorio-Sandoval JM, Vivar R, Bolivar S, Pardo-Jiménez V, Sánchez-Ferrer CF, Peiró C, Díaz-Araya G. Angiotensin II Triggers NLRP3 Inflammasome Activation by a Ca 2+ Signaling-Dependent Pathway in Rat Cardiac Fibroblast Ang-II by a Ca 2+-Dependent Mechanism Triggers NLRP3 Inflammasome in CF. Inflammation 2022; 45:2498-2512. [PMID: 35867264 DOI: 10.1007/s10753-022-01707-z] [Citation(s) in RCA: 15] [Impact Index Per Article: 5.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/07/2022] [Revised: 05/13/2022] [Accepted: 06/09/2022] [Indexed: 11/05/2022]
Abstract
Angiotensin II (Ang-II) is a widely studied hypertensive, profibrotic, and pro-inflammatory peptide. In the heart, cardiac fibroblasts (CF) express type 1 angiotensin II receptors (AT1R), Toll-like receptor-4 (TLR4), and the NLRP3 inflammasome complex, which play important roles in pro-inflammatory processes. When activated, the NLRP3 inflammasome triggers proteolytic cleavage of pro-IL-1, resulting in its activation. However, in CF the mechanism by which Ang-II assembles and activates the NLRP3 inflammasome remains not fully known. To elucidate this important point, we stimulated TLR4 receptors in CF and evaluated the signaling pathways by which Ang-II triggers the assembly and activity. In cultured rat CF, pro-IL-1β levels, NLRP3, ASC, and caspase-1 expression levels were determined by Western blot. NLRP3 inflammasome complex assembly was analyzed by immunocytochemistry, whereas by ELISA, we analyzed NLRP3 inflammasome activity and [Formula: see text] release. In CF, Ang-II triggered NLRP3 inflammasome assembly and caspase-1 activity; and in LPS-pretreated CF, Ang-II also triggered [Formula: see text] secretion. These effects were blocked by losartan (AT1R antagonist), U73221 (PLC inhibitor), 2-APB (IP3R antagonist), and BAPTA-AM (Ca2+ chelator) indicating that the AT1R/PLC/IP3R/Ca2+ pathway is involved. Finally, bafilomycin A1 prevented Ang-II-induced [Formula: see text] secretion, indicating that a non-classical protein secretion mechanism is involved. These findings suggest that in CF, Ang-II by a Ca2+-dependent mechanism triggers NLRP3 inflammasome assembly and activation leading to [Formula: see text] secretion through a non-conventional protein secretion mechanism.
Collapse
Affiliation(s)
- Jenaro Antonio Espitia-Corredor
- Laboratory of Molecular Pharmacology, Faculty of Chemical and Pharmaceutical Sciences, Department of Pharmacological & Toxicological Chemistry, University of Chile, Santiago, Chile.,Faculty of Medicine, Department of Pharmacology, Universidad Autónoma de Madrid, Madrid, Spain.,PhD Programme in Pharmacology and Physiology, Doctoral School, Universidad Autónoma de Madrid, Madrid, Spain.,Faculty of Chemical and Pharmaceutical Sciences, Advanced Center of Chronic Diseases (ACCDiS), University of Chile, Santiago, Chile
| | - Pía Boza
- Laboratory of Molecular Pharmacology, Faculty of Chemical and Pharmaceutical Sciences, Department of Pharmacological & Toxicological Chemistry, University of Chile, Santiago, Chile
| | - Claudio Espinoza-Pérez
- Laboratory of Molecular Pharmacology, Faculty of Chemical and Pharmaceutical Sciences, Department of Pharmacological & Toxicological Chemistry, University of Chile, Santiago, Chile
| | - José Miguel Lillo
- Laboratory of Molecular Pharmacology, Faculty of Chemical and Pharmaceutical Sciences, Department of Pharmacological & Toxicological Chemistry, University of Chile, Santiago, Chile
| | - Constanza Rimassa-Taré
- Laboratory of Molecular Pharmacology, Faculty of Chemical and Pharmaceutical Sciences, Department of Pharmacological & Toxicological Chemistry, University of Chile, Santiago, Chile
