1
|
Brückner A, Brandtner A, Rieck S, Matthey M, Geisen C, Fels B, Stei M, Kusche-Vihrog K, Fleischmann BK, Wenzel D. Site-specific genetic and functional signatures of aortic endothelial cells at aneurysm predilection sites in healthy and AngII ApoE -/- mice. Angiogenesis 2024:10.1007/s10456-024-09933-9. [PMID: 38965173 DOI: 10.1007/s10456-024-09933-9] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/18/2023] [Accepted: 06/16/2024] [Indexed: 07/06/2024]
Abstract
Aortic aneurysm is characterized by a pathological dilation at specific predilection sites of the vessel and potentially results in life-threatening vascular rupture. Herein, we established a modified "Häutchen method" for the local isolation of endothelial cells (ECs) from mouse aorta to analyze their spatial heterogeneity and potential role in site-specific disease development. When we compared ECs from aneurysm predilection sites of healthy mice with adjacent control segments we found regulation of genes related to extracellular matrix remodeling, angiogenesis and inflammation, all pathways playing a critical role in aneurysm development. We also detected enhanced cortical stiffness of the endothelium at these sites. Gene expression of ECs from aneurysms of the AngII ApoE-/- model when compared to sham animals mimicked expression patterns from predilection sites of healthy animals. Thus, this work highlights a striking genetic and functional regional heterogeneity in aortic ECs of healthy mice, which defines the location of aortic aneurysm formation in disease.
Collapse
Affiliation(s)
- Alexander Brückner
- Life&Brain Center, Medical Faculty, Institute of Physiology I, University of Bonn, Bonn, Germany
| | - Adrian Brandtner
- Life&Brain Center, Medical Faculty, Institute of Physiology I, University of Bonn, Bonn, Germany
| | - Sarah Rieck
- Life&Brain Center, Medical Faculty, Institute of Physiology I, University of Bonn, Bonn, Germany
| | - Michaela Matthey
- Department of Systems Physiology, Medical Faculty, Institute of Physiology, Ruhr University of Bochum, Universitätsstr. 150, 44801, Bochum, Germany
| | - Caroline Geisen
- Life&Brain Center, Medical Faculty, Institute of Physiology I, University of Bonn, Bonn, Germany
| | - Benedikt Fels
- Institute of Physiology, University of Lübeck, Lübeck, Germany
- DZHK (German Research Centre for Cardiovascular Research), Partner SiteHamburg/Luebeck/Kiel, Luebeck, Germany
| | - Marta Stei
- Heart Center Bonn, Clinic for Internal Medicine II, University Hospital Bonn, Bonn, Germany
| | - Kristina Kusche-Vihrog
- Institute of Physiology, University of Lübeck, Lübeck, Germany
- DZHK (German Research Centre for Cardiovascular Research), Partner SiteHamburg/Luebeck/Kiel, Luebeck, Germany
| | - Bernd K Fleischmann
- Life&Brain Center, Medical Faculty, Institute of Physiology I, University of Bonn, Bonn, Germany
| | - Daniela Wenzel
- Life&Brain Center, Medical Faculty, Institute of Physiology I, University of Bonn, Bonn, Germany.
- Department of Systems Physiology, Medical Faculty, Institute of Physiology, Ruhr University of Bochum, Universitätsstr. 150, 44801, Bochum, Germany.
