1
|
Flax RG, Rosston P, Rocha C, Anderson B, Capener JL, Durcan TM, Drewry DH, Prinos P, Axtman AD. Illumination of understudied ciliary kinases. Front Mol Biosci 2024; 11:1352781. [PMID: 38523660 PMCID: PMC10958382 DOI: 10.3389/fmolb.2024.1352781] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/08/2023] [Accepted: 01/29/2024] [Indexed: 03/26/2024] Open
Abstract
Cilia are cellular signaling hubs. Given that human kinases are central regulators of signaling, it is not surprising that kinases are key players in cilia biology. In fact, many kinases modulate ciliogenesis, which is the generation of cilia, and distinct ciliary pathways. Several of these kinases are understudied with few publications dedicated to the interrogation of their function. Recent efforts to develop chemical probes for members of the cyclin-dependent kinase like (CDKL), never in mitosis gene A (NIMA) related kinase (NEK), and tau tubulin kinase (TTBK) families either have delivered or are working toward delivery of high-quality chemical tools to characterize the roles that specific kinases play in ciliary processes. A better understanding of ciliary kinases may shed light on whether modulation of these targets will slow or halt disease onset or progression. For example, both understudied human kinases and some that are more well-studied play important ciliary roles in neurons and have been implicated in neurodevelopmental, neurodegenerative, and other neurological diseases. Similarly, subsets of human ciliary kinases are associated with cancer and oncological pathways. Finally, a group of genetic disorders characterized by defects in cilia called ciliopathies have associated gene mutations that impact kinase activity and function. This review highlights both progress related to the understanding of ciliary kinases as well as in chemical inhibitor development for a subset of these kinases. We emphasize known roles of ciliary kinases in diseases of the brain and malignancies and focus on a subset of poorly characterized kinases that regulate ciliary biology.
Collapse
Affiliation(s)
- Raymond G. Flax
- Structural Genomics Consortium, UNC Eshelman School of Pharmacy, University of North Carolina at Chapel Hill, Chapel Hill, NC, United States
| | - Peter Rosston
- Structural Genomics Consortium, UNC Eshelman School of Pharmacy, University of North Carolina at Chapel Hill, Chapel Hill, NC, United States
- Department of Chemistry, University of North Carolina at Chapel Hill, Chapel Hill, NC, United States
| | - Cecilia Rocha
- The Neuro’s Early Drug Discovery Unit (EDDU), McGill University, Montreal, QC, Canada
| | - Brian Anderson
- Structural Genomics Consortium, UNC Eshelman School of Pharmacy, University of North Carolina at Chapel Hill, Chapel Hill, NC, United States
| | - Jacob L. Capener
- Structural Genomics Consortium, UNC Eshelman School of Pharmacy, University of North Carolina at Chapel Hill, Chapel Hill, NC, United States
| | - Thomas M. Durcan
- The Neuro’s Early Drug Discovery Unit (EDDU), McGill University, Montreal, QC, Canada
| | - David H. Drewry
- Structural Genomics Consortium, UNC Eshelman School of Pharmacy, University of North Carolina at Chapel Hill, Chapel Hill, NC, United States
- UNC Lineberger Comprehensive Cancer Center, School of Medicine, University of North Carolina at Chapel Hill, Chapel Hill, NC, United States
| | - Panagiotis Prinos
- Structural Genomics Consortium, University of Toronto, Toronto, ON, Canada
| | - Alison D. Axtman
- Structural Genomics Consortium, UNC Eshelman School of Pharmacy, University of North Carolina at Chapel Hill, Chapel Hill, NC, United States
| |
Collapse
|
2
|
Joseph BB, Naslavsky N, Binti S, Conquest S, Robison L, Bai G, Homer RO, Grant BD, Caplan S, Fay DS. Conserved NIMA kinases regulate multiple steps of endocytic trafficking. PLoS Genet 2023; 19:e1010741. [PMID: 37099601 PMCID: PMC10166553 DOI: 10.1371/journal.pgen.1010741] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/22/2022] [Revised: 05/08/2023] [Accepted: 04/11/2023] [Indexed: 04/27/2023] Open
Abstract
Human NIMA-related kinases have primarily been studied for their roles in cell cycle progression (NEK1/2/6/7/9), checkpoint-DNA-damage control (NEK1/2/4/5/10/11), and ciliogenesis (NEK1/4/8). We previously showed that Caenorhabditis elegans NEKL-2 (NEK8/9 homolog) and NEKL-3 (NEK6/7 homolog) regulate apical clathrin-mediated endocytosis (CME) in the worm epidermis and are essential for molting. Here we show that NEKL-2 and NEKL-3 also have distinct roles in controlling endosome function and morphology. Specifically, loss of NEKL-2 led to enlarged early endosomes with long tubular extensions but showed minimal effects on other compartments. In contrast, NEKL-3 depletion caused pronounced defects in early, late, and recycling endosomes. Consistently, NEKL-2 was strongly localized to early endosomes, whereas NEKL-3 was localized to multiple endosomal compartments. Loss of NEKLs also led to variable defects in the recycling of two resident cargoes of the trans-Golgi network (TGN), MIG-14/Wntless and TGN-38/TGN38, which were missorted to lysosomes after NEKL depletion. In addition, defects were observed in the uptake of clathrin-dependent (SMA-6/Type I BMP receptor) and independent cargoes (DAF-4/Type II BMP receptor) from the basolateral surface of epidermal cells after NEKL-2 or NEKL-3 depletion. Complementary studies in human cell lines further showed that siRNA knockdown of the NEKL-3 orthologs NEK6 and NEK7 led to missorting of the mannose 6-phosphate receptor from endosomes. Moreover, in multiple human cell types, depletion of NEK6 or NEK7 disrupted both early and recycling endosomal compartments, including the presence of excess tubulation within recycling endosomes, a defect also observed after NEKL-3 depletion in worms. Thus, NIMA family kinases carry out multiple functions during endocytosis in both worms and humans, consistent with our previous observation that human NEKL-3 orthologs can rescue molting and trafficking defects in C. elegans nekl-3 mutants. Our findings suggest that trafficking defects could underlie some of the proposed roles for NEK kinases in human disease.
Collapse
Affiliation(s)
- Braveen B. Joseph
- Department of Molecular Biology, College of Agriculture Life Sciences, and Natural Resources, University of Wyoming, Laramie, Wyoming, United States of America
| | - Naava Naslavsky
- Department of Biochemistry & Molecular Biology, University of Nebraska Medical Center, Omaha, Nebraska, United States of America
- The Fred and Pamela Buffett Cancer Center, University of Nebraska Medical Center, Omaha, Nebraska, United States of America
| | - Shaonil Binti
- Department of Molecular Biology, College of Agriculture Life Sciences, and Natural Resources, University of Wyoming, Laramie, Wyoming, United States of America
| | - Sylvia Conquest
- Department of Molecular Biology, College of Agriculture Life Sciences, and Natural Resources, University of Wyoming, Laramie, Wyoming, United States of America
| | - Lexi Robison
- Department of Molecular Biology, College of Agriculture Life Sciences, and Natural Resources, University of Wyoming, Laramie, Wyoming, United States of America
| | - Ge Bai
- Department of Molecular Biology and Biochemistry, Rutgers University, Piscataway, New Jersey, United States of America
| | - Rafael O. Homer
- Department of Molecular Biology, College of Agriculture Life Sciences, and Natural Resources, University of Wyoming, Laramie, Wyoming, United States of America
| | - Barth D. Grant
- Department of Molecular Biology and Biochemistry, Rutgers University, Piscataway, New Jersey, United States of America
| | - Steve Caplan
- Department of Biochemistry & Molecular Biology, University of Nebraska Medical Center, Omaha, Nebraska, United States of America
- The Fred and Pamela Buffett Cancer Center, University of Nebraska Medical Center, Omaha, Nebraska, United States of America
| | - David S. Fay
- Department of Molecular Biology, College of Agriculture Life Sciences, and Natural Resources, University of Wyoming, Laramie, Wyoming, United States of America
| |
Collapse
|
3
|
Glavač D, Mladinić M, Ban J, Mazzone GL, Sámano C, Tomljanović I, Jezernik G, Ravnik-Glavač M. The Potential Connection between Molecular Changes and Biomarkers Related to ALS and the Development and Regeneration of CNS. Int J Mol Sci 2022; 23:ijms231911360. [PMID: 36232667 PMCID: PMC9570269 DOI: 10.3390/ijms231911360] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/26/2022] [Revised: 09/10/2022] [Accepted: 09/22/2022] [Indexed: 11/16/2022] Open
Abstract
Neurodegenerative diseases are one of the greatest medical burdens of the modern age, being mostly incurable and with limited prognostic and diagnostic tools. Amyotrophic lateral sclerosis (ALS) is a fatal, progressive neurodegenerative disease characterized by the loss of motoneurons, with a complex etiology, combining genetic, epigenetic, and environmental causes. The neuroprotective therapeutic approaches are very limited, while the diagnostics rely on clinical examination and the exclusion of other diseases. The recent advancement in the discovery of molecular pathways and gene mutations involved in ALS has deepened the understanding of the disease pathology and opened the possibility for new treatments and diagnostic procedures. Recently, 15 risk loci with distinct genetic architectures and neuron-specific biology were identified as linked to ALS through common and rare variant association analyses. Interestingly, the quantity of related proteins to these genes has been found to change during early postnatal development in mammalian spinal cord tissue (opossum Monodelphis domestica) at the particular time when neuroregeneration stops being possible. Here, we discuss the possibility that the ALS-related genes/proteins could be connected to neuroregeneration and development. Moreover, since the regulation of gene expression in developmental checkpoints is frequently regulated by non-coding RNAs, we propose that studying the changes in the composition and quantity of non-coding RNA molecules, both in ALS patients and in the developing central nervous (CNS) system of the opossum at the time when neuroregeneration ceases, could reveal potential biomarkers useful in ALS prognosis and diagnosis.
Collapse
Affiliation(s)
- Damjan Glavač
- Department of Molecular Genetics, Institute of Pathology, Faculty of Medicine, University of Ljubljana, 1000 Ljublana, Slovenia
- Center for Human Genetics & Pharmacogenomics, Faculty of Medicine, University of Maribor, 2000 Maribor, Slovenia
| | - Miranda Mladinić
- Laboratory for Molecular Neurobiology, Department of Biotechnology, University of Rijeka, 51000 Rijeka, Croatia
| | - Jelena Ban
- Laboratory for Molecular Neurobiology, Department of Biotechnology, University of Rijeka, 51000 Rijeka, Croatia
| | - Graciela L. Mazzone
- Instituto de Investigaciones en Medicina Traslacional (IIMT), CONICET-Universidad Austral, Buenos Aires B1629AHJ, Argentina
| | - Cynthia Sámano
- Departamento de Ciencias Naturales, Universidad Autónoma Metropolitana Unidad Cuajimalpa, Mexico City 05348, Mexico
| | - Ivana Tomljanović
- Laboratory for Molecular Neurobiology, Department of Biotechnology, University of Rijeka, 51000 Rijeka, Croatia
| | - Gregor Jezernik
- Center for Human Genetics & Pharmacogenomics, Faculty of Medicine, University of Maribor, 2000 Maribor, Slovenia
| | - Metka Ravnik-Glavač
- Institute of Biochemistry and Molecular Genetics, Faculty of Medicine, University of Ljubljana, 1000 Ljubljana, Slovenia
- Correspondence:
| |
Collapse
|
4
|
Roth A, Gihring A, Bischof J, Pan L, Oswald F, Knippschild U. CK1 Is a Druggable Regulator of Microtubule Dynamics and Microtubule-Associated Processes. Cancers (Basel) 2022; 14:1345. [PMID: 35267653 PMCID: PMC8909099 DOI: 10.3390/cancers14051345] [Citation(s) in RCA: 7] [Impact Index Per Article: 3.5] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/02/2022] [Revised: 02/25/2022] [Accepted: 03/03/2022] [Indexed: 02/05/2023] Open
Abstract
Protein kinases of the Casein Kinase 1 family play a vital role in the regulation of numerous cellular processes. Apart from functions associated with regulation of proliferation, differentiation, or apoptosis, localization of several Casein Kinase 1 isoforms to the centrosome and microtubule asters also implicates regulatory functions in microtubule dynamic processes. Being localized to the spindle apparatus during mitosis Casein Kinase 1 directly modulates microtubule dynamics by phosphorylation of tubulin isoforms. Additionally, site-specific phosphorylation of microtubule-associated proteins can be related to the maintenance of genomic stability but also microtubule stabilization/destabilization, e.g., by hyper-phosphorylation of microtubule-associated protein 1A and RITA1. Consequently, approaches interfering with Casein Kinase 1-mediated microtubule-specific functions might be exploited as therapeutic strategies for the treatment of cancer. Currently pursued strategies include the development of Casein Kinase 1 isoform-specific small molecule inhibitors and therapeutically useful peptides specifically inhibiting kinase-substrate interactions.
Collapse
Affiliation(s)
- Aileen Roth
- University Medical Center Ulm, Department of General, and Visceral Surgery, University of Ulm, Albert-Einstein-Allee 23, 89081 Ulm, Germany; (A.R.); (A.G.); (J.B.)
| | - Adrian Gihring
- University Medical Center Ulm, Department of General, and Visceral Surgery, University of Ulm, Albert-Einstein-Allee 23, 89081 Ulm, Germany; (A.R.); (A.G.); (J.B.)
| | - Joachim Bischof
- University Medical Center Ulm, Department of General, and Visceral Surgery, University of Ulm, Albert-Einstein-Allee 23, 89081 Ulm, Germany; (A.R.); (A.G.); (J.B.)
| | - Leiling Pan
- University Medical Center Ulm, Center for Internal Medicine, Department of Internal Medicine I, University of Ulm, Albert-Einstein-Allee 23, 89081 Ulm, Germany;
| | - Franz Oswald
- University Medical Center Ulm, Center for Internal Medicine, Department of Internal Medicine I, University of Ulm, Albert-Einstein-Allee 23, 89081 Ulm, Germany;
| | - Uwe Knippschild
- University Medical Center Ulm, Department of General, and Visceral Surgery, University of Ulm, Albert-Einstein-Allee 23, 89081 Ulm, Germany; (A.R.); (A.G.); (J.B.)
| |
Collapse
|
5
|
Yang M, Guo Y, Guo X, Mao Y, Zhu S, Wang N, Lu D. Analysis of the effect of NEKs on the prognosis of patients with non-small-cell lung carcinoma based on bioinformatics. Sci Rep 2022; 12:1705. [PMID: 35105934 PMCID: PMC8807624 DOI: 10.1038/s41598-022-05728-4] [Citation(s) in RCA: 2] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/23/2021] [Accepted: 01/14/2022] [Indexed: 12/14/2022] Open
Abstract
NEKs are proteins that are involved in various cell processes and play important roles in the formation and development of cancer. However, few studies have examined the role of NEKs in the development of non-small-cell lung carcinoma (NSCLC). To address this problem, the Oncomine, UALCAN, and the Human Protein Atlas databases were used to analyze differential NEK expression and its clinicopathological parameters, while the Kaplan-Meier, cBioPortal, GEPIA, and DAVID databases were used to analyze survival, gene mutations, similar genes, and biological enrichments. The rate of NEK family gene mutation was high (> 50%) in patients with NSCLC, in which NEK2/4/6/8/ was overexpressed and significantly correlated with tumor stage and nodal metastasis status. In addition, the high expression of NEK2/3mRNA was significantly associated with poor prognosis in patients with NSCLC, while high expression of NEK1/4/6/7/8/9/10/11mRNA was associated with good prognosis. In summary, these results suggest that NEK2/4/6/8 may be a potential prognostic biomarker for the survival of patients with NSCLC.