| | - Víctor Machuca
- Laboratory of Molecular Pharmacology, Faculty of Chemical and Pharmaceutical Sciences, Department of Pharmacological & Toxicological Chemistry, University of Chile, Santiago, Chile
| | - José Miguel Osorio-Sandoval
- Laboratory of Molecular Pharmacology, Faculty of Chemical and Pharmaceutical Sciences, Department of Pharmacological & Toxicological Chemistry, University of Chile, Santiago, Chile
| | - Raúl Vivar
- Molecular and Clinical Pharmacology Program, Faculty of Medicine, Institute of Biomedical Sciences (ICBM), University of Chile, Santiago, Chile
| | - Samir Bolivar
- Faculty of Chemistry and Pharmacy, Universidad del Atlántico, Barranquilla, Colombia
| | - Viviana Pardo-Jiménez
- Laboratory of Molecular Pharmacology, Faculty of Chemical and Pharmaceutical Sciences, Department of Pharmacological & Toxicological Chemistry, University of Chile, Santiago, Chile
| | - Carlos Félix Sánchez-Ferrer
- Faculty of Medicine, Department of Pharmacology, Universidad Autónoma de Madrid, Madrid, Spain.,Instituto de Investigaciones Sanitarias (IdiPAZ), Madrid, Spain
| | - Concepción Peiró
- Faculty of Medicine, Department of Pharmacology, Universidad Autónoma de Madrid, Madrid, Spain.,Instituto de Investigaciones Sanitarias (IdiPAZ), Madrid, Spain
| | - Guillermo Díaz-Araya
- Laboratory of Molecular Pharmacology, Faculty of Chemical and Pharmaceutical Sciences, Department of Pharmacological & Toxicological Chemistry, University of Chile, Santiago, Chile. .,Faculty of Chemical and Pharmaceutical Sciences, Advanced Center of Chronic Diseases (ACCDiS), University of Chile, Santiago, Chile.
| |
Collapse
|
13
|
An Experimental Study Reveals the Protective Effect of Autophagy against Realgar-Induced Liver Injury via Suppressing ROS-Mediated NLRP3 Inflammasome Pathway. Int J Mol Sci 2022; 23:ijms23105697. [PMID: 35628508 PMCID: PMC9145910 DOI: 10.3390/ijms23105697] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/14/2022] [Revised: 05/12/2022] [Accepted: 05/18/2022] [Indexed: 12/25/2022] Open
Abstract
Realgar, a poisonous traditional Chinese medicine, has been shown to cause liver injury when used for long periods or overdoses. However, the underlying molecular mechanisms and therapeutic targets have not been fully elucidated. The aim of this study is to explore the role of autophagy in sub-chronic realgar exposure-induced liver injury. Here, the liver injury model was established by continuously administrating mice with 1.35 g/kg realgar for 8 weeks. 3-methyladenine (3-MA) and rapamycin (RAPA) were used to regulate autophagy. The results showed that realgar induced abnormal changes in liver function, pathological morphology, expression of inflammatory cytokines, and upregulated NLRP3 inflammasome pathway in mouse livers. RAPA treatment (an inducer of autophagy) significantly improved realgar-induced liver injury and NLRP3 inflammasome activation, while 3-MA (an inhibitor of autophagy) aggravated the realgar-induced liver injury and NLRP3 inflammasome activation. Furthermore, we found that realgar-induced NLRP3 inflammasome activation in mouse livers is mediated by ROS. RAPA eliminates excessive ROS, inhibits NF-κB nuclear translocation and down-regulates the TXNIP/NLRP3 axis, consequently suppressing ROS-mediated NLRP3 inflammasome activation, which may be the underlying mechanism of the protective effect of autophagy on realgar-induced liver injury. In conclusion, the results of this study suggest that autophagy alleviates realgar-induced liver injury by inhibiting ROS-mediated NLRP3 inflammasome activation. Autophagy may represent a therapeutic target in modulating realgar-induced liver injury.