| |
Collapse
|
2
|
Elhai M, Micheroli R, Houtman M, Mirrahimi M, Moser L, Pauli C, Bürki K, Laimbacher A, Kania G, Klein K, Schätzle P, Frank Bertoncelj M, Edalat SG, Keusch L, Khmelevskaya A, Toitou M, Geiss C, Rauer T, Sakkou M, Kollias G, Armaka M, Distler O, Ospelt C. The long non-coding RNA HOTAIR contributes to joint-specific gene expression in rheumatoid arthritis. Nat Commun 2023; 14:8172. [PMID: 38071204 PMCID: PMC10710443 DOI: 10.1038/s41467-023-44053-w] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/02/2023] [Accepted: 11/28/2023] [Indexed: 12/18/2023] Open
Abstract
Although patients with rheumatoid arthritis (RA) typically exhibit symmetrical joint involvement, some patients develop alternative disease patterns in response to treatment, suggesting that different molecular mechanism may underlie disease progression depending on joint location. Here, we identify joint-specific changes in RA synovium and synovial fibroblasts (SF) between knee and hand joints. We show that the long non-coding RNA HOTAIR, which is only expressed in knee SF, regulates more than 50% of this site-specific gene expression in SF. HOTAIR is downregulated after stimulation with pro-inflammatory cytokines and is expressed at lower levels in knee samples from patients with RA, compared with osteoarthritis. Knockdown of HOTAIR in knee SF increases PI-Akt signalling and IL-6 production, but reduces Wnt signalling. Silencing HOTAIR inhibits the migratory function of SF, decreases SF-mediated osteoclastogenesis, and increases the recruitment of B cells by SF. We propose that HOTAIR is an important epigenetic factor in joint-specific gene expression in RA.
Collapse
Affiliation(s)
- Muriel Elhai
- Center of Experimental Rheumatology, Department of Rheumatology, University Hospital of Zurich, University of Zurich, Zurich, Switzerland
| | - Raphael Micheroli
- Center of Experimental Rheumatology, Department of Rheumatology, University Hospital of Zurich, University of Zurich, Zurich, Switzerland
| | - Miranda Houtman
- Center of Experimental Rheumatology, Department of Rheumatology, University Hospital of Zurich, University of Zurich, Zurich, Switzerland
| | - Masoumeh Mirrahimi
- Center of Experimental Rheumatology, Department of Rheumatology, University Hospital of Zurich, University of Zurich, Zurich, Switzerland
| | - Larissa Moser
- Center of Experimental Rheumatology, Department of Rheumatology, University Hospital of Zurich, University of Zurich, Zurich, Switzerland
| | - Chantal Pauli
- Institute for Pathology and Molecular Pathology, University Hospital Zurich, Zurich, Switzerland
| | - Kristina Bürki
- Center of Experimental Rheumatology, Department of Rheumatology, University Hospital of Zurich, University of Zurich, Zurich, Switzerland
| | - Andrea Laimbacher
- Center of Experimental Rheumatology, Department of Rheumatology, University Hospital of Zurich, University of Zurich, Zurich, Switzerland
| | - Gabriela Kania
- Center of Experimental Rheumatology, Department of Rheumatology, University Hospital of Zurich, University of Zurich, Zurich, Switzerland
| | - Kerstin Klein
- Center of Experimental Rheumatology, Department of Rheumatology, University Hospital of Zurich, University of Zurich, Zurich, Switzerland
- Department of BioMedical Research, University of Bern, Bern, Switzerland
- Department of Rheumatology and Immunology, Inselspital, Bern University Hospital, University of Bern, Bern, Switzerland
| | | | - Mojca Frank Bertoncelj
- Center of Experimental Rheumatology, Department of Rheumatology, University Hospital of Zurich, University of Zurich, Zurich, Switzerland
| | - Sam G Edalat
- Center of Experimental Rheumatology, Department of Rheumatology, University Hospital of Zurich, University of Zurich, Zurich, Switzerland
| | - Leandra Keusch
- Center of Experimental Rheumatology, Department of Rheumatology, University Hospital of Zurich, University of Zurich, Zurich, Switzerland
| | - Alexandra Khmelevskaya
- Center of Experimental Rheumatology, Department of Rheumatology, University Hospital of Zurich, University of Zurich, Zurich, Switzerland
| | - Melpomeni Toitou
- Center of Experimental Rheumatology, Department of Rheumatology, University Hospital of Zurich, University of Zurich, Zurich, Switzerland
| | - Celina Geiss
- Center of Experimental Rheumatology, Department of Rheumatology, University Hospital of Zurich, University of Zurich, Zurich, Switzerland
| | - Thomas Rauer
- Department of Trauma Surgery, University Hospital Zurich, Zurich, Switzerland
| | - Maria Sakkou
- Institute for Bioinnovation, Biomedical Sciences Research Center (BSRC) 'Alexander Fleming', Vari, Greece
- Department of Physiology, Medical School, National and Kapodistrian University of Athens, Athens, Greece
| | - George Kollias
- Institute for Bioinnovation, Biomedical Sciences Research Center (BSRC) 'Alexander Fleming', Vari, Greece
- Department of Physiology, Medical School, National and Kapodistrian University of Athens, Athens, Greece
| | - Marietta Armaka
- Institute for Fundamental Biomedical Research, Biomedical Sciences Research Center "Alexander Fleming", Vari, Greece
| | - Oliver Distler
- Center of Experimental Rheumatology, Department of Rheumatology, University Hospital of Zurich, University of Zurich, Zurich, Switzerland
| | - Caroline Ospelt
- Center of Experimental Rheumatology, Department of Rheumatology, University Hospital of Zurich, University of Zurich, Zurich, Switzerland.
