1
|
Vogt A, Paulat R, Parthier D, Just V, Szczepek M, Scheerer P, Xu Q, Möglich A, Schmitz D, Rost BR, Wenger N. Simultaneous spectral illumination of microplates for high-throughput optogenetics and photobiology. Biol Chem 2024; 405:751-763. [PMID: 39303162 DOI: 10.1515/hsz-2023-0205] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/06/2023] [Accepted: 09/03/2024] [Indexed: 09/22/2024]
Abstract
The biophysical characterization and engineering of optogenetic tools and photobiological systems has been hampered by the lack of efficient methods for spectral illumination of microplates for high-throughput analysis of action spectra. Current methods to determine action spectra only allow the sequential spectral illumination of individual wells. Here we present the open-source RainbowCap-system, which combines LEDs and optical filters in a standard 96-well microplate format for simultaneous and spectrally defined illumination. The RainbowCap provides equal photon flux for each wavelength, with the output of the LEDs narrowed by optical bandpass filters. We validated the RainbowCap for photoactivatable G protein-coupled receptors (opto-GPCRs) and enzymes for the control of intracellular downstream signaling. The simultaneous, spectrally defined illumination provides minimal interruption during time-series measurements, while resolving 10 nm differences in the action spectra of optogenetic proteins under identical experimental conditions. The RainbowCap is also suitable for studying the spectral dependence of light-regulated gene expression in bacteria, which requires illumination over several hours. In summary, the RainbowCap provides high-throughput spectral illumination of microplates, while its modular, customizable design allows easy adaptation to a wide range of optogenetic and photobiological applications.
Collapse
Affiliation(s)
- Arend Vogt
- Department of Neurology with Experimental Neurology, Translational Neuromodulation Group, Charité - Universitätsmedizin Berlin, Corporate Member of Freie Universität Berlin and Humboldt-Universität zu Berlin, D-10117 Berlin, Germany
- Neuroscience Research Center, Charité - Universitätsmedizin Berlin, Corporate Member of Freie Universität Berlin and Humboldt-Universität zu Berlin, D-10117 Berlin, Germany
| | - Raik Paulat
- Department of Neurology with Experimental Neurology, Translational Neuromodulation Group, Charité - Universitätsmedizin Berlin, Corporate Member of Freie Universität Berlin and Humboldt-Universität zu Berlin, D-10117 Berlin, Germany
- Faculty of Energy and Information, HTW-Berlin University for Applied Sciences, D-10318 Berlin, Germany
| | - Daniel Parthier
- Neuroscience Research Center, Charité - Universitätsmedizin Berlin, Corporate Member of Freie Universität Berlin and Humboldt-Universität zu Berlin, D-10117 Berlin, Germany
| | - Verena Just
- Department of Neurology with Experimental Neurology, Translational Neuromodulation Group, Charité - Universitätsmedizin Berlin, Corporate Member of Freie Universität Berlin and Humboldt-Universität zu Berlin, D-10117 Berlin, Germany
- Faculty of Energy and Information, HTW-Berlin University for Applied Sciences, D-10318 Berlin, Germany
| | - Michal Szczepek
- Institute of Medical Physics and Biophysics, Group Structural Biology of Cellular Signaling, Charité - Universitätsmedizin Berlin, Corporate Member of Freie Universität Berlin and Humboldt-Universität zu Berlin, D-10117 Berlin, Germany
| | - Patrick Scheerer
- Institute of Medical Physics and Biophysics, Group Structural Biology of Cellular Signaling, Charité - Universitätsmedizin Berlin, Corporate Member of Freie Universität Berlin and Humboldt-Universität zu Berlin, D-10117 Berlin, Germany
| | - Qianzhao Xu
- Department of Biochemistry, University of Bayreuth, D-95447 Bayreuth, Germany
| | - Andreas Möglich
- Department of Biochemistry, University of Bayreuth, D-95447 Bayreuth, Germany
| | - Dietmar Schmitz
- Neuroscience Research Center, Charité - Universitätsmedizin Berlin, Corporate Member of Freie Universität Berlin and Humboldt-Universität zu Berlin, D-10117 Berlin, Germany
- 638588 German Center for Neurodegenerative Diseases (DZNE) , D-10117 Berlin, Germany
| | - Benjamin R Rost
- Neuroscience Research Center, Charité - Universitätsmedizin Berlin, Corporate Member of Freie Universität Berlin and Humboldt-Universität zu Berlin, D-10117 Berlin, Germany
- 638588 German Center for Neurodegenerative Diseases (DZNE) , D-10117 Berlin, Germany
| | - Nikolaus Wenger
- Department of Neurology with Experimental Neurology, Translational Neuromodulation Group, Charité - Universitätsmedizin Berlin, Corporate Member of Freie Universität Berlin and Humboldt-Universität zu Berlin, D-10117 Berlin, Germany
| |
Collapse
|
2
|
Cannon K, Bartley A, Dobrunz L, Bolding M. Ectopically expressed rhodopsin is not sensitive to X-rays. BMC Neurosci 2024; 25:38. [PMID: 39179957 PMCID: PMC11344346 DOI: 10.1186/s12868-024-00882-z] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/17/2023] [Accepted: 07/19/2024] [Indexed: 08/26/2024] Open
Abstract
Visual perception of X-radiation is a well-documented, but poorly understood phenomenon. Scotopic rod cells and rhodopsin have been implicated in visual responses to X-rays, however, some evidence suggests that X-rays excite the retina via a different mechanism than visible light. While rhodopsin's role in X-ray perception is unclear, the possibility that it could function as an X-ray receptor has led to speculation that it could act as a transgenically expressed X-ray receptor. If so, it could be used to transduce transcranial X-ray signals and control the activity of genetically targeted populations of neurons in a less invasive version of optogenetics, X-genetics. Here we investigate whether human rhodopsin (hRho) is capable of transducing X-ray signals when expressed outside of the retinal environment. We use a live-cell cAMP GloSensor luminescence assay to measure cAMP decreases in hRho-expressing HEK293 cells in response to visible light and X-ray stimulation. We show that cAMP GloSensor luminescence decreases are not observed in hRho-expressing HEK293 cells in response to X-ray stimulation, despite the presence of robust responses to visible light. Additionally, irradiation had no significant effect on cAMP GloSensor responses to subsequent visible light stimulation. These results suggest that ectopically expressed rhodopsin does not function as an X-ray receptor and is not capable of transducing transcranial X-ray signals into neural activity for X-ray mediated, genetically targeted neuromodulation.
Collapse
Affiliation(s)
- Kelli Cannon
- Department of Biological Sciences, Dartmouth College, Hanover, NH, 03755, USA.
| | - Aundrea Bartley
- Department of Anatomy and Neurobiology, University of Tennessee Health Sciences Center, Memphis, TN, 38163, USA
| | - Lynn Dobrunz
- Department of Anatomy and Neurobiology, University of Tennessee Health Sciences Center, Memphis, TN, 38163, USA
| | - Mark Bolding
- Department of Radiology, University of Alabama at Birmingham, Birmingham, AL, 35294, USA
| |
Collapse
|