Collapse
|
14
|
Zhang X, Shang X, Jin S, Ma Z, Wang H, Ao N, Yang J, Du J. Vitamin D ameliorates high-fat-diet-induced hepatic injury via inhibiting pyroptosis and alters gut microbiota in rats. Arch Biochem Biophys 2021; 705:108894. [PMID: 33965368 DOI: 10.1016/j.abb.2021.108894] [Citation(s) in RCA: 41] [Impact Index Per Article: 10.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/18/2021] [Revised: 04/16/2021] [Accepted: 04/25/2021] [Indexed: 12/12/2022]
Abstract
Accumulating evidence suggests that vitamin D (VD) has a therapeutic effect on non-alcoholic fatty liver disease (NAFLD). Pyroptosis and gut microbiota have been recognized as critical factors of the progression of NAFLD. However, the effect of VD on the pyroptosis and gut microbiota in NAFLD remains inconclusive. Herein, rats were fed high fat diet (HFD) for 12 weeks and concurrently treated with 5 μg/kg 1,25(OH)2D3 twice a week. BRL-3A cells were stimulated with 0.4 mmol/L palmitic acid (PA) and 1 μg/ml lipopolysaccharide (LPS) for 16 h and treated with 10-6 mol/L 1,25(OH)2D3. Effect of VD on the hepatic injury, lipid accumulation, activation of NLRP3 inflammasome and pyroptosis was determined in vivo and in vitro. Next, gasdermin D N-terminal (GSDMD-N) fragment was overexpressed in BRL-3A cells to investigate the role of pyroptosis in the therapeutic effect of VD on NAFLD. In addition, gut microbiota in NAFLD rats was also analyzed. Results showed that VD attenuated HFD-induced hepatic injury in vivo and PA-LPS-induced impairment of cell viability in vitro, and inhibited lipid accumulation, activation of NLRP3 inflammasome and pyroptosis in vivo and in vitro. GSDMD-N fragment overexpression suppressed the protective effect of VD on PA-LPS-induced activation of NLRP3 inflammasome, impairment of cell viability and lipid accumulation, indicating that VD might attenuate NAFLD through inhibiting pyroptosis. Additionally, VD also restored HFD-induced gut microbiota dysbiosis by increasing the relative abundance of Lactobacillus and reducing that of Acetatifactor, Oscillibacter and Flavonifractor. This study provides a novel mechanism underlying VD therapy against NAFLD.
Collapse
Affiliation(s)
- Xiaolei Zhang
- Department of Endocrinology, The Fourth Affiliated Hospital of China Medical University, Shenyang, China
| | - Xueying Shang
- Department of Endocrinology, The Fourth Affiliated Hospital of China Medical University, Shenyang, China
| | - Shi Jin
- Department of Endocrinology, The Fourth Affiliated Hospital of China Medical University, Shenyang, China
| | - Zhuoqi Ma
- Department of Endocrinology, The Fourth Affiliated Hospital of China Medical University, Shenyang, China
| | - He Wang
- Department of Endocrinology, The Fourth Affiliated Hospital of China Medical University, Shenyang, China
| | - Na Ao
- Department of Endocrinology, The Fourth Affiliated Hospital of China Medical University, Shenyang, China
| | - Jing Yang
- Department of Endocrinology, The Fourth Affiliated Hospital of China Medical University, Shenyang, China
| | - Jian Du
- Department of Endocrinology, The Fourth Affiliated Hospital of China Medical University, Shenyang, China.
| |
Collapse
|
15
|
Khandkar C, Madhavan MV, Weaver JC, Celermajer DS, Karimi Galougahi K. Atherothrombosis in Acute Coronary Syndromes-From Mechanistic Insights to Targeted Therapies. Cells 2021; 10:865. [PMID: 33920201 PMCID: PMC8070089 DOI: 10.3390/cells10040865] [Citation(s) in RCA: 9] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/11/2021] [Revised: 04/06/2021] [Accepted: 04/07/2021] [Indexed: 12/31/2022] Open
Abstract
The atherothrombotic substrates for acute coronary syndromes (ACS) consist of plaque ruptures, erosions and calcified nodules, while the non-atherothrombotic etiologies, such as spontaneous coronary artery dissection, coronary artery spasm and coronary embolism are the rarer causes of ACS. The purpose of this comprehensive review is to (1) summarize the histopathologic insights into the atherothrombotic plaque subtypes in acute ACS from postmortem studies; (2) provide a brief overview of atherogenesis, while mainly focusing on the events that lead to plaque destabilization and disruption; (3) summarize mechanistic data from clinical studies that have used intravascular imaging, including high-resolution optical coherence tomography, to assess culprit plaque morphology and its underlying pathobiology, especially the newly described role of innate and adaptive immunity in ACS secondary to plaque erosion; (4) discuss the utility of intravascular imaging for effective treatment of patients presenting with ACS by percutaneous coronary intervention; and (5) discuss the opportunities that these mechanistic and imaging insights may provide for more individualized treatment of patients with ACS.