| |
Collapse
|
3
|
Buono MF, Benavente ED, Slenders L, Methorst D, Tessels D, Mili E, Finger R, Kapteijn D, Daniels M, van den Dungen NAM, Calis JJA, Mol BM, de Borst GJ, de Kleijn DPV, Pasterkamp G, den Ruijter HM, Mokry M. Human Plaque Myofibroblasts to Study Mechanisms of Atherosclerosis. J Am Heart Assoc 2023; 12:e030243. [PMID: 37889192 PMCID: PMC10727388 DOI: 10.1161/jaha.123.030243] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 03/24/2023] [Accepted: 06/28/2023] [Indexed: 10/28/2023]
Abstract
Background Plaque myofibroblasts are critical players in the initiation and advancement of atherosclerotic disease. They are involved in the production of extracellular matrix, the formation of the fibrous cap, and the underlying lipidic core via modulation processes in response to different environmental cues. Despite clear phenotypic differences between myofibroblast cells and healthy vascular smooth muscle cells, smooth muscle cells are still widely used as a cellular model in atherosclerotic research. Methods and Results Here, we present a conditioned outgrowth method to isolate and culture myofibroblast cells from plaques. We obtained these cells from 27 donors (24 carotid and 3 femoral endarterectomies). We show that they keep their proliferative capacity for 8 passages, are transcriptionally stable, retain donor-specific gene expression programs, and express extracellular matrix proteins (FN1, COL1A1, and DCN) and smooth muscle cell markers (ACTA2, MYH11, and CNN1). Single-cell transcriptomics reveals that the cells in culture closely resemble the plaque myofibroblasts. Chromatin immunoprecipitation sequencing shows the presence of histone H3 lysine 4 dimethylation at the MYH11 promoter, pointing to their smooth muscle cell origin. Finally, we demonstrated that plaque myofibroblasts can be efficiently transduced (>97%) and are capable of taking up oxidized low-density lipoprotein and undergoing calcification. Conclusions In conclusion, we present a method to isolate and culture cells that retain plaque myofibroblast phenotypical and functional capabilities, making them a suitable in vitro model for studying selected mechanisms of atherosclerosis.