Collapse
Affiliation(s)
- Mengxia Yang
- Graduate School, Beijing University of Chinese Medicine, Beijing, 100029, People's Republic of China.,Department of Oncology, Wangjing Hospital, China Academy of Chinese Medical Sciences, Beijing, 100102, People's Republic of China
| | - Yikun Guo
- Graduate School, Beijing University of Chinese Medicine, Beijing, 100029, People's Republic of China
| | - Xiaofei Guo
- Department of Oncology, Wangjing Hospital, China Academy of Chinese Medical Sciences, Beijing, 100102, People's Republic of China
| | - Yun Mao
- Department of Oncology, The Second Hospital of Hunan University of Chinese Medicine, Changsha, 410005, People's Republic of China
| | - Shijie Zhu
- Department of Oncology, Wangjing Hospital, China Academy of Chinese Medical Sciences, Beijing, 100102, People's Republic of China
| | - Ningjun Wang
- Department of Oncology, Wangjing Hospital, China Academy of Chinese Medical Sciences, Beijing, 100102, People's Republic of China.
| | - Dianrong Lu
- Department of Oncology, Wangjing Hospital, China Academy of Chinese Medical Sciences, Beijing, 100102, People's Republic of China.
| |
Collapse
|
6
|
Melo-Hanchuk TD, Kobarg J. Polyglutamylase activity of tubulin tyrosine ligase-like 4 is negatively regulated by the never in mitosis gene A family kinase never in mitosis gene A -related kinase 5. World J Biol Chem 2021; 12:38-51. [PMID: 34084286 PMCID: PMC8160597 DOI: 10.4331/wjbc.v12.i3.38] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 10/25/2020] [Revised: 01/06/2021] [Accepted: 02/25/2021] [Indexed: 02/06/2023] Open
Abstract
BACKGROUND Tubulins, building blocks of microtubules, are modified substrates of diverse post-translational modifications including phosphorylation, polyglycylation and polyglutamylation. Polyglutamylation of microtubules, catalyzed by enzymes from the tubulin tyrosine ligase-like (TTLL) family, can regulate interactions with molecular motors and other proteins. Due to the diversity and functional importance of microtubule modifications, strict control of the TTLL enzymes has been suggested.
AIM To characterize the interaction between never in mitosis gene A-related kinase 5 (NEK5) and TTLL4 proteins and the effects of TTLL4 phosphorylation.
METHODS The interaction between NEK5 and TTLL4 was identified by yeast two-hybrid screening using the C-terminus of NEK5 (a.a. 260–708) as bait and confirmed by immunoprecipitation. The phosphorylation sites of TTLL4 were identified by mass spectrometry and point mutations were introduced.
RESULTS Here, we show that NEK5 interacts with TTLL4 and regulates its polyglutamylation activity. We further show that NEK5 can also interact with TTLL5 and TTLL7. The silencing of NEK5 increases the levels of polyglutamylation of proteins by increasing the activity of TTLL4. The same effects were observed after the expression of the catalytically inactive form of NEK5. This regulation of TTLL4 activity involves its phosphorylation at Y815 and S1136 amino acid residues.
CONCLUSION Our results demonstrate, for the first time, the regulation of TTLL activity through phosphorylation, pointing to NEK5 as a potential effector kinase. We also suggest a general control of tubulin polyglutamylation through NEK family members in human cells.
Collapse
Affiliation(s)
| | - Jörg Kobarg
- Faculty of Pharmaceutical Sciences, University of Campinas, Campinas 13083-862, Brazil
| |
Collapse
|
7
|
Emery-Corbin SJ, Hamey JJ, Ansell BRE, Balan B, Tichkule S, Stroehlein AJ, Cooper C, McInerney BV, Hediyeh-Zadeh S, Vuong D, Crombie A, Lacey E, Davis MJ, Wilkins MR, Bahlo M, Svärd SG, Gasser RB, Jex AR. Eukaryote-Conserved Methylarginine Is Absent in Diplomonads and Functionally Compensated in Giardia. Mol Biol Evol 2021; 37:3525-3549. [PMID: 32702104 PMCID: PMC7743719 DOI: 10.1093/molbev/msaa186] [Citation(s) in RCA: 7] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/13/2022] Open
Abstract
Methylation is a common posttranslational modification of arginine and lysine in eukaryotic proteins. Methylproteomes are best characterized for higher eukaryotes, where they are functionally expanded and evolved complex regulation. However, this is not the case for protist species evolved from the earliest eukaryotic lineages. Here, we integrated bioinformatic, proteomic, and drug-screening data sets to comprehensively explore the methylproteome of Giardia duodenalis-a deeply branching parasitic protist. We demonstrate that Giardia and related diplomonads lack arginine-methyltransferases and have remodeled conserved RGG/RG motifs targeted by these enzymes. We also provide experimental evidence for methylarginine absence in proteomes of Giardia but readily detect methyllysine. We bioinformatically infer 11 lysine-methyltransferases in Giardia, including highly diverged Su(var)3-9, Enhancer-of-zeste and Trithorax proteins with reduced domain architectures, and novel annotations demonstrating conserved methyllysine regulation of eukaryotic elongation factor 1 alpha. Using mass spectrometry, we identify more than 200 methyllysine sites in Giardia, including in species-specific gene families involved in cytoskeletal regulation, enriched in coiled-coil features. Finally, we use known methylation inhibitors to show that methylation plays key roles in replication and cyst formation in this parasite. This study highlights reduced methylation enzymes, sites, and functions early in eukaryote evolution, including absent methylarginine networks in the Diplomonadida. These results challenge the view that arginine methylation is eukaryote conserved and demonstrate that functional compensation of methylarginine was possible preceding expansion and diversification of these key networks in higher eukaryotes.
Collapse
Affiliation(s)
- Samantha J Emery-Corbin
- Population Health and Immunity Division, The Walter and Eliza Hall Institute of Medical Research, Melbourne, VIC, Australia.,Department of Medical Biology, The University of Melbourne, Parkville, VIC, Australia
| | - Joshua J Hamey
- School of Biotechnology and Biomolecular Sciences, University of New South Wales, Sydney, NSW, Australia
| | - Brendan R E Ansell
- Population Health and Immunity Division, The Walter and Eliza Hall Institute of Medical Research, Melbourne, VIC, Australia.,Department of Medical Biology, The University of Melbourne, Parkville, VIC, Australia
| | - Balu Balan
- Population Health and Immunity Division, The Walter and Eliza Hall Institute of Medical Research, Melbourne, VIC, Australia.,Department of Medical Biology, The University of Melbourne, Parkville, VIC, Australia.,Department of Veterinary Biosciences, Melbourne Veterinary School, Faculty of Veterinary and Agricultural Sciences, The University of Melbourne, Parkville, VIC, Australia
| | - Swapnil Tichkule
- Population Health and Immunity Division, The Walter and Eliza Hall Institute of Medical Research, Melbourne, VIC, Australia.,Department of Medical Biology, The University of Melbourne, Parkville, VIC, Australia
| | - Andreas J Stroehlein
- Department of Veterinary Biosciences, Melbourne Veterinary School, Faculty of Veterinary and Agricultural Sciences, The University of Melbourne, Parkville, VIC, Australia
| | - Crystal Cooper
- Central Analytical Research Facility (CARF), Institute for Future Environments, Queensland University of Technology, Brisbane, QLD, Australia
| | - Bernie V McInerney
- Australian Proteome Analysis Facility (APAF), Macquarie University, North Ryde, NSW, Australia
| | - Soroor Hediyeh-Zadeh
- Department of Medical Biology, The University of Melbourne, Parkville, VIC, Australia.,Bioinformatics Division, The Walter and Eliza Hall Institute of Medical Research, Parkville, VIC, Australia
| | - Daniel Vuong
- Microbial Screening Technologies, Smithfield, NSW, Australia
| | - Andrew Crombie
- Microbial Screening Technologies, Smithfield, NSW, Australia
| | - Ernest Lacey
- Microbial Screening Technologies, Smithfield, NSW, Australia.,Chemistry and Biomolecular Sciences, Faculty of Science, Macquarie University, North Ryde, NSW, Australia
| | - Melissa J Davis
- Department of Medical Biology, The University of Melbourne, Parkville, VIC, Australia.,Bioinformatics Division, The Walter and Eliza Hall Institute of Medical Research, Parkville, VIC, Australia
| | - Marc R Wilkins
- School of Biotechnology and Biomolecular Sciences, University of New South Wales, Sydney, NSW, Australia
| | - Melanie Bahlo
- Population Health and Immunity Division, The Walter and Eliza Hall Institute of Medical Research, Melbourne, VIC, Australia.,Department of Medical Biology, The University of Melbourne, Parkville, VIC, Australia
| | - Staffan G Svärd
- Department of Cell and Molecular Biology, Uppsala University, Uppsala, Sweden
| | - Robin B Gasser
- Department of Veterinary Biosciences, Melbourne Veterinary School, Faculty of Veterinary and Agricultural Sciences, The University of Melbourne, Parkville, VIC, Australia
| | - Aaron R Jex
- Population Health and Immunity Division, The Walter and Eliza Hall Institute of Medical Research, Melbourne, VIC, Australia.,Department of Medical Biology, The University of Melbourne, Parkville, VIC, Australia.,Department of Veterinary Biosciences, Melbourne Veterinary School, Faculty of Veterinary and Agricultural Sciences, The University of Melbourne, Parkville, VIC, Australia
| |
Collapse
|
8
|
Martins MB, Perez AM, Bohr VA, Wilson DM, Kobarg J. NEK1 deficiency affects mitochondrial functions and the transcriptome of key DNA repair pathways. Mutagenesis 2021; 36:223-236. [PMID: 33740813 DOI: 10.1093/mutage/geab011] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/19/2020] [Accepted: 03/17/2021] [Indexed: 12/16/2022] Open
Abstract
Previous studies have indicated important roles for NIMA-related kinase 1 (NEK1) in modulating DNA damage checkpoints and DNA repair capacity. To broadly assess the contributions of NEK1 to genotoxic stress and mitochondrial functions, we characterised several relevant phenotypes of NEK1 CRISPR knockout (KO) and wild-type (WT) HAP1 cells. Our studies revealed that NEK1 KO cells resulted in increased apoptosis and hypersensitivity to the alkylator methyl methanesulfonate, the radiomimetic bleomycin and UVC light, yet increased resistance to the crosslinker cisplatin. Mitochondrial functionalities were also altered in NEK1 KO cells, with phenotypes of reduced mitophagy, increased total mitochondria, elevated levels of reactive oxygen species, impaired complex I activity and higher amounts of mitochondrial DNA damage. RNA-seq transcriptome analysis coupled with quantitative real-time PCR studies comparing NEK1 KO cells with NEK1 overexpressing cells revealed that the expression of genes involved in DNA repair pathways, such as base excision repair, nucleotide excision repair and double-strand break repair, are altered in a way that might influence genotoxin resistance. Together, our studies underline and further support that NEK1 serves as a hub signalling kinase in response to DNA damage, modulating DNA repair capacity, mitochondrial activity and cell fate determination.
Collapse
Affiliation(s)
- Mariana Bonjiorno Martins
- Departamento de Bioquímica e de Biologia Tecidual, Instituto de Biologia, Universidade Estadual de Campinas, Campinas, São Paulo, Brazil
| | - Arina Marina Perez
- Laboratory of Molecular Gerontology, National Institute on Aging, National Institutes of Health, Baltimore, MD 21224-6825, USA
| | - Vilhelm A Bohr
- Laboratory of Molecular Gerontology, National Institute on Aging, National Institutes of Health, Baltimore, MD 21224-6825, USA
| | - David M Wilson
- Neurosciences Group, Biomedical Research Institute, Hasselt University, 3590 Diepenbeek, Belgium
| | - Jörg Kobarg
- Departamento de Bioquímica e de Biologia Tecidual, Instituto de Biologia, Universidade Estadual de Campinas, Campinas, São Paulo, Brazil.,Faculdade de Ciências Farmacêuticas, Universidade Estadual de Campinas, Campinas, São Paulo, Brazil
| |
Collapse
|
9
|
Baumann G, Meckel T, Böhm K, Shih YH, Dickhaut M, Reichardt T, Pilakowski J, Pehl U, Schmidt B. Illuminating a Dark Kinase: Structure-Guided Design, Synthesis, and Evaluation of a Potent Nek1 Inhibitor and Its Effects on the Embryonic Zebrafish Pronephros. J Med Chem 2021; 65:1265-1282. [DOI: 10.1021/acs.jmedchem.0c02118] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/01/2023]
Affiliation(s)
- Georg Baumann
- Clemens Schöpf−Institute of Organic Chemistry and Biochemistry, Technische Universität Darmstadt, 64287 Darmstadt, Germany
| | - Tobias Meckel
- Clemens Schöpf−Institute of Organic Chemistry and Biochemistry, Technische Universität Darmstadt, 64287 Darmstadt, Germany
| | - Kevin Böhm
- Clemens Schöpf−Institute of Organic Chemistry and Biochemistry, Technische Universität Darmstadt, 64287 Darmstadt, Germany
| | - Yung-Hsin Shih
- Clemens Schöpf−Institute of Organic Chemistry and Biochemistry, Technische Universität Darmstadt, 64287 Darmstadt, Germany
| | - Mirco Dickhaut
- Clemens Schöpf−Institute of Organic Chemistry and Biochemistry, Technische Universität Darmstadt, 64287 Darmstadt, Germany
| | - Torben Reichardt
- Clemens Schöpf−Institute of Organic Chemistry and Biochemistry, Technische Universität Darmstadt, 64287 Darmstadt, Germany
| | - Johannes Pilakowski
- Clemens Schöpf−Institute of Organic Chemistry and Biochemistry, Technische Universität Darmstadt, 64287 Darmstadt, Germany
| | - Ulrich Pehl
- Merck Healthcare KGaA, Biopharma R&D, Discovery and Development Technologies, 64293 Darmstadt, Germany
| | - Boris Schmidt
- Clemens Schöpf−Institute of Organic Chemistry and Biochemistry, Technische Universität Darmstadt, 64287 Darmstadt, Germany
| |
Collapse
|
10
|
Ferezin CDC, Basei FL, Melo‐Hanchuk TD, de Oliveira AL, Peres de Oliveira A, Mori MP, de Souza‐Pinto NC, Kobarg J. NEK5 interacts with LonP1 and its kinase activity is essential for the regulation of mitochondrial functions and mtDNA maintenance. FEBS Open Bio 2021; 11:546-563. [PMID: 33547867 PMCID: PMC7931231 DOI: 10.1002/2211-5463.13108] [Citation(s) in RCA: 8] [Impact Index Per Article: 2.7] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/21/2020] [Revised: 01/19/2021] [Accepted: 02/04/2021] [Indexed: 12/16/2022] Open
Abstract
Little is known about Nima-related kinase (NEKs), a widely conserved family of kinases that have key roles in cell-cycle progression. Nevertheless, it is now clear that multiple NEK family members act in networks, not only to regulate specific events of mitosis, but also to regulate metabolic events independently of the cell cycle. NEK5 was shown to act in centrosome disjunction, caspase-3 regulation, myogenesis, and mitochondrial respiration. Here, we demonstrate that NEK5 interacts with LonP1, an AAA+ mitochondrial protease implicated in protein quality control and mtDNA remodeling, within the mitochondria and it might be involved in the LonP1-TFAM signaling module. Moreover, we demonstrate that NEK5 kinase activity is required for maintaining mitochondrial mass and functionality and mtDNA integrity after oxidative damage. Taken together, these results show a new role of NEK5 in the regulation of mitochondrial homeostasis and mtDNA maintenance, possibly due to its interaction with key mitochondrial proteins, such as LonP1.