Collapse
Affiliation(s)
- Chinmay Khandkar
- Department of Cardiology, Orange Base Hospital, Orange, NSW 2800, Australia
- Faculty of Medicine and Health, University of Sydney, Sydney, NSW 2008, Australia
| | - Mahesh V Madhavan
- New York Presbyterian Hospital/Columbia University Irving Medical Center, New York, NY 10032, USA
- Clinical Trials Center, Cardiovascular Research Foundation, New York, NY 10019, USA
| | - James C Weaver
- Faculty of Medicine and Health, University of Sydney, Sydney, NSW 2008, Australia
- Department of Cardiology, Royal Prince Alfred Hospital, Sydney, NSW 2050, Australia
- Heart Research Institute, Sydney, NSW 2042, Australia
| | - David S Celermajer
- Faculty of Medicine and Health, University of Sydney, Sydney, NSW 2008, Australia
- Department of Cardiology, Royal Prince Alfred Hospital, Sydney, NSW 2050, Australia
- Heart Research Institute, Sydney, NSW 2042, Australia
| | - Keyvan Karimi Galougahi
- Faculty of Medicine and Health, University of Sydney, Sydney, NSW 2008, Australia
- Department of Cardiology, Royal Prince Alfred Hospital, Sydney, NSW 2050, Australia
- Heart Research Institute, Sydney, NSW 2042, Australia
| |
Collapse
|
16
|
MiR-135b protects cardiomyocytes from infarction through restraining the NLRP3/caspase-1/IL-1β pathway. Int J Cardiol 2020; 307:137-145. [DOI: 10.1016/j.ijcard.2019.09.055] [Citation(s) in RCA: 46] [Impact Index Per Article: 9.2] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 04/28/2019] [Revised: 08/19/2019] [Accepted: 09/25/2019] [Indexed: 02/07/2023]
|
17
|
Shui YM, Lu SY, Guo X, Liu XL, Fu BQ, Hu P, Qu LL, Liu NN, Li YS, Wang LL, Zhai FF, Ju DD, Liu ZS, Zhou Y, Ren HL. Molecular characterization and differential expression analysis of interleukin 1β from Ovis aries. Microb Pathog 2018; 116:180-188. [PMID: 29331367 DOI: 10.1016/j.micpath.2018.01.011] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/01/2017] [Revised: 12/28/2017] [Accepted: 01/07/2018] [Indexed: 11/30/2022]
|
18
|
Meijer K, Weening D, de Vries MP, Priebe MG, Vonk RJ, Roelofsen H. Quantitative proteomics analyses of activation states of human THP-1 macrophages. J Proteomics 2015. [DOI: 10.1016/j.jprot.2015.07.013] [Citation(s) in RCA: 11] [Impact Index Per Article: 1.1] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/31/2022]
|
19
|
Alfaidi M, Wilson H, Daigneault M, Burnett A, Ridger V, Chamberlain J, Francis S. Neutrophil elastase promotes interleukin-1β secretion from human coronary endothelium. J Biol Chem 2015; 290:24067-78. [PMID: 26269588 DOI: 10.1074/jbc.m115.659029] [Citation(s) in RCA: 70] [Impact Index Per Article: 7.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/14/2015] [Indexed: 11/06/2022] Open
Abstract
The endothelium is critically involved in the pathogenesis of atherosclerosis by producing pro-inflammatory mediators, including IL-1β. Coronary arteries from patients with ischemic heart disease express large amounts of IL-1β in the endothelium. However, the mechanism by which endothelial cells (ECs) release IL-1β remains to be elucidated. We investigated neutrophil elastase (NE), a potent serine protease detected in vulnerable areas of human carotid plaques, as a potential "trigger" for IL-1β processing and release. This study tested the hypothesis that NE potentiates the processing and release of IL-1β from human coronary endothelium. We found that NE cleaves the pro-isoform of IL-1β in ECs and causes significant secretion of bioactive IL-1β via extracellular vesicles. This release was attenuated significantly by inhibition of neutrophil elastase but not caspase-1. Transient increases in intracellular Ca(2+) levels were observed prior to secretion. Inside ECs, and after NE treatment only, IL-1β was detected within LAMP-1-positive multivesicular bodies. The released vesicles contained bioactive IL-1β. In vivo, in experimental atherosclerosis, NE was detected in mature atherosclerotic plaques, predominantly in the endothelium, alongside IL-1β. This study reveals a novel mechanistic link between NE expression in atherosclerotic plaques and concomitant pro-inflammatory bioactive IL-1β secretion from ECs. This could reveal additional potential anti-IL-1β therapeutic targets and provide further insights into the inflammatory process by which vascular disease develops.