Collapse
Affiliation(s)
- Michele F. Buono
- Laboratory of Experimental CardiologyUniversity Medical Center UtrechtUtrechtthe Netherlands
| | - Ernest Diez Benavente
- Laboratory of Experimental CardiologyUniversity Medical Center UtrechtUtrechtthe Netherlands
| | - Lotte Slenders
- Central Diagnostics LaboratoryUniversity Medical Center UtrechtUtrechtthe Netherlands
| | - Daisey Methorst
- Laboratory of Experimental CardiologyUniversity Medical Center UtrechtUtrechtthe Netherlands
| | - Daniëlle Tessels
- Laboratory of Experimental CardiologyUniversity Medical Center UtrechtUtrechtthe Netherlands
| | - Eloi Mili
- Laboratory of Experimental CardiologyUniversity Medical Center UtrechtUtrechtthe Netherlands
| | - Roxy Finger
- Central Diagnostics LaboratoryUniversity Medical Center UtrechtUtrechtthe Netherlands
| | - Daniek Kapteijn
- Laboratory of Experimental CardiologyUniversity Medical Center UtrechtUtrechtthe Netherlands
| | - Mark Daniels
- Laboratory of Experimental CardiologyUniversity Medical Center UtrechtUtrechtthe Netherlands
| | | | - Jorg J. A. Calis
- Department of CardiologyUniversity Medical Center UtrechtUtrechtthe Netherlands
- Center for Translational ImmunologyUniversity Medical Center UtrechtUtrechtthe Netherlands
- Pediatric Immunology and Rheumatology, Wilhelmina Children’s HospitalUniversity Medical Center UtrechtUtrechtthe Netherlands
| | - Barend M. Mol
- Department of Vascular SurgeryUniversity Medical Center UtrechtUtrechtthe Netherlands
| | - Gert J. de Borst
- Department of Vascular SurgeryUniversity Medical Center UtrechtUtrechtthe Netherlands
| | | | - Gerard Pasterkamp
- Central Diagnostics LaboratoryUniversity Medical Center UtrechtUtrechtthe Netherlands
| | - Hester M. den Ruijter
- Laboratory of Experimental CardiologyUniversity Medical Center UtrechtUtrechtthe Netherlands
| | - Michal Mokry
- Laboratory of Experimental CardiologyUniversity Medical Center UtrechtUtrechtthe Netherlands
- Central Diagnostics LaboratoryUniversity Medical Center UtrechtUtrechtthe Netherlands
| |
Collapse
|
4
|
Messingschlager M, Bartel-Steinbach M, Mackowiak SD, Denkena J, Bieg M, Klös M, Seegebarth A, Straff W, Süring K, Ishaque N, Eils R, Lehmann I, Lermen D, Trump S. Genome-wide DNA methylation sequencing identifies epigenetic perturbations in the upper airways under long-term exposure to moderate levels of ambient air pollution. ENVIRONMENTAL RESEARCH 2023; 233:116413. [PMID: 37343754 DOI: 10.1016/j.envres.2023.116413] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 03/09/2023] [Revised: 05/30/2023] [Accepted: 06/11/2023] [Indexed: 06/23/2023]
Abstract
While the link between exposure to high levels of ambient particulate matter (PM) and increased incidences of respiratory and cardiovascular diseases is widely recognized, recent epidemiological studies have shown that low PM concentrations are equally associated with adverse health effects. As DNA methylation is one of the main mechanisms by which cells regulate and stabilize gene expression, changes in the methylome could constitute early indicators of dysregulated signaling pathways. So far, little is known about PM-associated DNA methylation changes in the upper airways, the first point of contact between airborne pollutants and the human body. Here, we focused on cells of the upper respiratory tract and assessed their genome-wide DNA methylation pattern to explore exposure-associated early regulatory changes. Using a mobile epidemiological laboratory, nasal lavage samples were collected from a cohort of 60 adults that lived in districts with records of low (Simmerath) or moderate (Stuttgart) PM10 levels in Germany. PM10 concentrations were verified by particle measurements on the days of the sample collection and genome-wide DNA methylation was determined by enzymatic methyl sequencing at single-base resolution. We identified 231 differentially methylated regions (DMRs) between moderately and lowly PM10 exposed individuals. A high proportion of DMRs overlapped with regulatory elements, and DMR target genes were involved in pathways regulating cellular redox homeostasis and immune response. In addition, we found distinct changes in DNA methylation of the HOXA gene cluster whose methylation levels have previously been linked to air pollution exposure but also to carcinogenesis in several instances. The findings of this study suggest that regulatory changes in upper airway cells occur at PM10 levels below current European thresholds, some of which may be involved in the development of air pollution-related diseases.