Collapse
Affiliation(s)
- Camila de Castro Ferezin
- Faculdade de Ciências FarmacêuticasUniversidade Estadual de CampinasBrazil
- Instituto de BiologiaDepartamento de Bioquímica e Biologia TecidualUniversidade Estadual de CampinasBrazil
| | - Fernanda Luisa Basei
- Faculdade de Ciências FarmacêuticasUniversidade Estadual de CampinasBrazil
- Instituto de BiologiaDepartamento de Bioquímica e Biologia TecidualUniversidade Estadual de CampinasBrazil
| | | | - Ana Luisa de Oliveira
- Instituto de BiologiaDepartamento de Bioquímica e Biologia TecidualUniversidade Estadual de CampinasBrazil
| | | | - Mateus P. Mori
- Departamento de BioquímicaInstituto de QuímicaUniversidade de São PauloBrazil
| | | | - Jörg Kobarg
- Faculdade de Ciências FarmacêuticasUniversidade Estadual de CampinasBrazil
- Instituto de BiologiaDepartamento de Bioquímica e Biologia TecidualUniversidade Estadual de CampinasBrazil
| |
Collapse
|
11
|
Pavan ICB, Peres de Oliveira A, Dias PRF, Basei FL, Issayama LK, Ferezin CDC, Silva FR, Rodrigues de Oliveira AL, Alves dos Reis Moura L, Martins MB, Simabuco FM, Kobarg J. On Broken Ne(c)ks and Broken DNA: The Role of Human NEKs in the DNA Damage Response. Cells 2021; 10:507. [PMID: 33673578 PMCID: PMC7997185 DOI: 10.3390/cells10030507] [Citation(s) in RCA: 14] [Impact Index Per Article: 4.7] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/08/2021] [Revised: 02/04/2021] [Accepted: 02/22/2021] [Indexed: 02/07/2023] Open
Abstract
NIMA-related kinases, or NEKs, are a family of Ser/Thr protein kinases involved in cell cycle and mitosis, centrosome disjunction, primary cilia functions, and DNA damage responses among other biological functional contexts in vertebrate cells. In human cells, there are 11 members, termed NEK1 to 11, and the research has mainly focused on exploring the more predominant roles of NEKs in mitosis regulation and cell cycle. A possible important role of NEKs in DNA damage response (DDR) first emerged for NEK1, but recent studies for most NEKs showed participation in DDR. A detailed analysis of the protein interactions, phosphorylation events, and studies of functional aspects of NEKs from the literature led us to propose a more general role of NEKs in DDR. In this review, we express that NEK1 is an activator of ataxia telangiectasia and Rad3-related (ATR), and its activation results in cell cycle arrest, guaranteeing DNA repair while activating specific repair pathways such as homology repair (HR) and DNA double-strand break (DSB) repair. For NEK2, 6, 8, 9, and 11, we found a role downstream of ATR and ataxia telangiectasia mutated (ATM) that results in cell cycle arrest, but details of possible activated repair pathways are still being investigated. NEK4 shows a connection to the regulation of the nonhomologous end-joining (NHEJ) repair of DNA DSBs, through recruitment of DNA-PK to DNA damage foci. NEK5 interacts with topoisomerase IIβ, and its knockdown results in the accumulation of damaged DNA. NEK7 has a regulatory role in the detection of oxidative damage to telomeric DNA. Finally, NEK10 has recently been shown to phosphorylate p53 at Y327, promoting cell cycle arrest after exposure to DNA damaging agents. In summary, this review highlights important discoveries of the ever-growing involvement of NEK kinases in the DDR pathways. A better understanding of these roles may open new diagnostic possibilities or pharmaceutical interventions regarding the chemo-sensitizing inhibition of NEKs in various forms of cancer and other diseases.
Collapse
Affiliation(s)
- Isadora Carolina Betim Pavan
- Graduate Program in “Ciências Farmacêuticas”, School of Pharmaceutical Sciences, Faculty of Pharmaceutical Sciences, State University of Campinas (UNICAMP), R. Cândido Portinari 200, Prédio 2, Campinas CEP 13083-871, Brazil; (I.C.B.P.); (A.P.d.O.); (P.R.F.D.); (F.L.B.); (L.K.I.); (F.R.S.); (A.L.R.d.O.); (L.A.d.R.M.); (M.B.M.)
| | - Andressa Peres de Oliveira
- Graduate Program in “Ciências Farmacêuticas”, School of Pharmaceutical Sciences, Faculty of Pharmaceutical Sciences, State University of Campinas (UNICAMP), R. Cândido Portinari 200, Prédio 2, Campinas CEP 13083-871, Brazil; (I.C.B.P.); (A.P.d.O.); (P.R.F.D.); (F.L.B.); (L.K.I.); (F.R.S.); (A.L.R.d.O.); (L.A.d.R.M.); (M.B.M.)
| | - Pedro Rafael Firmino Dias
- Graduate Program in “Ciências Farmacêuticas”, School of Pharmaceutical Sciences, Faculty of Pharmaceutical Sciences, State University of Campinas (UNICAMP), R. Cândido Portinari 200, Prédio 2, Campinas CEP 13083-871, Brazil; (I.C.B.P.); (A.P.d.O.); (P.R.F.D.); (F.L.B.); (L.K.I.); (F.R.S.); (A.L.R.d.O.); (L.A.d.R.M.); (M.B.M.)
| | - Fernanda Luisa Basei
- Graduate Program in “Ciências Farmacêuticas”, School of Pharmaceutical Sciences, Faculty of Pharmaceutical Sciences, State University of Campinas (UNICAMP), R. Cândido Portinari 200, Prédio 2, Campinas CEP 13083-871, Brazil; (I.C.B.P.); (A.P.d.O.); (P.R.F.D.); (F.L.B.); (L.K.I.); (F.R.S.); (A.L.R.d.O.); (L.A.d.R.M.); (M.B.M.)
| | - Luidy Kazuo Issayama
- Graduate Program in “Ciências Farmacêuticas”, School of Pharmaceutical Sciences, Faculty of Pharmaceutical Sciences, State University of Campinas (UNICAMP), R. Cândido Portinari 200, Prédio 2, Campinas CEP 13083-871, Brazil; (I.C.B.P.); (A.P.d.O.); (P.R.F.D.); (F.L.B.); (L.K.I.); (F.R.S.); (A.L.R.d.O.); (L.A.d.R.M.); (M.B.M.)
| | - Camila de Castro Ferezin
- Graduate Program in “Biologia Funcional e Molecular”, Department of Biochemistry and Tissue Biology, Institute of Biology, State University of Campinas (UNICAMP), Campinas 13083-857, Brazil;
| | - Fernando Riback Silva
- Graduate Program in “Ciências Farmacêuticas”, School of Pharmaceutical Sciences, Faculty of Pharmaceutical Sciences, State University of Campinas (UNICAMP), R. Cândido Portinari 200, Prédio 2, Campinas CEP 13083-871, Brazil; (I.C.B.P.); (A.P.d.O.); (P.R.F.D.); (F.L.B.); (L.K.I.); (F.R.S.); (A.L.R.d.O.); (L.A.d.R.M.); (M.B.M.)
| | - Ana Luisa Rodrigues de Oliveira
- Graduate Program in “Ciências Farmacêuticas”, School of Pharmaceutical Sciences, Faculty of Pharmaceutical Sciences, State University of Campinas (UNICAMP), R. Cândido Portinari 200, Prédio 2, Campinas CEP 13083-871, Brazil; (I.C.B.P.); (A.P.d.O.); (P.R.F.D.); (F.L.B.); (L.K.I.); (F.R.S.); (A.L.R.d.O.); (L.A.d.R.M.); (M.B.M.)
| | - Lívia Alves dos Reis Moura
- Graduate Program in “Ciências Farmacêuticas”, School of Pharmaceutical Sciences, Faculty of Pharmaceutical Sciences, State University of Campinas (UNICAMP), R. Cândido Portinari 200, Prédio 2, Campinas CEP 13083-871, Brazil; (I.C.B.P.); (A.P.d.O.); (P.R.F.D.); (F.L.B.); (L.K.I.); (F.R.S.); (A.L.R.d.O.); (L.A.d.R.M.); (M.B.M.)
| | - Mariana Bonjiorno Martins
- Graduate Program in “Ciências Farmacêuticas”, School of Pharmaceutical Sciences, Faculty of Pharmaceutical Sciences, State University of Campinas (UNICAMP), R. Cândido Portinari 200, Prédio 2, Campinas CEP 13083-871, Brazil; (I.C.B.P.); (A.P.d.O.); (P.R.F.D.); (F.L.B.); (L.K.I.); (F.R.S.); (A.L.R.d.O.); (L.A.d.R.M.); (M.B.M.)
- Graduate Program in “Biologia Funcional e Molecular”, Department of Biochemistry and Tissue Biology, Institute of Biology, State University of Campinas (UNICAMP), Campinas 13083-857, Brazil;
| | | | - Jörg Kobarg
- Graduate Program in “Ciências Farmacêuticas”, School of Pharmaceutical Sciences, Faculty of Pharmaceutical Sciences, State University of Campinas (UNICAMP), R. Cândido Portinari 200, Prédio 2, Campinas CEP 13083-871, Brazil; (I.C.B.P.); (A.P.d.O.); (P.R.F.D.); (F.L.B.); (L.K.I.); (F.R.S.); (A.L.R.d.O.); (L.A.d.R.M.); (M.B.M.)
- Graduate Program in “Biologia Funcional e Molecular”, Department of Biochemistry and Tissue Biology, Institute of Biology, State University of Campinas (UNICAMP), Campinas 13083-857, Brazil;
| |
Collapse
|
12
|
Khalil MI, Ghosh I, Singh V, Chen J, Zhu H, De Benedetti A. NEK1 Phosphorylation of YAP Promotes Its Stabilization and Transcriptional Output. Cancers (Basel) 2020; 12:cancers12123666. [PMID: 33297404 PMCID: PMC7762262 DOI: 10.3390/cancers12123666] [Citation(s) in RCA: 14] [Impact Index Per Article: 3.5] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/03/2020] [Revised: 12/04/2020] [Accepted: 12/04/2020] [Indexed: 12/13/2022] Open
Abstract
Simple Summary We earlier described the involvement of the TLK1>NEK1>ATR>Chk1 axis as a key determinant of cell cycle arrest in androgen-dependent prostate cancer (PCa) cells after androgen deprivation. We now report that the TLK1>NEK1 axis is also involved in stabilization of yes-associated protein 1 (YAP1), the transcriptional co-activator in the Hippo pathway, presumably facilitating reprogramming of the cells toward castration-resistant PCa (CRPC). NEK1 interacts with YAP1 physically resulting in its phosphorylation of 6 residues, which enhance its stability and activity. Analyses of cancer Protein Atlas and TCGA expression panels revealed a link between activated NEK1 and YAP1 expression and several YAP transcription targets. Abstract Most prostate cancer (PCa) deaths result from progressive failure in standard androgen deprivation therapy (ADT), leading to metastatic castration-resistant PCa (mCRPC); however, the mechanism and key players leading to this are not fully understood. While studying the role of tousled-like kinase 1 (TLK1) and never in mitosis gene A (NIMA)-related kinase 1 (NEK1) in a DNA damage response (DDR)-mediated cell cycle arrest in LNCaP cells treated with bicalutamide, we uncovered that overexpression of wt-NEK1 resulted in a rapid conversion to androgen-independent (AI) growth, analogous to what has been observed when YAP1 is overexpressed. We now report that overexpression of wt-NEK1 results in accumulation of YAP1, suggesting the existence of a TLK1>NEK1>YAP1 axis that leads to adaptation to AI growth. Further, YAP1 is co-immunoprecipitated with NEK1. Importantly, NEK1 was able to phosphorylate YAP1 on six residues in vitro, which we believe are important for stabilization of the protein, possibly by increasing its interaction with transcriptional partners. In fact, knockout (KO) of NEK1 in NT1 PCa cells resulted in a parallel decrease of YAP1 level and reduced expression of typical YAP-regulated target genes. In terms of cancer potential implications, the expression of NEK1 and YAP1 proteins was found to be increased and correlated in several cancers. These include PCa stages according to Gleason score, head and neck squamous cell carcinoma, and glioblastoma, suggesting that this co-regulation is imparted by increased YAP1 stability when NEK1 is overexpressed or activated by TLK1, and not through transcriptional co-expression. We propose that the TLK1>NEK1>YAP1 axis is a key determinant for cancer progression, particularly during the process of androgen-sensitive to -independent conversion during progression to mCRPC.
Collapse
Affiliation(s)
- Md Imtiaz Khalil
- Department of Biochemistry and Molecular Biology, LSU Health Sciences Center, Shreveport, LA 71130, USA; (M.I.K.); (I.G.); (V.S.)
| | - Ishita Ghosh
- Department of Biochemistry and Molecular Biology, LSU Health Sciences Center, Shreveport, LA 71130, USA; (M.I.K.); (I.G.); (V.S.)
| | - Vibha Singh
- Department of Biochemistry and Molecular Biology, LSU Health Sciences Center, Shreveport, LA 71130, USA; (M.I.K.); (I.G.); (V.S.)
| | - Jing Chen
- Department of Molecular and Cellular Biochemistry and Proteomics Core, Center for Structural Biology, University of Kentucky, Lexington, KY 40506, USA; (J.C.); (H.Z.)
| | - Haining Zhu
- Department of Molecular and Cellular Biochemistry and Proteomics Core, Center for Structural Biology, University of Kentucky, Lexington, KY 40506, USA; (J.C.); (H.Z.)
| | - Arrigo De Benedetti
- Department of Biochemistry and Molecular Biology, LSU Health Sciences Center, Shreveport, LA 71130, USA; (M.I.K.); (I.G.); (V.S.)
- Correspondence: ; Tel.: +1-31-8675-5668
| |
Collapse
|
13
|
Fractionation-Dependent Radiosensitization by Molecular Targeting of Nek1. Cells 2020; 9:cells9051235. [PMID: 32429458 PMCID: PMC7291120 DOI: 10.3390/cells9051235] [Citation(s) in RCA: 4] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/24/2020] [Revised: 05/14/2020] [Accepted: 05/15/2020] [Indexed: 01/13/2023] Open
Abstract
NIMA (never-in-mitosis gene A)-related kinase 1 (Nek1) is shown to impact on different cellular pathways such as DNA repair, checkpoint activation, and apoptosis. Its role as a molecular target for radiation sensitization of malignant cells, however, remains elusive. Stably transduced doxycycline (Dox)-inducible Nek1 shRNA HeLa cervix and siRNA-transfected HCT-15 colorectal carcinoma cells were irradiated in vitro and 3D clonogenic radiation survival, residual DNA damage, cell cycle distribution, and apoptosis were analyzed. Nek1 knockdown (KD) sensitized both cell lines to ionizing radiation following a single dose irradiation and more pronounced in combination with a 6 h fractionation (3 × 2 Gy) regime. For preclinical analyses we focused on cervical cancer. Nek1 shRNA HeLa cells were grafted into NOD/SCID/IL-2Rγc−/− (NSG) mice and Nek1 KD was induced by Dox-infused drinking water resulting in a significant cytostatic effect if combined with a 6 h fractionation (3 × 2 Gy) regime. In addition, we correlated Nek1 expression in biopsies of patients with cervical cancer with histopathological parameters and clinical follow-up. Our results indicate that elevated levels of Nek1 were associated with an increased rate of local or distant failure, as well as with impaired cancer-specific and overall survival in univariate analyses and for most endpoints in multivariable analyses. Finally, findings from The Cancer Genome Atlas (TCGA) validation cohort confirmed a significant association of high Nek1 expression with a reduced disease-free survival. In conclusion, we consider Nek1 to represent a novel biomarker and potential therapeutic target for drug development in the context of optimized fractionation intervals.