Collapse
Affiliation(s)
- Mabruka Alfaidi
- From the Department of Cardiovascular Science, Medical School, University of Sheffield, Sheffield S10 2RX, United Kingdom
| | - Heather Wilson
- From the Department of Cardiovascular Science, Medical School, University of Sheffield, Sheffield S10 2RX, United Kingdom
| | - Marc Daigneault
- From the Department of Cardiovascular Science, Medical School, University of Sheffield, Sheffield S10 2RX, United Kingdom
| | - Amanda Burnett
- From the Department of Cardiovascular Science, Medical School, University of Sheffield, Sheffield S10 2RX, United Kingdom
| | - Victoria Ridger
- From the Department of Cardiovascular Science, Medical School, University of Sheffield, Sheffield S10 2RX, United Kingdom
| | - Janet Chamberlain
- From the Department of Cardiovascular Science, Medical School, University of Sheffield, Sheffield S10 2RX, United Kingdom
| | - Sheila Francis
- From the Department of Cardiovascular Science, Medical School, University of Sheffield, Sheffield S10 2RX, United Kingdom
| |
Collapse
|
20
|
Mohamed IN, Ishrat T, Fagan SC, El-Remessy AB. Role of inflammasome activation in the pathophysiology of vascular diseases of the neurovascular unit. Antioxid Redox Signal 2015; 22:1188-206. [PMID: 25275222 PMCID: PMC4403234 DOI: 10.1089/ars.2014.6126] [Citation(s) in RCA: 70] [Impact Index Per Article: 7.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Indexed: 01/01/2023]
Abstract
SIGNIFICANCE Inflammation is the standard double-edged defense mechanism that aims at protecting the human physiological homeostasis from devastating threats. Both acute and chronic inflammation have been implicated in the occurrence and progression of vascular diseases. Interference with components of the immune system to improve patient outcome after ischemic injury has been uniformly unsuccessful. There is a need for a deeper understanding of the innate immune response to injury in order to modulate, rather than to block inflammation and improve the outcome for vascular diseases. RECENT ADVANCES Nucleotide-binding oligomerization domain-like receptors or NOD-like receptor proteins (NLRPs) can be activated by sterile and microbial inflammation. NLR family plays a major role in activating the inflammasome. CRITICAL ISSUES The aim of this work is to review recent findings that provided insights into key inflammatory mechanisms and define the place of the inflammasome, a multi-protein complex involved in instigating inflammation in neurovascular diseases, including retinopathy, neurodegenerative diseases, and stroke. FUTURE DIRECTIONS The significant contribution of NLRP-inflammasome activation to vascular disease of the neurovascular unit in the brain and retina suggests that therapeutic strategies focused on specific targeting of inflammasome components could significantly improve the outcomes of these diseases.
Collapse
Affiliation(s)
- Islam N Mohamed
- 1 Program in Clinical and Experimental Therapeutics, College of Pharmacy, University of Georgia , Augusta, Georgia
| | | | | | | |
Collapse
|
21
|
Pele L, Haas CT, Hewitt R, Faria N, Brown A, Powell J. Artefactual nanoparticle activation of the inflammasome platform: in vitro evidence with a nano-formed calcium phosphate. Nanomedicine (Lond) 2014; 10:1379-90. [PMID: 24991724 DOI: 10.2217/nnm.14.58] [Citation(s) in RCA: 7] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/16/2023] Open
Abstract
AIM To determine whether in vitro experimental conditions dictate cellular activation of the inflammasome by apatitic calcium phosphate nanoparticles. MATERIAL & METHODS The responses of blood-derived primary human cells to in situ-formed apatite were investigated under different experimental conditions to assess the effect of aseptic culture, cell rest and duration of particle exposure. Cell death and particle uptake were assessed, while IL-1β and caspase 1 responses, with and without lipopolysaccharide prestimulation, were evaluated as markers of inflammasome activation. RESULTS Under carefully addressed experimental conditions, apatitic nanoparticles did not induce cell death or engage the inflammasome platform, although both could be triggered through artefacts of experimentation. CONCLUSION In vitro studies often predict that engineered nanoparticles, such as synthetic apatite, are candidates for inflammasome activation and, hence, are toxic. However, the experimental setting must be very carefully considered as it may promote false-positive outcomes.