Collapse
Affiliation(s)
- Marey Messingschlager
- Berlin Institute of Health at Charité - Universitätsmedizin Berlin, Center of Digital Health, Molecular Epidemiology Unit, Charitéplatz 1, 10117, Berlin, Germany; Freie Universität Berlin, Institute for Biology, Königin-Luise-Strasse 12-16, 14195, Berlin, Germany
| | - Martina Bartel-Steinbach
- Fraunhofer Institute for Biomedical Engineering IBMT, Josef-von-Fraunhofer-Weg 1, 66280, Sulzbach, Germany
| | - Sebastian D Mackowiak
- Berlin Institute of Health at Charité - Universitätsmedizin Berlin, Center of Digital Health, Charitéplatz 1, 10117, Berlin, Germany
| | - Johanna Denkena
- Berlin Institute of Health at Charité - Universitätsmedizin Berlin, Center of Digital Health, Charitéplatz 1, 10117, Berlin, Germany
| | - Matthias Bieg
- Berlin Institute of Health at Charité - Universitätsmedizin Berlin, Center of Digital Health, Charitéplatz 1, 10117, Berlin, Germany
| | - Matthias Klös
- Berlin Institute of Health at Charité - Universitätsmedizin Berlin, Center of Digital Health, Molecular Epidemiology Unit, Charitéplatz 1, 10117, Berlin, Germany
| | - Anke Seegebarth
- Berlin Institute of Health at Charité - Universitätsmedizin Berlin, Center of Digital Health, Molecular Epidemiology Unit, Charitéplatz 1, 10117, Berlin, Germany
| | - Wolfgang Straff
- Environmental Medicine and Health Effects Assessment, German Environment Agency, Corrensplatz 1, 14195, Berlin, Germany
| | - Katrin Süring
- Environmental Medicine and Health Effects Assessment, German Environment Agency, Corrensplatz 1, 14195, Berlin, Germany
| | - Naveed Ishaque
- Berlin Institute of Health at Charité - Universitätsmedizin Berlin, Center of Digital Health, Charitéplatz 1, 10117, Berlin, Germany
| | - Roland Eils
- Berlin Institute of Health at Charité - Universitätsmedizin Berlin, Center of Digital Health, Charitéplatz 1, 10117, Berlin, Germany; German Center for Lung Research (DZL), Germany; Health Data Science Unit, Heidelberg University Hospital and BioQuant, University of Heidelberg, Germany; Freie Universität Berlin, Department of Mathematics and Computer Science, Arnimallee 14, 14195, Berlin, Germany
| | - Irina Lehmann
- Berlin Institute of Health at Charité - Universitätsmedizin Berlin, Center of Digital Health, Molecular Epidemiology Unit, Charitéplatz 1, 10117, Berlin, Germany; German Center for Lung Research (DZL), Germany.
| | - Dominik Lermen
- Fraunhofer Institute for Biomedical Engineering IBMT, Josef-von-Fraunhofer-Weg 1, 66280, Sulzbach, Germany
| | - Saskia Trump
- Berlin Institute of Health at Charité - Universitätsmedizin Berlin, Center of Digital Health, Molecular Epidemiology Unit, Charitéplatz 1, 10117, Berlin, Germany
| |
Collapse
|
5
|
Shafi O. Switching of vascular cells towards atherogenesis, and other factors contributing to atherosclerosis: a systematic review. Thromb J 2020; 18:28. [PMID: 33132762 PMCID: PMC7592591 DOI: 10.1186/s12959-020-00240-z] [Citation(s) in RCA: 12] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/17/2020] [Accepted: 09/23/2020] [Indexed: 12/17/2022] Open
Abstract
Background Onset, development and progression of atherosclerosis are complex multistep processes. Many aspects of atherogenesis are not yet properly known. This study investigates the changes in vasculature that contribute to switching of vascular cells towards atherogenesis, focusing mainly on ageing. Methods Databases including PubMed, MEDLINE and Google Scholar were searched for published articles without any date restrictions, involving atherogenesis, vascular homeostasis, aging, gene expression, signaling pathways, angiogenesis, vascular development, vascular cell differentiation and maintenance, vascular stem cells, endothelial