Collapse
|
14
|
Peres de Oliveira A, Basei FL, Slepicka PF, de Castro Ferezin C, Melo-Hanchuk TD, de Souza EE, Lima TI, Dos Santos VT, Mendes D, Silveira LR, Menck CFM, Kobarg J. NEK10 interactome and depletion reveal new roles in mitochondria. Proteome Sci 2020; 18:4. [PMID: 32368190 PMCID: PMC7189645 DOI: 10.1186/s12953-020-00160-w] [Citation(s) in RCA: 17] [Impact Index Per Article: 4.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/27/2019] [Accepted: 04/14/2020] [Indexed: 12/29/2022] Open
Abstract
Background Members of the family of NEK protein kinases (NIMA-related kinases) were described to have crucial roles in regulating different aspects of the cell cycle. NEK10 was reported to take part in the maintenance of the G2/M checkpoint after exposure to ultraviolet light. NEK1, NEK5, NEK2 and NEK4 proteins on the other hand have been linked to mitochondrial functions. Methods HEK293T cells were transfected with FLAG empty vector or FLAG-NEK10 and treated or not with Zeocin. For proteomic analysis, proteins co-precipitated with the FLAG constructs were digested by trypsin, and then analyzed via LC-MS/MS. Proteomic data retrieved were next submitted to Integrated Interactome System analysis and differentially expressed proteins were attributed to Gene Ontology biological processes and assembled in protein networks by Cytoscape. For functional, cellular and molecular analyses two stable Nek10 silenced HeLa cell clones were established. Results Here, we discovered the following possible new NEK10 protein interactors, related to mitochondrial functions: SIRT3, ATAD3A, ATAD3B, and OAT. After zeocin treatment, the spectrum of mitochondrial interactors increased by the proteins: FKBP4, TXN, PFDN2, ATAD3B, MRPL12, ATP5J, DUT, YWHAE, CS, SIRT3, HSPA9, PDHB, GLUD1, DDX3X, and APEX1. We confirmed the interaction of NEK10 and GLUD1 by proximity ligation assay and confocal microscopy. Furthermore, we demonstrated that NEK10-depleted cells showed more fragmented mitochondria compared to the control cells. The knock down of NEK10 resulted further in changes in mitochondrial reactive oxygen species (ROS) levels, decreased citrate synthase activity, and culminated in inhibition of mitochondrial respiration, affecting particularly ATP-linked oxygen consumption rate and spare capacity. NEK10 depletion also decreased the ratio of mtDNA amplification, possibly due to DNA damage. However, the total mtDNA content increased, suggesting that NEK10 may be involved in the control of mtDNA content. Conclusions Taken together these data place NEK10 as a novel regulatory player in mitochondrial homeostasis and energy metabolism.
Collapse
Affiliation(s)
- Andressa Peres de Oliveira
- 1Instituto de Biologia, Departamento de Bioquímica e Biologia Tecidual, Universidade Estadual de Campinas, Campinas, São Paulo, Brazil.,2Departamento de Microbiologia, Instituto de Ciências Biomédicas, Universidade de São Paulo, São Paulo, Brazil
| | - Fernanda Luisa Basei
- 1Instituto de Biologia, Departamento de Bioquímica e Biologia Tecidual, Universidade Estadual de Campinas, Campinas, São Paulo, Brazil.,3Faculdade de Ciências Farmacêuticas, Universidade Estadual de Campinas, Rua Cândido Portinari, 200; Cidade Universitária Zeferino Vaz; Campinas-SP; CEP, São Paulo, 13083-871 Brazil
| | - Priscila Ferreira Slepicka
- 4Laboratório Nacional de Biociências, Centro Nacional de Pesquisa em Energia e Materiais, Campinas, São Paulo, Brazil
| | - Camila de Castro Ferezin
- 1Instituto de Biologia, Departamento de Bioquímica e Biologia Tecidual, Universidade Estadual de Campinas, Campinas, São Paulo, Brazil.,3Faculdade de Ciências Farmacêuticas, Universidade Estadual de Campinas, Rua Cândido Portinari, 200; Cidade Universitária Zeferino Vaz; Campinas-SP; CEP, São Paulo, 13083-871 Brazil
| | - Talita D Melo-Hanchuk
- 1Instituto de Biologia, Departamento de Bioquímica e Biologia Tecidual, Universidade Estadual de Campinas, Campinas, São Paulo, Brazil
| | - Edmarcia Elisa de Souza
- 4Laboratório Nacional de Biociências, Centro Nacional de Pesquisa em Energia e Materiais, Campinas, São Paulo, Brazil
| | - Tanes I Lima
- 5Departamento de Biologia Estrutural e Funcional, Instituto de Biologia, Universidade Estadual de Campinas, Campinas, São Paulo, Brazil.,6Departamento de Bioquímica e Imunologia, Universidade de São Paulo, Ribeirão Preto, Brazil
| | - Valquiria Tiago Dos Santos
- 2Departamento de Microbiologia, Instituto de Ciências Biomédicas, Universidade de São Paulo, São Paulo, Brazil
| | - Davi Mendes
- 2Departamento de Microbiologia, Instituto de Ciências Biomédicas, Universidade de São Paulo, São Paulo, Brazil
| | - Leonardo Reis Silveira
- 5Departamento de Biologia Estrutural e Funcional, Instituto de Biologia, Universidade Estadual de Campinas, Campinas, São Paulo, Brazil
| | | | - Jörg Kobarg
- 1Instituto de Biologia, Departamento de Bioquímica e Biologia Tecidual, Universidade Estadual de Campinas, Campinas, São Paulo, Brazil.,3Faculdade de Ciências Farmacêuticas, Universidade Estadual de Campinas, Rua Cândido Portinari, 200; Cidade Universitária Zeferino Vaz; Campinas-SP; CEP, São Paulo, 13083-871 Brazil
| |
Collapse
|
15
|
Peres de Oliveira A, Kazuo Issayama L, Betim Pavan IC, Riback Silva F, Diniz Melo-Hanchuk T, Moreira Simabuco F, Kobarg J. Checking NEKs: Overcoming a Bottleneck in Human Diseases. Molecules 2020; 25:molecules25081778. [PMID: 32294979 PMCID: PMC7221840 DOI: 10.3390/molecules25081778] [Citation(s) in RCA: 20] [Impact Index Per Article: 5.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/10/2020] [Revised: 04/02/2020] [Accepted: 04/09/2020] [Indexed: 12/12/2022] Open
Abstract
In previous years, several kinases, such as phosphoinositide 3-kinase (PI3K), mammalian target of rapamycin (mTOR), and extracellular-signal-regulated kinase (ERK), have been linked to important human diseases, although some kinase families remain neglected in terms of research, hiding their relevance to therapeutic approaches. Here, a review regarding the NEK family is presented, shedding light on important information related to NEKs and human diseases. NEKs are a large group of homologous kinases with related functions and structures that participate in several cellular processes such as the cell cycle, cell division, cilia formation, and the DNA damage response. The review of the literature points to the pivotal participation of NEKs in important human diseases, like different types of cancer, diabetes, ciliopathies and central nervous system related and inflammatory-related diseases. The different known regulatory molecular mechanisms specific to each NEK are also presented, relating to their involvement in different diseases. In addition, important information about NEKs remains to be elucidated and is highlighted in this review, showing the need for other studies and research regarding this kinase family. Therefore, the NEK family represents an important group of kinases with potential applications in the therapy of human diseases.
Collapse
Affiliation(s)
- Andressa Peres de Oliveira
- Instituto de Biologia, Departamento de Bioquímica e Biologia Tecidual, Universidade Estadual de Campinas, Campinas, São Paulo 13083-862, Brazil; (A.P.d.O.); (L.K.I.); (I.C.B.P.); (F.R.S.); (T.D.M.-H.)
| | - Luidy Kazuo Issayama
- Instituto de Biologia, Departamento de Bioquímica e Biologia Tecidual, Universidade Estadual de Campinas, Campinas, São Paulo 13083-862, Brazil; (A.P.d.O.); (L.K.I.); (I.C.B.P.); (F.R.S.); (T.D.M.-H.)
- Faculdade de Ciências Farmacêuticas, Universidade Estadual de Campinas, Campinas, São Paulo 13083-871, Brazil
| | - Isadora Carolina Betim Pavan
- Instituto de Biologia, Departamento de Bioquímica e Biologia Tecidual, Universidade Estadual de Campinas, Campinas, São Paulo 13083-862, Brazil; (A.P.d.O.); (L.K.I.); (I.C.B.P.); (F.R.S.); (T.D.M.-H.)
- Faculdade de Ciências Farmacêuticas, Universidade Estadual de Campinas, Campinas, São Paulo 13083-871, Brazil
- Laboratório Multidisciplinar em Alimentos e Saúde, Faculdade de Ciências Aplicadas, Universidade Estadual de Campinas, São Paulo 13484-350, Brazil;
| | - Fernando Riback Silva
- Instituto de Biologia, Departamento de Bioquímica e Biologia Tecidual, Universidade Estadual de Campinas, Campinas, São Paulo 13083-862, Brazil; (A.P.d.O.); (L.K.I.); (I.C.B.P.); (F.R.S.); (T.D.M.-H.)
- Faculdade de Ciências Farmacêuticas, Universidade Estadual de Campinas, Campinas, São Paulo 13083-871, Brazil
| | - Talita Diniz Melo-Hanchuk
- Instituto de Biologia, Departamento de Bioquímica e Biologia Tecidual, Universidade Estadual de Campinas, Campinas, São Paulo 13083-862, Brazil; (A.P.d.O.); (L.K.I.); (I.C.B.P.); (F.R.S.); (T.D.M.-H.)
- Faculdade de Ciências Farmacêuticas, Universidade Estadual de Campinas, Campinas, São Paulo 13083-871, Brazil
| | - Fernando Moreira Simabuco
- Laboratório Multidisciplinar em Alimentos e Saúde, Faculdade de Ciências Aplicadas, Universidade Estadual de Campinas, São Paulo 13484-350, Brazil;
| | - Jörg Kobarg
- Faculdade de Ciências Farmacêuticas, Universidade Estadual de Campinas, Campinas, São Paulo 13083-871, Brazil
- Correspondence: ; Tel.: +55-19-3521-8143
| |
Collapse
|
16
|
Joseph BB, Wang Y, Edeen P, Lažetić V, Grant BD, Fay DS. Control of clathrin-mediated endocytosis by NIMA family kinases. PLoS Genet 2020; 16:e1008633. [PMID: 32069276 PMCID: PMC7048319 DOI: 10.1371/journal.pgen.1008633] [Citation(s) in RCA: 17] [Impact Index Per Article: 4.3] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/06/2019] [Revised: 02/28/2020] [Accepted: 01/28/2020] [Indexed: 12/16/2022] Open
Abstract
Endocytosis, the process by which cells internalize plasma membrane and associated cargo, is regulated extensively by posttranslational modifications. Previous studies suggested the potential involvement of scores of protein kinases in endocytic control, of which only a few have been validated in vivo. Here we show that the conserved NIMA-related kinases NEKL-2/NEK8/9 and NEKL-3/NEK6/7 (the NEKLs) control clathrin-mediated endocytosis in C. elegans. Loss of NEKL-2 or NEKL-3 activities leads to penetrant larval molting defects and to the abnormal localization of trafficking markers in arrested larvae. Using an auxin-based degron system, we also find that depletion of NEKLs in adult-stage C. elegans leads to gross clathrin mislocalization and to a dramatic reduction in clathrin mobility at the apical membrane. Using a non-biased genetic screen to identify suppressors of nekl molting defects, we identified several components and regulators of AP2, the major clathrin adapter complex acting at the plasma membrane. Strikingly, reduced AP2 activity rescues both nekl mutant molting defects as well as associated trafficking phenotypes, whereas increased levels of active AP2 exacerbate nekl defects. Moreover, in a unique example of mutual suppression, NEKL inhibition alleviates defects associated with reduced AP2 activity, attesting to the tight link between NEKL and AP2 functions. We also show that NEKLs are required for the clustering and internalization of membrane cargo required for molting. Notably, we find that human NEKs can rescue molting and trafficking defects in nekl mutant worms, suggesting that the control of intracellular trafficking is an evolutionarily conserved function of NEK family kinases. In order to function properly, cells must continually import materials from the outside. This process, termed endocytosis, is necessary for the uptake of nutrients and for interpreting signals coming from the external environment or from within the body. These signals are critical during animal development but also affect many types of cell behaviors throughout life. In our current work, we show that several highly conserved proteins in the nematode Caenorhabditis elegans, NEKL-2 and NEKL-3, regulate endocytosis. The human counterparts of NEKL-2 and NEKL-3 have been implicated in cardiovascular and renal diseases as well as many types of cancers. However, their specific functions within cells is incompletely understood and very little is known about their role in endocytosis or how this role might impact disease processes. Here we use several complementary approaches to characterize the specific functions of C. elegans NEKL-2 and NEKL-3 in endocytosis and show that their human counterparts likely have very similar functions. This work paves the way to a better understanding of fundamental biological processes and to determining the cellular functions of proteins connected to human diseases.
Collapse
Affiliation(s)
- Braveen B. Joseph
- Department of Molecular Biology, College of Agriculture and Natural Resources, University of Wyoming, Laramie, Wyoming, United States of America
| | - Yu Wang
- Department of Molecular Biology and Biochemistry, Rutgers University, Piscataway, New Jersey, United States of America
- Department of Biochemistry and Molecular Biology, School of Basic Medicine, Tongji Medical College, Huazhong University of Science and Technology, Wuhan, Hubei, China
| | - Phil Edeen
- Department of Molecular Biology, College of Agriculture and Natural Resources, University of Wyoming, Laramie, Wyoming, United States of America
| | - Vladimir Lažetić
- Department of Molecular Biology, College of Agriculture and Natural Resources, University of Wyoming, Laramie, Wyoming, United States of America
| | - Barth D. Grant
- Department of Molecular Biology and Biochemistry, Rutgers University, Piscataway, New Jersey, United States of America
| | - David S. Fay
- Department of Molecular Biology, College of Agriculture and Natural Resources, University of Wyoming, Laramie, Wyoming, United States of America
- * E-mail:
| |
Collapse
|
17
|
Melo-Hanchuk TD, Martins MB, Cunha LL, Soares FA, Ward LS, Vassallo J, Kobarg J. Expression of the NEK family in normal and cancer tissue: an immunohistochemical study. BMC Cancer 2020; 20:23. [PMID: 31906878 PMCID: PMC6945616 DOI: 10.1186/s12885-019-6408-4] [Citation(s) in RCA: 22] [Impact Index Per Article: 5.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/11/2019] [Accepted: 11/28/2019] [Indexed: 12/17/2022] Open
Abstract
BACKGROUND The NEK serine/threonine protein kinases are involved in cell cycle checkpoints, DNA damage repair, and apoptosis. Alterations in these pathways are frequently associated with cell malignant cellular transformations. Thyroid cancer is the most common malignant tumour in the endocrine system. Despite good treatment methods, the number of cases has increased significantly in recent years. Here, we studied the expression of NEK1, NEK2, NEK3, and NEK5 in different types of normal and malignant tissues, using tissue microarray analysis, and identified NEKs as potential markers in thyroid malignancy. METHODS The studied cases comprised multiple cancer tissue microarrays, including breast, colon, esophagus, kidney, lung, pancreas, prostate, stomach, thyroid and uterine cervix, as well as 281 patients who underwent thyroid resection for thyroid cancer or thyroid nodules. The expression of NEK1, NEK2, NEK3, and NEK5 was analyzed by immunohistochemistry. The expression pattern was evaluated in terms of intensity by two methods, semiquantitative and quantitative, and was compared between normal and cancer tissue. RESULTS We analysed the expression of each member of the NEK family in a tissue-dependent manner. Compared to normal tissue, most of the evaluated proteins showed lower expression in lung tumour. However, in the thyroid, the expression was higher in malignant tissue, especially for NEK 1, NEK3 and NEK5. Concerning characteristics of the thyroid tumour, such as aggressiveness, NEK1 expression was higher in tumours with multifocality and in patients with lymph node metastasis. NEK3 expression was stronger in patients with stage II, that involved metastasis. NEK5, on the other hand, showed high expression in patients with invasion and metastasis and in patients with tumour size > 4 cm. Furthermore, this work, demonstrated for the first time a high specificity and sensitivity of over-expression of NEK1 in classical and follicular variants of papillary thyroid cancer and NEK3 in tall-cell papillary thyroid cancer. CONCLUSION Taken together, the NEK protein kinases emerge as important proteins in thyroid cancer development and may help to identify malignancy and aggressiveness features during diagnosis. TRIAL REGISTRATION This study was retrospectively registered. www.accamargo.org.br/cientistas-pesquisadores/comite-de-etica-em-pequisa-cep.