Collapse
Affiliation(s)
- Laetitia Pele
- 1Medical Research Council - Human Nutrition Research, Elsie Widdowson Laboratory, Fulbourn Road, Cambridge, CB1 9NL, UK
| | - Carolin T Haas
- 1Medical Research Council - Human Nutrition Research, Elsie Widdowson Laboratory, Fulbourn Road, Cambridge, CB1 9NL, UK
| | - Rachel Hewitt
- 1Medical Research Council - Human Nutrition Research, Elsie Widdowson Laboratory, Fulbourn Road, Cambridge, CB1 9NL, UK
| | - Nuno Faria
- 1Medical Research Council - Human Nutrition Research, Elsie Widdowson Laboratory, Fulbourn Road, Cambridge, CB1 9NL, UK
| | - Andy Brown
- 2Institute for Materials Research, SPEME, University of Leeds, Leeds, LS2 9JT, UK
| | - Jonathan Powell
- 1Medical Research Council - Human Nutrition Research, Elsie Widdowson Laboratory, Fulbourn Road, Cambridge, CB1 9NL, UK
| |
Collapse
|
22
|
Mohamed IN, Hafez SS, Fairaq A, Ergul A, Imig JD, El-Remessy AB. Thioredoxin-interacting protein is required for endothelial NLRP3 inflammasome activation and cell death in a rat model of high-fat diet. Diabetologia 2014; 57:413-23. [PMID: 24201577 PMCID: PMC3947289 DOI: 10.1007/s00125-013-3101-z] [Citation(s) in RCA: 131] [Impact Index Per Article: 11.9] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 05/23/2013] [Accepted: 10/09/2013] [Indexed: 12/23/2022]
Abstract
AIMS/HYPOTHESIS Obesity and hypertension, known pro-inflammatory states, are identified determinants for increased retinal microvascular abnormalities. However, the molecular link between inflammation and microvascular degeneration remains elusive. Thioredoxin-interacting protein (TXNIP) is recognised as an activator of the NOD-like receptor pyrin domain containing-3 (NLRP3) inflammasome. This study aims to examine TXNIP expression and elucidate its role in endothelial inflammasome activation and retinal lesions. METHODS Spontaneously hypertensive (SHR) and control Wistar (W) rats were compared with groups fed a high-fat diet (HFD) (W+F and SHR+F) for 8-10 weeks. RESULTS Compared with W controls, HFD alone or in combination with hypertension significantly induced formation of acellular capillaries, a hallmark of retinal ischaemic lesions. These effects were accompanied by significant increases in lipid peroxidation, nitrotyrosine and expression of TXNIP, nuclear factor κB, TNF-α and IL-1β. HFD significantly increased interaction of TXNIP-NLRP3 and expression of cleaved caspase-1 and cleaved IL-1β. Immunolocalisation studies identified TXNIP expression within astrocytes and Müller cells surrounding retinal endothelial cells. To model HFD in vitro, human retinal endothelial (HRE) cells were stimulated with 400 μmol/l palmitate coupled to BSA (Pal-BSA). Pal-BSA triggered expression of TXNIP and its interaction with NLRP3, resulting in activation of caspase-1 and IL-1β in HRE cells. Silencing Txnip expression in HRE cells abolished Pal-BSA-mediated cleaved IL-1β release into medium and cell death, evident by decreases in cleaved caspase-3 expression and the proportion of live to dead cells. CONCLUSIONS/INTERPRETATION These findings provide the first evidence for enhanced TXNIP expression in hypertension and HFD-induced retinal oxidative/inflammatory response and suggest that TXNIP is required for HFD-mediated activation of the NLRP3 inflammasome and the release of IL-1β in endothelial cells.
Collapse
Affiliation(s)
- Islam N Mohamed
- Program in Clinical and Experimental Therapeutics, College of Pharmacy, University of Georgia, 1120 15th Street, HM-1200, Augusta, GA, 30912, USA
| | | | | | | | | | | |
Collapse
|