and vascular smooth muscle cells. Results Atherogenesis is a complex multistep process that unfolds in a sequence. It is caused by alterations in: epigenetics and genetics, signaling pathways, cell circuitry, genome stability, heterotypic interactions between multiple cell types and pathologic alterations in vascular microenvironment. Such alterations involve pathological changes in: Shh, Wnt, NOTCH signaling pathways, TGF beta, VEGF, FGF, IGF 1, HGF, AKT/PI3K/ mTOR pathways, EGF, FOXO, CREB, PTEN, several apoptotic pathways, ET - 1, NF-κB, TNF alpha, angiopoietin, EGFR, Bcl - 2, NGF, BDNF, neurotrophins, growth factors, several signaling proteins, MAPK, IFN, TFs, NOs, serum cholesterol, LDL, ephrin, its receptor pathway, HoxA5, Klf3, Klf4, BMPs, TGFs and others.This disruption in vascular homeostasis at cellular, genetic and epigenetic level is involved in switching of the vascular cells towards atherogenesis. All these factors working in pathologic manner, contribute to the development and progression of atherosclerosis. Conclusion The development of atherosclerosis involves the switching of gene expression towards pro-atherogenic genes. This happens because of pathologic alterations in vascular homeostasis. When pathologic alterations in epigenetics, genetics, regulatory genes, microenvironment and vascular cell biology accumulate beyond a specific threshold, then the disease begins to express itself phenotypically. The process of biological ageing is one of the most significant factors in this aspect as it is also involved in the decline in homeostasis, maintenance and integrity.The process of atherogenesis unfolds sequentially (step by step) in an interconnected loop of pathologic changes in vascular biology. Such changes are involved in 'switching' of vascular cells towards atherosclerosis.
Collapse
Affiliation(s)
- Ovais Shafi
- Sindh Medical College - Dow University of Health Sciences, Karachi, Pakistan
| |
Collapse
|
6
|
Long X, You G, Wu Q, Zhou Y, Yu F, Xiao Y, Deng S, Song F, Huang J, Tian M. Abnormal expression of homeobox c6 in the atherosclerotic aorta and its effect on proliferation and migration of rat vascular smooth muscle cells. Acta Biochim Biophys Sin (Shanghai) 2020; 52:935-943. [PMID: 32785574 DOI: 10.1093/abbs/gmaa080] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/14/2019] [Indexed: 11/14/2022] Open
Abstract
Homeobox c6 (Hoxc6) affects the proliferation, migration, and infiltration of malignant tumor cells; however, the effect of Hoxc6 on atherosclerosis (AS) as well as the proliferation and migration of vascular smooth muscle cells (VSMCs), which play a role in promoting AS, has not yet been well clarified. In the present study, we tested the hypothesis that Hoxc6 affects the proliferation and migration of rat VSMCs, and hence is involved in AS. The results showed that the expression of Hoxc6 mRNA and protein was higher in normal rat aortic wall than in the myocardium. Subsequently, a rat model of AS was established by high-fat feeding for 2 months. The expression of Hoxc6 mRNA and protein was increased significantly in AS lesions, while the expression of p53 protein was decreased and that of proliferating cell nuclear antigen (PCNA) was increased. Moreover, not only the proliferation and mobility of cells in normal culture were decreased, but also the proliferation was stimulated by oxidized low-density lipoprotein, which was decreased after downregulation of Hoxc6 expression in VSMCs in rat. Consecutively, the expression of PCNA protein was decreased, while that of p53 was increased. These results indicated that Hoxc6 is probably involved in AS via p53 and PCNA by affecting the proliferation and migration of VSMCs.