Collapse
Affiliation(s)
- Talita Diniz Melo-Hanchuk
- Departamento de Bioquímica e de Biologia Tecidual, Instituto de Biologia, Universidade Estadual de Campinas, Campinas, São Paulo, Brazil
| | - Mariana Bonjiorno Martins
- Departamento de Bioquímica e de Biologia Tecidual, Instituto de Biologia, Universidade Estadual de Campinas, Campinas, São Paulo, Brazil
| | - Lucas Leite Cunha
- Laboratório de Genética Molecular do Câncer, Faculdade de Ciências Médicas Universidade Estadual de Campinas, Campinas, São Paulo, Brazil
| | | | - Laura Sterian Ward
- Laboratório de Genética Molecular do Câncer, Faculdade de Ciências Médicas Universidade Estadual de Campinas, Campinas, São Paulo, Brazil
| | - José Vassallo
- Departamento de Anatomia Patológica, Faculdade de Ciências Médicas, Universidade Estadual de Campinas, Campinas, São Paulo, Brazil
| | - Jörg Kobarg
- Departamento de Bioquímica e de Biologia Tecidual, Instituto de Biologia, Universidade Estadual de Campinas, Campinas, São Paulo, Brazil. .,Faculdade de Ciências Farmacêuticas-UNICAMP, Universidade Estadual de Campinas, Campinas, Inst. de Biologia, Dep. Bioquímica e Biologia Tecidual, Rua Monteiro Lobato 255, CEP 13083-862, Campinas-SP, Brazil.
| |
Collapse
|
18
|
Christodoulou E, van Doorn R, Visser M, Teunisse A, Versluis M, van der Velden P, Hayward NK, Jochemsen A, Gruis N. NEK11 as a candidate high-penetrance melanoma susceptibility gene. J Med Genet 2019; 57:203-210. [PMID: 31704778 DOI: 10.1136/jmedgenet-2019-106134] [Citation(s) in RCA: 6] [Impact Index Per Article: 1.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/06/2019] [Accepted: 10/10/2019] [Indexed: 11/04/2022]
Abstract
BACKGROUND A proportion of patients diagnosed with cutaneous melanoma reports a positive family history. Inherited variants in CDKN2A and several other genes have been shown to predispose to melanoma; however, the genetic basis of familial melanoma remains unknown in most cases. The objective of this study was to provide insight into the genetic basis of familial melanoma. METHODS In order to identify novel melanoma susceptibility genes, whole exome sequencing (WES) analysis was applied in a Dutch family with melanoma. The causality of a candidate variant was characterised by performing cosegregation analysis in five affected family members using patient-derived tissues and digital droplet PCR analysis to accurately quantify mutant allele frequency. Functional in-vitro studies were performed to assess the pathogenicity of the candidate variant. RESULTS Application of WES identified a rare, nonsense variant in the NEK11 gene (c.1120C>T, p.Arg374Ter), cosegregating in all five affected members of a Dutch family. NEK11 (NIMA-related Kinase 11) is involved in the DNA damage response, enforcing the G2/M cell cycle checkpoint. In a melanoma from a variant carrier, somatic loss of the wildtype allele of this putative tumour suppressor gene was demonstrated. Functional analyses showed that the NEK11 p.Arg374Ter mutation results in strongly reduced expression of the truncated protein caused by proteasomal degradation. CONCLUSION The NEK11 p.Arg374Ter variant identified in this family leads to loss-of-function through protein instability. Collectively, these findings support NEK11 as a melanoma susceptibility gene.
Collapse
Affiliation(s)
- Eirini Christodoulou
- Dermatology, Leids Universitair Medisch Centrum, Leiden, Zuid-Holland, The Netherlands
| | - Remco van Doorn
- Dermatology, Leids Universitair Medisch Centrum, Leiden, Zuid-Holland, The Netherlands
| | - Mijke Visser
- Dermatology, Leids Universitair Medisch Centrum, Leiden, Zuid-Holland, The Netherlands
| | - Amina Teunisse
- Cell and Chemical Biology, Leids Universitair Medisch Centrum, Leiden, Zuid-Holland, The Netherlands
| | - Mieke Versluis
- Ophthalmology, Leids Universitair Medisch Centrum, Leiden, Zuid-Holland, The Netherlands
| | - Pieter van der Velden
- Ophthalmology, Leids Universitair Medisch Centrum, Leiden, Zuid-Holland, The Netherlands
| | - Nicholas K Hayward
- Cancer Program, QIMR Berghofer Medical Research Institute, Brisbane, Queensland, Australia
| | - Aart Jochemsen
- Cell and Chemical Biology, Leids Universitair Medisch Centrum, Leiden, Zuid-Holland, The Netherlands
| | - Nelleke Gruis
- Dermatology, Leids Universitair Medisch Centrum, Leiden, Zuid-Holland, The Netherlands
| |
Collapse
|
19
|
Singh V, Jaiswal PK, Ghosh I, Koul HK, Yu X, De Benedetti A. Targeting the TLK1/NEK1 DDR axis with Thioridazine suppresses outgrowth of androgen independent prostate tumors. Int J Cancer 2019; 145:1055-1067. [PMID: 30737777 PMCID: PMC6617729 DOI: 10.1002/ijc.32200] [Citation(s) in RCA: 34] [Impact Index Per Article: 6.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/25/2018] [Revised: 11/29/2018] [Accepted: 01/29/2019] [Indexed: 01/01/2023]
Abstract
Standard therapy for advanced Prostate Cancer (PCa) consists of antiandrogens, which provide respite from disease progression, but ultimately fail resulting in the incurable phase of the disease: mCRPC. Targeting PCa cells before their progression to mCRPC would greatly improve the outcome. Combination therapy targeting the DNA Damage Response (DDR) has been limited by general toxicity, and a goal of clinical trials is how to target the DDR more specifically. We now show that androgen deprivation therapy (ADT) of LNCaP cells results in increased expression of TLK1B, a key kinase upstream of NEK1 and ATR and mediating the DDR that typically results in a temporary cell cycle arrest of androgen responsive PCa cells. Following DNA damage, addition of the TLK specific inhibitor, thioridazine (THD), impairs ATR and Chk1 activation, establishing the existence of a ADT > TLK1 > NEK1 > ATR > Chk1, DDR pathway, while its abrogation leads to apoptosis. Treatment with THD suppressed the outgrowth of androgen‐independent (AI) colonies of LNCaP and TRAMP‐C2 cells cultured with bicalutamide. Moreover, THD significantly inhibited the growth of several PCa cells in vitro (including AI lines). Administration of THD or bicalutamide was not effective at inhibiting long‐term tumor growth of LNCaP xenografts. In contrast, combination therapy remarkably inhibited tumor growth via bypass of the DDR. Moreover, xenografts of LNCaP cells overexpressing a NEK1‐T141A mutant were durably suppressed with bicalutamide. Collectively, these results suggest that targeting the TLK1/NEK1 axis might be a novel therapy for PCa in combination with standard of care (ADT). What's new? Standard therapy for advanced Prostate Cancer (PCa) consists of anti‐androgens, which only provide temporary respite from disease progression to metastatic castrate‐resistant prostate cancer (mCRPC). Here, the authors show in the LNCaP cell model that the increased expression with ADT of TLK1B, a prosurvival checkpoint pathway that is enacted before conversion to androgen‐independent growth, offers a unique target for attacking more specifically PCa cells before their conversion to CRPC. Moreover, they suggest to re‐purpose thioridazine or other phenothiazine antipsychotic drugs as inhibitors of the TLK1 > Nek1 > ATR > Chk1 DNA Damage Response (DDR) axis for the early treatment of advanced PCa still responsive to ADT.
Collapse
Affiliation(s)
- Vibha Singh
- Department of Biochemistry and Molecular Biology, Louisiana State University Health Sciences Center, Shreveport, LA
| | - Praveen Kumar Jaiswal
- Department of Biochemistry and Molecular Biology, Louisiana State University Health Sciences Center, Shreveport, LA
| | - Ishita Ghosh
- Department of Biochemistry and Molecular Biology, Louisiana State University Health Sciences Center, Shreveport, LA
| | - Hari K Koul
- Department of Biochemistry and Molecular Biology, Louisiana State University Health Sciences Center, Shreveport, LA.,Feist Weiller Cancer Center, LSUHSC, Shreveport, LA.,Overton Brooks VA Medical center, Shreveport, LA
| | - Xiuping Yu
- Department of Biochemistry and Molecular Biology, Louisiana State University Health Sciences Center, Shreveport, LA
| | - Arrigo De Benedetti
- Department of Biochemistry and Molecular Biology, Louisiana State University Health Sciences Center, Shreveport, LA
| |
Collapse
|
20
|
De Donato M, Righino B, Filippetti F, Battaglia A, Petrillo M, Pirolli D, Scambia G, De Rosa MC, Gallo D. Identification and antitumor activity of a novel inhibitor of the NIMA-related kinase NEK6. Sci Rep 2018; 8:16047. [PMID: 30375481 PMCID: PMC6207720 DOI: 10.1038/s41598-018-34471-y] [Citation(s) in RCA: 23] [Impact Index Per Article: 3.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/30/2018] [Accepted: 10/12/2018] [Indexed: 12/29/2022] Open
Abstract
The NIMA (never in mitosis, gene A)-related kinase-6 (NEK6), which is implicated in cell cycle control and plays significant roles in tumorigenesis, is an attractive target for the development of novel anti-cancer drugs. Here we describe the discovery of a potent ATP site-directed inhibitor of NEK6 identified by virtual screening, adopting both structure- and ligand-based techniques. Using a homology-built model of NEK6 as well as the pharmacophoric features of known NEK6 inhibitors we identified novel binding scaffolds. Twenty-five compounds from the top ranking hits were subjected to in vitro kinase assays. The best compound, i.e. compound 8 ((5Z)-2-hydroxy-4-methyl-6-oxo-5-[(5-phenylfuran-2-yl)methylidene]-5,6-dihydropyridine-3-carbonitrile), was able to inhibit NEK6 with low micromolar IC50 value, also displaying antiproliferative activity against a panel of human cancer cell lines. Our results suggest that the identified inhibitor can be used as lead candidate for the development of novel anti-cancer agents, thus opening the possibility of new therapeutic strategies.
Collapse
Affiliation(s)
- Marta De Donato
- Institute of Obstetrics and Gynecology, Università Cattolica del Sacro Cuore, Rome, Italy.,Department of Woman and Child Health, Fondazione Policlinico Universitario A. Gemelli, IRCCS, Rome, Italy
| | - Benedetta Righino
- Institute of Biochemistry and Clinical Biochemistry - Università Cattolica del Sacro Cuore, Rome, Italy
| | - Flavia Filippetti
- Institute of Obstetrics and Gynecology, Università Cattolica del Sacro Cuore, Rome, Italy.,Department of Woman and Child Health, Fondazione Policlinico Universitario A. Gemelli, IRCCS, Rome, Italy
| | - Alessandra Battaglia
- Institute of Obstetrics and Gynecology, Università Cattolica del Sacro Cuore, Rome, Italy
| | - Marco Petrillo
- Institute of Obstetrics and Gynecology, Università Cattolica del Sacro Cuore, Rome, Italy.,Gynecologic and Obstetric Clinic, Department of Clinical and Experimental Medicine, University of Sassari, Sassari, Italy
| | - Davide Pirolli
- Institute of Chemistry of Molecular Recognition (ICRM) - CNR, Rome, Italy
| | - Giovanni Scambia
- Institute of Obstetrics and Gynecology, Università Cattolica del Sacro Cuore, Rome, Italy.,Department of Woman and Child Health, Fondazione Policlinico Universitario A. Gemelli, IRCCS, Rome, Italy
| | | | - Daniela Gallo
- Institute of Obstetrics and Gynecology, Università Cattolica del Sacro Cuore, Rome, Italy.,Department of Woman and Child Health, Fondazione Policlinico Universitario A. Gemelli, IRCCS, Rome, Italy
| |
Collapse
|
21
|
Lee HJ, Jedrychowski MP, Vinayagam A, Wu N, Shyh-Chang N, Hu Y, Min-Wen C, Moore JK, Asara JM, Lyssiotis CA, Perrimon N, Gygi SP, Cantley LC, Kirschner MW. Proteomic and Metabolomic Characterization of a Mammalian Cellular Transition from Quiescence to Proliferation. Cell Rep 2018; 20:721-736. [PMID: 28723573 DOI: 10.1016/j.celrep.2017.06.074] [Citation(s) in RCA: 29] [Impact Index Per Article: 4.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/20/2017] [Revised: 05/22/2017] [Accepted: 06/25/2017] [Indexed: 12/28/2022] Open
Abstract
There exist similarities and differences in metabolism and physiology between normal proliferative cells and tumor cells. Once a cell enters the cell cycle, metabolic machinery is engaged to facilitate various processes. The kinetics and regulation of these metabolic changes have not been properly evaluated. To correlate the orchestration of these processes with the cell cycle, we analyzed the transition from quiescence to proliferation of a non-malignant murine pro-B lymphocyte cell line in response to IL-3. Using multiplex mass-spectrometry-based proteomics, we show that the transition to proliferation shares features generally attributed to cancer cells: upregulation of glycolysis, lipid metabolism, amino-acid synthesis, and nucleotide synthesis and downregulation of oxidative phosphorylation and the urea cycle. Furthermore, metabolomic profiling of this transition reveals similarities to cancer-related metabolic pathways. In particular, we find that methionine is consumed at a higher rate than that of other essential amino acids, with a potential link to maintenance of the epigenome.
Collapse
Affiliation(s)
- Ho-Joon Lee
- Department of Systems Biology, Harvard Medical School, Boston, MA 02115, USA
| | | | | | - Ning Wu
- Center for Cancer and Cell Biology, Van Andel Research Institute, Grand Rapids, MI 49503, USA
| | - Ng Shyh-Chang
- Stem Cell & Regenerative Biology, Genome Institute of Singapore, S138672 Singapore, Singapore
| | - Yanhui Hu
- Department of Genetics, Harvard Medical School, Boston, MA 02115, USA
| | - Chua Min-Wen
- Stem Cell & Regenerative Biology, Genome Institute of Singapore, S138672 Singapore, Singapore
| | - Jodene K Moore
- Department of Systems Biology, Harvard Medical School, Boston, MA 02115, USA
| | - John M Asara
- Division of Signal Transduction, Department of Medicine, Beth Israel Deaconess Medical Center and Harvard Medical School, Boston, MA 02115, USA
| | - Costas A Lyssiotis
- Division of Gastroenterology, Department of Molecular and Integrative Physiology and Department of Internal Medicine, University of Michigan Medical School, Ann Arbor, MI 48109, USA
| | - Norbert Perrimon
- Department of Genetics, Harvard Medical School, Boston, MA 02115, USA
| | - Steven P Gygi
- Department of Cell Biology, Harvard Medical School, Boston, MA 02115, USA
| | - Lewis C Cantley
- Meyer Cancer Center, Department of Medicine, Weill Cornell Medical College, New York, NY 10065, USA
| | - Marc W Kirschner
- Department of Systems Biology, Harvard Medical School, Boston, MA 02115, USA.
| |
Collapse
|
22
|
Brieño-Enríquez MA, Moak SL, Holloway JK, Cohen PE. NIMA-related kinase 1 (NEK1) regulates meiosis I spindle assembly by altering the balance between α-Adducin and Myosin X. PLoS One 2017; 12:e0185780. [PMID: 28982183 PMCID: PMC5628868 DOI: 10.1371/journal.pone.0185780] [Citation(s) in RCA: 15] [Impact Index Per Article: 2.1] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/22/2017] [Accepted: 09/19/2017] [Indexed: 12/17/2022] Open
Abstract
NIMA-related kinase 1 (NEK1) is a serine/threonine and tyrosine kinase that is highly expressed in mammalian germ cells. Mutations in Nek1 induce anemia, polycystic kidney and infertility. In this study we evaluated the role of NEK1 in meiotic spindle formation in both male and female gametes. Our results show that the lack of NEK1 provokes an abnormal organization of the meiosis I spindle characterized by elongated and/or multipolar spindles, and abnormal chromosome congression. The aberrant spindle structure is concomitant with the disruption in localization and protein levels of myosin X (MYO10) and α-adducin (ADD1), both of which are implicated in the regulation of spindle formation during mitosis. Interaction of ADD1 with MYO10 is dependent on phosphorylation, whereby phosphorylation of ADD1 enables its binding to MYO10 on mitotic spindles. Reduction in ADD1 protein in NEK1 mutant mice is associated with hyperphosphorylation of ADD1, thereby preventing the interaction with MYO10 during meiotic spindle formation. Our results reveal a novel regulatory role for NEK1 in the regulation of spindle architecture and function during meiosis.
Collapse
Affiliation(s)
- Miguel A. Brieño-Enríquez
- Department of Biomedical Sciences and Center for Reproductive Genomics, Cornell University, Ithaca, New York, United States of America
- * E-mail:
| | - Stefannie L. Moak
- Department of Biomedical Sciences and Center for Reproductive Genomics, Cornell University, Ithaca, New York, United States of America
| | - J. Kim Holloway
- Department of Biomedical Sciences and Center for Reproductive Genomics, Cornell University, Ithaca, New York, United States of America
| | - Paula E. Cohen
- Department of Biomedical Sciences and Center for Reproductive Genomics, Cornell University, Ithaca, New York, United States of America
| |
Collapse
|
23
|
Saldivar JC, Cortez D, Cimprich KA. The essential kinase ATR: ensuring faithful duplication of a challenging genome. Nat Rev Mol Cell Biol 2017; 18:622-636. [PMID: 28811666 DOI: 10.1038/nrm.2017.67] [Citation(s) in RCA: 548] [Impact Index Per Article: 78.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/14/2022]
Abstract
One way to preserve a rare book is to lock it away from all potential sources of damage. Of course, an inaccessible book is also of little use, and the paper and ink will continue to degrade with age in any case. Like a book, the information stored in our DNA needs to be read, but it is also subject to continuous assault and therefore needs to be protected. In this Review, we examine how the replication stress response that is controlled by the kinase ataxia telangiectasia and Rad3-related (ATR) senses and resolves threats to DNA integrity so that the DNA remains available to read in all of our cells. We discuss the multiple data that have revealed an elegant yet increasingly complex mechanism of ATR activation. This involves a core set of components that recruit ATR to stressed replication forks, stimulate kinase activity and amplify ATR signalling. We focus on the activities of ATR in the control of cell cycle checkpoints, origin firing and replication fork stability, and on how proper regulation of these processes is crucial to ensure faithful duplication of a challenging genome.
Collapse
Affiliation(s)
- Joshua C Saldivar
- Department of Chemical and Systems Biology, Stanford University School of Medicine, 318 Campus Drive, Stanford, California 94305-5441, USA
| | - David Cortez
- Department of Biochemistry, School of Medicine, Vanderbilt University, Nashville, Tennessee 37232, USA
| | - Karlene A Cimprich
- Department of Chemical and Systems Biology, Stanford University School of Medicine, 318 Campus Drive, Stanford, California 94305-5441, USA
| |
Collapse
|
24
|
Marina Perez A, Aquino B, Viviani V, Kobarg J. Use of a special Brazilian red-light emitting railroad worm Luciferase in bioassays of NEK7 protein Kinase and Creatine Kinase. BMC BIOCHEMISTRY 2017; 18:12. [PMID: 28724347 PMCID: PMC5518096 DOI: 10.1186/s12858-017-0087-z] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 11/21/2016] [Accepted: 07/12/2017] [Indexed: 11/24/2022]
Abstract
Background Luciferases, enzymes that catalyze bioluminescent reactions in different organisms, have been extensively used for bioanalytical purposes. The most well studied bioluminescent system is that of firefly and other beetles, which depends on a luciferase, a benzothiazolic luciferin and ATP, and it is being widely used as a bioanalytical reagent to quantify ATP. Protein kinases are proteins that modify other proteins by transferring phosphate groups from a nucleoside triphosphate, usually ATP. Methods Here, we used a red-light emitting luciferase from Phrixotrix hirtus railroad worm to determine the activity of kinases in a coupled assay, based on luminescence that is generated when luciferase is in the presence of its substrate, the luciferin, and ATP. Results In this work we used, after several optimization reactions, creatine kinase isoforms as well as NEK7 protein kinase in the absence or presence of ATP analogous inhibitors to validate this new luminescence method. Conclusion With this new approach we validated a luminescence method to quantify kinase activity, with different substrates and inhibition screening tests, using a novel red-light emitting luciferase as a reporter enzyme. Electronic supplementary material The online version of this article (doi:10.1186/s12858-017-0087-z) contains supplementary material, which is available to authorized users.
Collapse
Affiliation(s)
- Arina Marina Perez
- Instituto de Biologia, Departamento Bioquímica e Biologia Tecidual, Universidade Estadual de Campinas, Campinas, Programa de Pós-gradução em Biologia Molecular e Funcional São Paulo, Rua Monteiro Lobato 255, Campinas, SP, CEP 13083-862, Brazil.,Laboratório Nacional de Biociências, Centro Nacional de Pesquisa em Energia e Materiais, Campinas, São Paulo, Brazil
| | - Bruno Aquino
- Instituto de Biologia, Departamento Bioquímica e Biologia Tecidual, Universidade Estadual de Campinas, Campinas, Programa de Pós-gradução em Biologia Molecular e Funcional São Paulo, Rua Monteiro Lobato 255, Campinas, SP, CEP 13083-862, Brazil.,Laboratório Nacional de Biociências, Centro Nacional de Pesquisa em Energia e Materiais, Campinas, São Paulo, Brazil
| | - Vadim Viviani
- Laboratório Bioquímica e Biotecnologia de Sistemas Bioluminescentes, Departamento Física, Química e Matemática, CCTS, UFSCAR, Sorocaba, Brazil
| | - Jörg Kobarg
- Instituto de Biologia, Departamento Bioquímica e Biologia Tecidual, Universidade Estadual de Campinas, Campinas, Programa de Pós-gradução em Biologia Molecular e Funcional São Paulo, Rua Monteiro Lobato 255, Campinas, SP, CEP 13083-862, Brazil. .,Faculdade de Ciências Farmacêuticas, Universidade Estadual de Campinas, Campinas, São Paulo, Brazil.
| |
Collapse
|
25
|
NEK1 kinase domain structure and its dynamic protein interactome after exposure to Cisplatin. Sci Rep 2017; 7:5445. [PMID: 28710492 PMCID: PMC5511132 DOI: 10.1038/s41598-017-05325-w] [Citation(s) in RCA: 18] [Impact Index Per Article: 2.6] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/07/2017] [Accepted: 06/02/2017] [Indexed: 11/11/2022] Open
Abstract
NEK family kinases are serine/threonine kinases that have been functionally implicated in the regulation of the disjunction of the centrosome, the assembly of the mitotic spindle, the function of the primary cilium and the DNA damage response. NEK1 shows pleiotropic functions and has been found to be mutated in cancer cells, ciliopathies such as the polycystic kidney disease, as well as in the genetic diseases short-rib thoracic dysplasia, Mohr-syndrome and amyotrophic lateral sclerosis. NEK1 is essential for the ionizing radiation DNA damage response and priming of the ATR kinase and of Rad54 through phosphorylation. Here we report on the structure of the kinase domain of human NEK1 in its apo- and ATP-mimetic inhibitor bound forms. The inhibitor bound structure may allow the design of NEK specific chemo-sensitizing agents to act in conjunction with chemo- or radiation therapy of cancer cells. Furthermore, we characterized the dynamic protein interactome of NEK1 after DNA damage challenge with cisplatin. Our data suggest that NEK1 and its interaction partners trigger the DNA damage pathways responsible for correcting DNA crosslinks.
Collapse
|
26
|
Singh V, Connelly ZM, Shen X, De Benedetti A. Identification of the proteome complement of humanTLK1 reveals it binds and phosphorylates NEK1 regulating its activity. Cell Cycle 2017; 16:915-926. [PMID: 28426283 DOI: 10.1080/15384101.2017.1314421] [Citation(s) in RCA: 20] [Impact Index Per Article: 2.9] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 10/19/2022] Open
Abstract
The Tousled Like kinases (TLKs) are involved in numerous cellular functions, including the DNA Damage Response (DDR), but only a handful of substrates have been identified thus far. Through a novel proteomic screen, we have now identified 165 human proteins interacting with TLK1, and we have focused this work on NEK1 because of its known role in the DDR, upstream of ATR and Chk1. TLK1 and NEK1 were found to interact by coIP, and their binding is strengthened following exposure of cells to H2O2. Following incubation with doxorubicin, TLK1 and NEK1 relocalize with nuclear repair foci along with γH2AX. TLK1 phosphorylated NEK1 at T141, which lies in the kinase domain, and caused an increase in its activity. Following DNA damage, addition of the TLK1 inhibitor, THD, or overexpression of NEK1-T141A mutant impaired ATR and Chk1 activation, indicating the existence of a TLK1>NEK1>ATR>Chk1 pathway. Indeed, overexpression of the NEK1-T141A mutant resulted in an altered cell cycle response after exposure of cells to oxidative stress, including bypass of G1 arrest and implementation of an intra S-phase checkpoint.
Collapse
Affiliation(s)
- Vibha Singh
- a Department of Biochemistry and Molecular Biology , Louisiana State University Health Sciences Center , Shreveport , LA , USA
| | - Zachary M Connelly
- a Department of Biochemistry and Molecular Biology , Louisiana State University Health Sciences Center , Shreveport , LA , USA
| | - Xinggui Shen
- b Pathology and Translational Pathobiology , Louisiana State University Health Sciences Center , Shreveport , LA , USA
| | - Arrigo De Benedetti
- a Department of Biochemistry and Molecular Biology , Louisiana State University Health Sciences Center , Shreveport , LA , USA
| |
Collapse
|
27
|
Tan R, Nakajima S, Wang Q, Sun H, Xue J, Wu J, Hellwig S, Zeng X, Yates NA, Smithgall TE, Lei M, Jiang Y, Levine AS, Su B, Lan L. Nek7 Protects Telomeres from Oxidative DNA Damage by Phosphorylation and Stabilization of TRF1. Mol Cell 2017; 65:818-831.e5. [PMID: 28216227 PMCID: PMC5924698 DOI: 10.1016/j.molcel.2017.01.015] [Citation(s) in RCA: 40] [Impact Index Per Article: 5.7] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/11/2016] [Revised: 11/26/2016] [Accepted: 01/05/2017] [Indexed: 11/24/2022]
Abstract
Telomeric repeat binding factor 1 (TRF1) is essential to the maintenance of telomere chromatin structure and integrity. However, how telomere integrity is maintained, especially in response to damage, remains poorly understood. Here, we identify Nek7, a member of the Never in Mitosis Gene A (NIMA) kinase family, as a regulator of telomere integrity. Nek7 is recruited to telomeres and stabilizes TRF1 at telomeres after damage in an ATM activation-dependent manner. Nek7 deficiency leads to telomere aberrations, long-lasting γH2AX and 53BP1 foci, and augmented cell death upon oxidative telomeric DNA damage. Mechanistically, Nek7 interacts with and phosphorylates TRF1 on Ser114, which prevents TRF1 from binding to Fbx4, an Skp1-Cul1-F box E3 ligase subunit, thereby alleviating proteasomal degradation of TRF1, leading to a stable association of TRF1 with Tin2 to form a shelterin complex. Our data reveal a mechanism of efficient protection of telomeres from damage through Nek7-dependent stabilization of TRF1.
Collapse
Affiliation(s)
- Rong Tan
- Xiangya Hospital, Central South University, 87 Xiangya Road, Changsha, Hunan 410008, China; University of Pittsburgh Cancer Institute, University of Pittsburgh School of Medicine, 5117 Centre Avenue, Pittsburgh, PA 15213, USA; Department of Microbiology and Molecular Genetics, University of Pittsburgh School of Medicine, Bridgeside Point II, 450 Technology Drive, Pittsburgh, PA 15219, USA; Shanghai Institute of Immunology, Shanghai JiaoTong University School of Medicine, 280 South Chongqing Road, Shanghai 200025, China
| | - Satoshi Nakajima
- University of Pittsburgh Cancer Institute, University of Pittsburgh School of Medicine, 5117 Centre Avenue, Pittsburgh, PA 15213, USA; Department of Microbiology and Molecular Genetics, University of Pittsburgh School of Medicine, Bridgeside Point II, 450 Technology Drive, Pittsburgh, PA 15219, USA
| | - Qun Wang
- Shanghai Institute of Immunology, Shanghai JiaoTong University School of Medicine, 280 South Chongqing Road, Shanghai 200025, China
| | - Hongxiang Sun
- Shanghai Institute of Immunology, Shanghai JiaoTong University School of Medicine, 280 South Chongqing Road, Shanghai 200025, China
| | - Jing Xue
- Institute of Biochemistry and Cell Biology, Shanghai Institutes for Biological Sciences, Chinese Academy of Sciences, 320 Yue Yang Road, Shanghai 200031, China
| | - Jian Wu
- Institute of Biochemistry and Cell Biology, Shanghai Institutes for Biological Sciences, Chinese Academy of Sciences, 320 Yue Yang Road, Shanghai 200031, China
| | - Sabine Hellwig
- Department of Microbiology and Molecular Genetics, University of Pittsburgh School of Medicine, Bridgeside Point II, 450 Technology Drive, Pittsburgh, PA 15219, USA
| | - Xuemei Zeng
- Biomedical Mass Spectrometry Center, University of Pittsburgh Schools of the Health Sciences, 3501 Fifth Avenue, 9th Floor Biomedical Science Tower III, Pittsburgh, PA 15261, USA
| | - Nathan A Yates
- University of Pittsburgh Cancer Institute, University of Pittsburgh School of Medicine, 5117 Centre Avenue, Pittsburgh, PA 15213, USA; Biomedical Mass Spectrometry Center, University of Pittsburgh Schools of the Health Sciences, 3501 Fifth Avenue, 9th Floor Biomedical Science Tower III, Pittsburgh, PA 15261, USA; Department of Cell Biology, University of Pittsburgh School of Medicine, 3500 Terrace Street, S362 Biomedical Science Tower S, Pittsburgh, PA 15261, USA
| | - Thomas E Smithgall
- Department of Microbiology and Molecular Genetics, University of Pittsburgh School of Medicine, Bridgeside Point II, 450 Technology Drive, Pittsburgh, PA 15219, USA
| | - Ming Lei
- Institute of Biochemistry and Cell Biology, Shanghai Institutes for Biological Sciences, Chinese Academy of Sciences, 320 Yue Yang Road, Shanghai 200031, China
| | - Yu Jiang
- Department of Pharmacology and Chemical Biology, University of Pittsburgh School of Medicine, W1058 Thomas E. Starzl Biomedical Science Tower, Pittsburgh, PA 15261, USA
| | - Arthur S Levine
- University of Pittsburgh Cancer Institute, University of Pittsburgh School of Medicine, 5117 Centre Avenue, Pittsburgh, PA 15213, USA; Department of Microbiology and Molecular Genetics, University of Pittsburgh School of Medicine, Bridgeside Point II, 450 Technology Drive, Pittsburgh, PA 15219, USA
| | - Bing Su
- Xiangya Hospital, Central South University, 87 Xiangya Road, Changsha, Hunan 410008, China; Shanghai Institute of Immunology, Shanghai JiaoTong University School of Medicine, 280 South Chongqing Road, Shanghai 200025, China; Department of Immunobiology and the Vascular Biology and Therapeutics Program, Yale School of Medicine, 10 Amistad Street, PO Box 208011, New Haven, CT 06520, USA.