Collapse
Affiliation(s)
- Xiangshu Long
- Medical College, Guizhou University, Guiyang 550025, China
- Department of Cardiology, Guizhou Provincial People's Hospital, Guiyang 550002, China
| | - Ganhua You
- Medical College, Guizhou University, Guiyang 550025, China
- Department of Cardiology, Guizhou Provincial People's Hospital, Guiyang 550002, China
| | - Qiang Wu
- Department of Cardiology, Guizhou Provincial People's Hospital, Guiyang 550002, China
| | - Yu Zhou
- Medical College, Guizhou University, Guiyang 550025, China
- Department of Cardiology, Guizhou Provincial People's Hospital, Guiyang 550002, China
| | - Fuxun Yu
- Department of Research Laboratory Center, Guizhou Provincial People's Hospital, Guiyang 550002, China
| | - Yan Xiao
- Department of Cardiology, Guizhou Provincial People's Hospital, Guiyang 550002, China
| | - Shiyan Deng
- Department of Cardiology, Guizhou Provincial People's Hospital, Guiyang 550002, China
| | - Fang Song
- Department of Cardiology, Guizhou Provincial People's Hospital, Guiyang 550002, China
| | - Jing Huang
- Department of Cardiology, Guizhou Provincial People's Hospital, Guiyang 550002, China
| | - Maobo Tian
- Department of Cardiology, Guizhou Provincial People's Hospital, Guiyang 550002, China
| |
Collapse
|
7
|
Orbital autoimmune inflammatory disorders - Protein regional variability might explain specific lesion location. Med Hypotheses 2017; 98:15-17. [DOI: 10.1016/j.mehy.2016.11.007] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.4] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/23/2016] [Accepted: 11/17/2016] [Indexed: 12/28/2022]
|
8
|
Huang C, Hu YW, Zhao JJ, Ma X, Zhang Y, Guo FX, Kang CM, Lu JB, Xiu JC, Sha YH, Gao JJ, Wang YC, Li P, Xu BM, Zheng L, Wang Q. Long Noncoding RNA HOXC-AS1 Suppresses Ox-LDL-Induced Cholesterol Accumulation Through Promoting HOXC6 Expression in THP-1 Macrophages. DNA Cell Biol 2016; 35:722-729. [PMID: 27574949 DOI: 10.1089/dna.2016.3422] [Citation(s) in RCA: 49] [Impact Index Per Article: 6.1] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/23/2022] Open
Affiliation(s)
- Chuan Huang
- Laboratory Medicine Center, Nanfang Hospital, Southern Medical University, Guangzhou, China
| | - Yan-Wei Hu
- Laboratory Medicine Center, Nanfang Hospital, Southern Medical University, Guangzhou, China
| | - Jing-Jing Zhao
- Laboratory Medicine Center, Nanfang Hospital, Southern Medical University, Guangzhou, China
| | - Xin Ma
- Department of Anesthesiology, Nanfang Hospital, Southern Medical University, Guangzhou, China
| | - Yuan Zhang
- Laboratory Medicine Center, Nanfang Hospital, Southern Medical University, Guangzhou, China
| | - Feng-Xia Guo
- Laboratory Medicine Center, Nanfang Hospital, Southern Medical University, Guangzhou, China
| | - Chun-Min Kang
- Laboratory Medicine Center, Nanfang Hospital, Southern Medical University, Guangzhou, China
| | - Jing-Bo Lu
- Department of Vascular Surgery, Nanfang Hospital, Southern Medical University, Guangzhou, China
| | - Jian-cheng Xiu
- Department of Cardiology, Nanfang Hospital, Southern Medical University, Guangzhou, China
| | - Yan-Hua Sha
- Laboratory Medicine Center, Nanfang Hospital, Southern Medical University, Guangzhou, China
| | - Ji-Juan Gao
- Laboratory Medicine Center, Nanfang Hospital, Southern Medical University, Guangzhou, China
| | - Yan-Chao Wang
- Laboratory Medicine Center, Nanfang Hospital, Southern Medical University, Guangzhou, China
| | - Pan Li
- Laboratory Medicine Center, Nanfang Hospital, Southern Medical University, Guangzhou, China
| | - Bang-Ming Xu
- Laboratory Medicine Center, Nanfang Hospital, Southern Medical University, Guangzhou, China
| | - Lei Zheng
- Laboratory Medicine Center, Nanfang Hospital, Southern Medical University, Guangzhou, China
| | - Qian Wang
- Laboratory Medicine Center, Nanfang Hospital, Southern Medical University, Guangzhou, China
| |
Collapse
|