| | - Li Lan
- University of Pittsburgh Cancer Institute, University of Pittsburgh School of Medicine, 5117 Centre Avenue, Pittsburgh, PA 15213, USA; Department of Microbiology and Molecular Genetics, University of Pittsburgh School of Medicine, Bridgeside Point II, 450 Technology Drive, Pittsburgh, PA 15219, USA.
| |
Collapse
|
28
|
Lažetić V, Fay DS. Conserved Ankyrin Repeat Proteins and Their NIMA Kinase Partners Regulate Extracellular Matrix Remodeling and Intracellular Trafficking in Caenorhabditis elegans. Genetics 2017; 205:273-293. [PMID: 27799278 PMCID: PMC5223508 DOI: 10.1534/genetics.116.194464] [Citation(s) in RCA: 21] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/02/2016] [Accepted: 10/28/2016] [Indexed: 12/27/2022] Open
Abstract
Molting is an essential developmental process in nematodes during which the epidermal apical extracellular matrix, the cuticle, is remodeled to accommodate further growth. Using genetic approaches, we identified a requirement for three conserved ankyrin repeat-rich proteins, MLT-2/ANKS6, MLT-3/ANKS3, and MLT-4/INVS, in Caenorhabditis elegans molting. Loss of mlt function resulted in severe defects in the ability of larvae to shed old cuticle and led to developmental arrest. Genetic analyses demonstrated that MLT proteins functionally cooperate with the conserved NIMA kinase family members NEKL-2/NEK8 and NEKL-3/NEK6/NEK7 to promote cuticle shedding. MLT and NEKL proteins were specifically required within the hyp7 epidermal syncytium, and fluorescently tagged mlt and nekl alleles were expressed in puncta within this tissue. Expression studies further showed that NEKL-2-MLT-2-MLT-4 and NEKL-3-MLT-3 colocalize within largely distinct assemblies of apical foci. MLT-2 and MLT-4 were required for the normal accumulation of NEKL-2 at the hyp7-seam cell boundary, and loss of mlt-2 caused abnormal nuclear accumulation of NEKL-2 Correspondingly, MLT-3, which bound directly to NEKL-3, prevented NEKL-3 nuclear localization, supporting the model that MLT proteins may serve as molecular scaffolds for NEKL kinases. Our studies additionally showed that the NEKL-MLT network regulates early steps in clathrin-mediated endocytosis at the apical surface of hyp7, which may in part account for molting defects observed in nekl and mlt mutants. This study has thus identified a conserved NEKL-MLT protein network that regulates remodeling of the apical extracellular matrix and intracellular trafficking, functions that may be conserved across species.
Collapse
Affiliation(s)
- Vladimir Lažetić
- Department of Molecular Biology, College of Agriculture and Natural Resources, University of Wyoming, Laramie, Wyoming 82071
| | - David S Fay
- Department of Molecular Biology, College of Agriculture and Natural Resources, University of Wyoming, Laramie, Wyoming 82071
| |
Collapse
|
29
|
Brieño-Enríquez MA, Moak SL, Toledo M, Filter JJ, Gray S, Barbero JL, Cohen PE, Holloway JK. Cohesin Removal along the Chromosome Arms during the First Meiotic Division Depends on a NEK1-PP1γ-WAPL Axis in the Mouse. Cell Rep 2016; 17:977-986. [PMID: 27760328 PMCID: PMC5123770 DOI: 10.1016/j.celrep.2016.09.059] [Citation(s) in RCA: 28] [Impact Index Per Article: 3.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/29/2016] [Revised: 07/25/2016] [Accepted: 09/16/2016] [Indexed: 12/25/2022] Open
Abstract
Mammalian NIMA-like kinase-1 (NEK1) is a dual-specificity kinase highly expressed in mouse germ cells during prophase I of meiosis. Loss of NEK1 induces retention of cohesin on chromosomes at meiotic prophase I. Timely deposition and removal of cohesin is essential for accurate chromosome segregation. Two processes regulate cohesin removal: a non-proteolytic mechanism involving WAPL, sororin, and PDS5B and direct cleavage by separase. Here, we demonstrate a role for NEK1 in the regulation of WAPL loading during meiotic prophase I, via an interaction between NEK1 and PDS5B. This regulation of WAPL by NEK1-PDS5B is mediated by protein phosphatase 1 gamma (PP1γ), which both interacts with and is a phosphotarget of NEK1. Taken together, our results reveal that NEK1 phosphorylates PP1γ, leading to the dephosphorylation of WAPL, which, in turn, results in its retention on chromosome cores to promote loss of cohesion at the end of prophase I in mammals.
Collapse
Affiliation(s)
- Miguel A Brieño-Enríquez
- Department of Biomedical Sciences and Center for Reproductive Genomics, Cornell University, Ithaca, NY 14853, USA
| | - Stefannie L Moak
- Department of Biomedical Sciences and Center for Reproductive Genomics, Cornell University, Ithaca, NY 14853, USA
| | - Melissa Toledo
- Department of Biomedical Sciences and Center for Reproductive Genomics, Cornell University, Ithaca, NY 14853, USA
| | - Joshua J Filter
- Department of Molecular Biology and Genetics, Cornell University, Ithaca, NY 14853, USA
| | - Stephen Gray
- Department of Biomedical Sciences and Center for Reproductive Genomics, Cornell University, Ithaca, NY 14853, USA
| | - José L Barbero
- Department of Cellular and Molecular Biology, Laboratory of Chromosomal Dynamics in Meiosis, Centro de Investigaciones Biológicas (CSIC), Madrid 28040, Spain
| | - Paula E Cohen
- Department of Biomedical Sciences and Center for Reproductive Genomics, Cornell University, Ithaca, NY 14853, USA.
| | - J Kim Holloway
- Department of Biomedical Sciences and Center for Reproductive Genomics, Cornell University, Ithaca, NY 14853, USA.
| |
Collapse
|
30
|
Monroe GR, Kappen IF, Stokman MF, Terhal PA, van den Boogaard MJH, Savelberg SM, van der Veken LT, van Es RJ, Lens SM, Hengeveld RC, Creton MA, Janssen NG, Mink van der Molen AB, Ebbeling MB, Giles RH, Knoers NV, van Haaften G. Compound heterozygous NEK1 variants in two siblings with oral-facial-digital syndrome type II (Mohr syndrome). Eur J Hum Genet 2016; 24:1752-1760. [PMID: 27530628 DOI: 10.1038/ejhg.2016.103] [Citation(s) in RCA: 12] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/15/2016] [Revised: 05/23/2016] [Accepted: 06/28/2016] [Indexed: 01/01/2023] Open
Abstract
The oral-facial-digital (OFD) syndromes comprise a group of related disorders with a combination of oral, facial and digital anomalies. Variants in several ciliary genes have been associated with subtypes of OFD syndrome, yet in most OFD patients the underlying cause remains unknown. We investigated the molecular basis of disease in two brothers with OFD type II, Mohr syndrome, by performing single-nucleotide polymorphism (SNP)-array analysis on the brothers and their healthy parents to identify homozygous regions and candidate genes. Subsequently, we performed whole-exome sequencing (WES) on the family. Using WES, we identified compound heterozygous variants c.[464G>C];[1226G>A] in NIMA (Never in Mitosis Gene A)-Related Kinase 1 (NEK1). The novel variant c.464G>C disturbs normal splicing in an essential region of the kinase domain. The nonsense variant c.1226G>A, p.(Trp409*), results in nonsense-associated alternative splicing, removing the first coiled-coil domain of NEK1. Candidate variants were confirmed with Sanger sequencing and alternative splicing assessed with cDNA analysis. Immunocytochemistry was used to assess cilia number and length. Patient-derived fibroblasts showed severely reduced ciliation compared with control fibroblasts (18.0 vs 48.9%, P<0.0001), but showed no significant difference in cilia length. In conclusion, we identified compound heterozygous deleterious variants in NEK1 in two brothers with Mohr syndrome. Ciliation in patient fibroblasts is drastically reduced, consistent with a ciliary defect pathogenesis. Our results establish NEK1 variants involved in the etiology of a subset of patients with OFD syndrome type II and support the consideration of including (routine) NEK1 analysis in patients suspected of OFD.
Collapse
Affiliation(s)
- Glen R Monroe
- Department of Genetics, University Medical Center Utrecht, Utrecht, The Netherlands.,Center for Molecular Medicine, University Medical Center Utrecht, Utrecht, The Netherlands
| | - Isabelle Fpm Kappen
- Department of Genetics, University Medical Center Utrecht, Utrecht, The Netherlands.,Department of Plastic Surgery, University Medical Center Utrecht, Utrecht, The Netherlands
| | - Marijn F Stokman
- Department of Genetics, University Medical Center Utrecht, Utrecht, The Netherlands.,Center for Molecular Medicine, University Medical Center Utrecht, Utrecht, The Netherlands
| | - Paulien A Terhal
- Department of Genetics, University Medical Center Utrecht, Utrecht, The Netherlands
| | | | - Sanne Mc Savelberg
- Department of Genetics, University Medical Center Utrecht, Utrecht, The Netherlands.,Center for Molecular Medicine, University Medical Center Utrecht, Utrecht, The Netherlands
| | - Lars T van der Veken
- Department of Genetics, University Medical Center Utrecht, Utrecht, The Netherlands
| | - Robert Jj van Es
- Department of Oral and Maxillofacial Surgery and Special Dental Care, University Medical Center Utrecht, Utrecht, The Netherlands
| | - Susanne M Lens
- Center for Molecular Medicine, University Medical Center Utrecht, Utrecht, The Netherlands.,Department of Molecular Cancer Research, University Medical Center Utrecht, Utrecht, The Netherlands
| | - Rutger C Hengeveld
- Center for Molecular Medicine, University Medical Center Utrecht, Utrecht, The Netherlands.,Department of Molecular Cancer Research, University Medical Center Utrecht, Utrecht, The Netherlands
| | - Marijn A Creton
- Department of Oral and Maxillofacial Surgery and Special Dental Care, University Medical Center Utrecht, Utrecht, The Netherlands
| | - Nard G Janssen
- Department of Oral and Maxillofacial Surgery and Special Dental Care, University Medical Center Utrecht, Utrecht, The Netherlands
| | | | - Michelle B Ebbeling
- Department of Ophthalmology, University Medical Center Utrecht, Utrecht, The Netherlands
| | - Rachel H Giles
- Department of Nephrology and Hypertension, University Medical Center Utrecht, Regenerative Medicine Center-Hubrecht Institute, Utrecht, The Netherlands
| | - Nine V Knoers
- Department of Genetics, University Medical Center Utrecht, Utrecht, The Netherlands.,Center for Molecular Medicine, University Medical Center Utrecht, Utrecht, The Netherlands
| | - Gijs van Haaften
- Department of Genetics, University Medical Center Utrecht, Utrecht, The Netherlands.,Center for Molecular Medicine, University Medical Center Utrecht, Utrecht, The Netherlands
| |
Collapse
|
31
|
Spies J, Waizenegger A, Barton O, Sürder M, Wright WD, Heyer WD, Löbrich M. Nek1 Regulates Rad54 to Orchestrate Homologous Recombination and Replication Fork Stability. Mol Cell 2016; 62:903-917. [PMID: 27264870 DOI: 10.1016/j.molcel.2016.04.032] [Citation(s) in RCA: 71] [Impact Index Per Article: 8.9] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/29/2015] [Revised: 03/23/2016] [Accepted: 04/26/2016] [Indexed: 11/17/2022]
Abstract
Never-in-mitosis A-related kinase 1 (Nek1) has established roles in apoptosis and cell cycle regulation. We show that human Nek1 regulates homologous recombination (HR) by phosphorylating Rad54 at Ser572 in late G2 phase. Nek1 deficiency as well as expression of unphosphorylatable Rad54 (Rad54-S572A) cause unresolved Rad51 foci and confer a defect in HR. Phospho-mimic Rad54 (Rad54-S572E), in contrast, promotes HR and rescues the HR defect associated with Nek1 loss. Although expression of phospho-mimic Rad54 is beneficial for HR, it causes Rad51 removal from chromatin and degradation of stalled replication forks in S phase. Thus, G2-specific phosphorylation of Rad54 by Nek1 promotes Rad51 chromatin removal during HR in G2 phase, and its absence in S phase is required for replication fork stability. In summary, Nek1 regulates Rad51 removal to orchestrate HR and replication fork stability.
Collapse
Affiliation(s)
- Julian Spies
- Radiation Biology and DNA Repair, Darmstadt University of Technology, 64287 Darmstadt, Germany
| | - Anja Waizenegger
- Radiation Biology and DNA Repair, Darmstadt University of Technology, 64287 Darmstadt, Germany
| | - Olivia Barton
- Radiation Biology and DNA Repair, Darmstadt University of Technology, 64287 Darmstadt, Germany
| | - Michael Sürder
- Radiation Biology and DNA Repair, Darmstadt University of Technology, 64287 Darmstadt, Germany
| | - William D Wright
- Section of Microbiology, University of California, Davis, Davis, CA 95616-8665, USA
| | - Wolf-Dietrich Heyer
- Section of Microbiology, University of California, Davis, Davis, CA 95616-8665, USA
| | - Markus Löbrich
- Radiation Biology and DNA Repair, Darmstadt University of Technology, 64287 Darmstadt, Germany.
| |
Collapse
|
32
|
Meng D, Pan J. A NIMA-related kinase, CNK4, regulates ciliary stability and length. Mol Biol Cell 2016; 27:838-47. [PMID: 26764095 PMCID: PMC4803309 DOI: 10.1091/mbc.e15-10-0707] [Citation(s) in RCA: 25] [Impact Index Per Article: 3.1] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/13/2015] [Revised: 12/07/2015] [Accepted: 01/04/2016] [Indexed: 02/02/2023] Open
Abstract
NIMA-related kinases (Nrks or Neks) have emerged as key regulators of ciliogenesis. In human, mutations in Nek1 and Nek8 cause cilia-related disorders. The ciliary functions of Nrks are mostly revealed by genetic studies; however, the underlying mechanisms are not well understood. Here we show that a Chlamydomonas Nrk, CNK4, regulates ciliary stability and length. CNK4 is localized to the basal body region and the flagella. The cnk4-null mutant exhibited long flagella, with formation of flagellar bulges. The flagella gradually became curled at the bulge formation site, leading to flagellar loss. Electron microscopy shows that the curled flagella involved curling and degeneration of axonemal microtubules. cnk4 mutation resulted in flagellar increases of IFT trains, as well as its accumulation at the flagellar bulges. IFT speeds were not affected, however, IFT trains frequently stalled, leading to reduced IFT frequencies. These data are consistent with a model in which CNK4 regulates microtubule dynamics and IFT to control flagellar stability and length.
Collapse
Affiliation(s)
- Dan Meng
- MOE Key Laboratory of Protein Sciences, School of Life Sciences, Tsinghua University, Beijing 100084, China
| | - Junmin Pan
- MOE Key Laboratory of Protein Sciences, School of Life Sciences, Tsinghua University, Beijing 100084, China
| |
Collapse
|
33
|
de Souza EE, Hehnly H, Perez AM, Meirelles GV, Smetana JHC, Doxsey S, Kobarg J. Human Nek7-interactor RGS2 is required for mitotic spindle organization. Cell Cycle 2015; 14:656-67. [PMID: 25664600 DOI: 10.4161/15384101.2014.994988] [Citation(s) in RCA: 12] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/19/2022] Open
Abstract
The mitotic spindle apparatus is composed of microtubule (MT) networks attached to kinetochores organized from 2 centrosomes (a.k.a. spindle poles). In addition to this central spindle apparatus, astral MTs assemble at the mitotic spindle pole and attach to the cell cortex to ensure appropriate spindle orientation. We propose that cell cycle-related kinase, Nek7, and its novel interacting protein RGS2, are involved in mitosis regulation and spindle formation. We found that RGS2 localizes to the mitotic spindle in a Nek7-dependent manner, and along with Nek7 contributes to spindle morphology and mitotic spindle pole integrity. RGS2-depletion leads to a mitotic-delay and severe defects in the chromosomes alignment and congression. Importantly, RGS2 or Nek7 depletion or even overexpression of wild-type or kinase-dead Nek7, reduced γ-tubulin from the mitotic spindle poles. In addition to causing a mitotic delay, RGS2 depletion induced mitotic spindle misorientation coinciding with astral MT-reduction. We propose that these phenotypes directly contribute to a failure in mitotic spindle alignment to the substratum. In conclusion, we suggest a molecular mechanism whereupon Nek7 and RGS2 may act cooperatively to ensure proper mitotic spindle organization.
Collapse
Key Words
- CREST, calcium-responsive transactivator
- EB1, end-binding protein 1
- GAP, GTPase-activating protein
- MT, microtubule
- Nek, NIMA-related kinase
- Nek7
- PCM, centrosomal pericentriolar material
- PD, pull-down
- PPI, protein-protein interaction
- RGS, regulators of G protein signaling
- RGS2
- WB, Western blotting
- cell division
- mitotic spindle
- mitotic spindle orientation
- shRNA, short-interfering RNA
Collapse
Affiliation(s)
- Edmarcia Elisa de Souza
- a Laboratório Nacional de Biociências-LNBio ; Centro Nacional de Pesquisa em Energia e Materiais-CNPEM ; Campinas , SP Brasil
| | | | | | | | | | | | | |
Collapse
|
34
|
Basei FL, Meirelles GV, Righetto GL, Dos Santos Migueleti DL, Smetana JHC, Kobarg J. New interaction partners for Nek4.1 and Nek4.2 isoforms: from the DNA damage response to RNA splicing. Proteome Sci 2015; 13:11. [PMID: 25798074 PMCID: PMC4367857 DOI: 10.1186/s12953-015-0065-6] [Citation(s) in RCA: 20] [Impact Index Per Article: 2.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/04/2014] [Accepted: 02/09/2015] [Indexed: 11/10/2022] Open
Abstract
BACKGROUND Neks are serine-threonine kinases that are similar to NIMA, a protein found in Aspergillus nidulans which is essential for cell division. In humans there are eleven Neks which are involved in different biological functions besides the cell cycle control. Nek4 is one of the largest members of the Nek family and has been related to the primary cilia formation and in DNA damage response. However, its substrates and interaction partners are still unknown. In an attempt to better understand the role of Nek4, we performed an interactomics study to find new biological processes in which Nek4 is involved. We also described a novel Nek4 isoform which lacks a region of 46 amino acids derived from an insertion of an Alu sequence and showed the interactomics profile of these two Nek4 proteins. RESULTS AND DISCUSSION Isoform 1 and isoform 2 of Nek4 were expressed in human cells and after an immunoprecipitation followed by mass spectrometry, 474 interacting proteins were identified for isoform 1 and 149 for isoform 2 of Nek4. About 68% of isoform 2 potential interactors (102 proteins) are common between the two Nek4 isoforms. Our results reinforce Nek4 involvement in the DNA damage response, cilia maintenance and microtubule stabilization, and raise the possibility of new functional contexts, including apoptosis signaling, stress response, translation, protein quality control and, most intriguingly, RNA splicing. We show for the first time an unexpected difference between both Nek4 isoforms in RNA splicing control. Among the interacting partners, we found important proteins such as ANT3, Whirlin, PCNA, 14-3-3ε, SRSF1, SRSF2, SRPK1 and hNRNPs proteins. CONCLUSIONS This study provides new insights into Nek4 functions, identifying new interaction partners and further suggests an interesting difference between isoform 1 and isoform 2 of this kinase. Nek4 isoform 1 may have similar roles compared to other Neks and these roles are not all preserved in isoform 2. Besides, in some processes, both isoforms showed opposite effects, indicating a possible fine controlled regulation.
Collapse
Affiliation(s)
- Fernanda Luisa Basei
- Laboratório Nacional de Biociências, Centro Nacional de Pesquisa em Energia e Materiais, Rua Giuseppe Máximo Scolfaro 10.000, C.P.6192, 13084-971 Campinas, São Paulo Brazil ; Programa de Pós-graduação em Biologia Funcional e Molecular, Instituto de Biologia, Universidade Estadual de Campinas, Campinas, São Paulo Brazil
| | - Gabriela Vaz Meirelles
- Laboratório Nacional de Biociências, Centro Nacional de Pesquisa em Energia e Materiais, Rua Giuseppe Máximo Scolfaro 10.000, C.P.6192, 13084-971 Campinas, São Paulo Brazil
| | - Germanna Lima Righetto
- Laboratório Nacional de Biociências, Centro Nacional de Pesquisa em Energia e Materiais, Rua Giuseppe Máximo Scolfaro 10.000, C.P.6192, 13084-971 Campinas, São Paulo Brazil
| | - Deivid Lucas Dos Santos Migueleti
- Laboratório Nacional de Biociências, Centro Nacional de Pesquisa em Energia e Materiais, Rua Giuseppe Máximo Scolfaro 10.000, C.P.6192, 13084-971 Campinas, São Paulo Brazil ; Programa de Pós-graduação em Genética e Biologia Molecular, Instituto de Biologia, Universidade Estadual de Campinas, Campinas, São Paulo Brazil
| | - Juliana Helena Costa Smetana
- Laboratório Nacional de Biociências, Centro Nacional de Pesquisa em Energia e Materiais, Rua Giuseppe Máximo Scolfaro 10.000, C.P.6192, 13084-971 Campinas, São Paulo Brazil
| | - Jörg Kobarg
- Programa de Pós-graduação em Biologia Funcional e Molecular, Instituto de Biologia, Universidade Estadual de Campinas, Campinas, São Paulo Brazil ; Programa de Pós-graduação em Genética e Biologia Molecular, Instituto de Biologia, Universidade Estadual de Campinas, Campinas, São Paulo Brazil ; Instituto de Biologia, Departamento de Bioquímica e de Biologia Tecidual, Universidade Estadual de Campinas, Campinas, SP Brazil ; Universidade Estadual de Campinas, Faculdade de Ciências Farmacêuticas, Campinas, São Paulo Brazil
| |
Collapse
|
35
|
Moraes EC, Meirelles GV, Honorato RV, de Souza TDACB, de Souza EE, Murakami MT, de Oliveira PSL, Kobarg J. Kinase inhibitor profile for human nek1, nek6, and nek7 and analysis of the structural basis for inhibitor specificity. Molecules 2015; 20:1176-91. [PMID: 25591119 PMCID: PMC6272266 DOI: 10.3390/molecules20011176] [Citation(s) in RCA: 19] [Impact Index Per Article: 2.1] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/04/2014] [Accepted: 01/05/2015] [Indexed: 12/11/2022] Open
Abstract
Human Neks are a conserved protein kinase family related to cell cycle progression and cell division and are considered potential drug targets for the treatment of cancer and other pathologies. We screened the activation loop mutant kinases hNek1 and hNek2, wild-type hNek7, and five hNek6 variants in different activation/phosphorylation statesand compared them against 85 compounds using thermal shift denaturation. We identified three compounds with significant Tm shifts: JNK Inhibitor II for hNek1(Δ262-1258)-(T162A), Isogranulatimide for hNek6(S206A), andGSK-3 Inhibitor XIII for hNek7wt. Each one of these compounds was also validated by reducing the kinases activity by at least 25%. The binding sites for these compounds were identified by in silico docking at the ATP-binding site of the respective hNeks. Potential inhibitors were first screened by thermal shift assays, had their efficiency tested by a kinase assay, and were finally analyzed by molecular docking. Our findings corroborate the idea of ATP-competitive inhibition for hNek1 and hNek6 and suggest a novel non-competitive inhibition for hNek7 in regard to GSK-3 Inhibitor XIII. Our results demonstrate that our approach is useful for finding promising general and specific hNekscandidate inhibitors, which may also function as scaffolds to design more potent and selective inhibitors.
Collapse
Affiliation(s)
- Eduardo Cruz Moraes
- LaboratórioNacional de Biociências, Centro Nacional de PesquisaemEnergia e Materiais, Campinas, 13083-970 SP, Brazil.
| | - Gabriela Vaz Meirelles
- LaboratórioNacional de Biociências, Centro Nacional de PesquisaemEnergia e Materiais, Campinas, 13083-970 SP, Brazil.
| | - Rodrigo Vargas Honorato
- LaboratórioNacional de Biociências, Centro Nacional de PesquisaemEnergia e Materiais, Campinas, 13083-970 SP, Brazil.
| | | | - Edmarcia Elisa de Souza
- LaboratórioNacional de Biociências, Centro Nacional de PesquisaemEnergia e Materiais, Campinas, 13083-970 SP, Brazil.
| | - Mario Tyago Murakami
- LaboratórioNacional de Biociências, Centro Nacional de PesquisaemEnergia e Materiais, Campinas, 13083-970 SP, Brazil.
| | | | - Jörg Kobarg
- Programa de Pós-graduação em Biologia Funcional e Molecular, Departamento de Bioquímica e BiologiaTecidual, Instituto de Biologia, UniversidadeEstadual de Campinas, Campinas, 13083-862 SP, Brazil.
| |
Collapse
|
36
|
de Souza EE, Meirelles GV, Godoy BB, Perez AM, Smetana JHC, Doxsey SJ, McComb ME, Costello CE, Whelan SA, Kobarg J. Characterization of the human NEK7 interactome suggests catalytic and regulatory properties distinct from those of NEK6. J Proteome Res 2014; 13:4074-90. [PMID: 25093993 PMCID: PMC4156247 DOI: 10.1021/pr500437x] [Citation(s) in RCA: 25] [Impact Index Per Article: 2.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/16/2022]
Abstract
Human NEK7 is a regulator of cell division and plays an important role in growth and survival of mammalian cells. Human NEK6 and NEK7 are closely related, consisting of a conserved C-terminal catalytic domain and a nonconserved and disordered N-terminal regulatory domain, crucial to mediate the interactions with their respective proteins. Here, in order to better understand NEK7 cellular functions, we characterize the NEK7 interactome by two screening approaches: one using a yeast two-hybrid system and the other based on immunoprecipitation followed by mass spectrometry analysis. These approaches led to the identification of 61 NEK7 interactors that contribute to a variety of biological processes, including cell division. Combining additional interaction and phosphorylation assays from yeast two-hybrid screens, we validated CC2D1A, TUBB2B, MNAT1, and NEK9 proteins as potential NEK7 interactors and substrates. Notably, endogenous RGS2, TUBB, MNAT1, NEK9, and PLEKHA8 localized with NEK7 at key sites throughout the cell cycle, especially during mitosis and cytokinesis. Furthermore, we obtained evidence that the closely related kinases NEK6 and NEK7 do not share common interactors, with the exception of NEK9, and display different modes of protein interaction, depending on their N- and C-terminal regions, in distinct fashions. In summary, our work shows for the first time a comprehensive NEK7 interactome that, combined with functional in vitro and in vivo assays, suggests that NEK7 is a multifunctional kinase acting in different cellular processes in concert with cell division signaling and independently of NEK6.
Collapse
Affiliation(s)
- Edmarcia Elisa de Souza
- Laboratório Nacional de Biociências, Centro Nacional de Pesquisa em Energia e Materiais , Campinas, São Paulo, Brazil
| | | | | | | | | | | | | | | | | | | |
Collapse
|
37
|
Carazzolle MF, de Carvalho LM, Slepicka HH, Vidal RO, Pereira GAG, Kobarg J, Vaz Meirelles G. IIS--Integrated Interactome System: a web-based platform for the annotation, analysis and visualization of protein-metabolite-gene-drug interactions by integrating a variety of data sources and tools. PLoS One 2014; 9:e100385. [PMID: 24949626 PMCID: PMC4065059 DOI: 10.1371/journal.pone.0100385] [Citation(s) in RCA: 38] [Impact Index Per Article: 3.8] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/20/2013] [Accepted: 05/27/2014] [Indexed: 12/15/2022] Open
Abstract
BACKGROUND High-throughput screening of physical, genetic and chemical-genetic interactions brings important perspectives in the Systems Biology field, as the analysis of these interactions provides new insights into protein/gene function, cellular metabolic variations and the validation of therapeutic targets and drug design. However, such analysis depends on a pipeline connecting different tools that can automatically integrate data from diverse sources and result in a more comprehensive dataset that can be properly interpreted. RESULTS We describe here the Integrated Interactome System (IIS), an integrative platform with a web-based interface for the annotation, analysis and visualization of the interaction profiles of proteins/genes, metabolites and drugs of interest. IIS works in four connected modules: (i) Submission module, which receives raw data derived from Sanger sequencing (e.g. two-hybrid system); (ii) Search module, which enables the user to search for the processed reads to be assembled into contigs/singlets, or for lists of proteins/genes, metabolites and drugs of interest, and add them to the project; (iii) Annotation module, which assigns annotations from several databases for the contigs/singlets or lists of proteins/genes, generating tables with automatic annotation that can be manually curated; and (iv) Interactome module, which maps the contigs/singlets or the uploaded lists to entries in our integrated database, building networks that gather novel identified interactions, protein and metabolite expression/concentration levels, subcellular localization and computed topological metrics, GO biological processes and KEGG pathways enrichment. This module generates a XGMML file that can be imported into Cytoscape or be visualized directly on the web. CONCLUSIONS We have developed IIS by the integration of diverse databases following the need of appropriate tools for a systematic analysis of physical, genetic and chemical-genetic interactions. IIS was validated with yeast two-hybrid, proteomics and metabolomics datasets, but it is also extendable to other datasets. IIS is freely available online at: http://www.lge.ibi.unicamp.br/lnbio/IIS/.
Collapse
Affiliation(s)
- Marcelo Falsarella Carazzolle
- Laboratório Nacional de Biociências, Centro Nacional de Pesquisa em Energia e Materiais, Campinas, São Paulo, Brazil
- Laboratório de Genômica e Expressão, Departamento de Genética e Evolução, Instituto de Biologia, Unicamp, Campinas, São Paulo, Brazil
| | - Lucas Miguel de Carvalho
- Laboratório Nacional de Biociências, Centro Nacional de Pesquisa em Energia e Materiais, Campinas, São Paulo, Brazil
| | - Hugo Henrique Slepicka
- Laboratório Nacional de Luz Síncrotron, Centro Nacional de Pesquisa em Energia e Materiais, Campinas, São Paulo, Brazil
| | - Ramon Oliveira Vidal
- Laboratório de Genômica e Expressão, Departamento de Genética e Evolução, Instituto de Biologia, Unicamp, Campinas, São Paulo, Brazil
| | | | - Jörg Kobarg
- Laboratório Nacional de Biociências, Centro Nacional de Pesquisa em Energia e Materiais, Campinas, São Paulo, Brazil
| | - Gabriela Vaz Meirelles
- Laboratório Nacional de Biociências, Centro Nacional de Pesquisa em Energia e Materiais, Campinas, São Paulo, Brazil
| |
Collapse
|