1
|
Joshi T, Chokshi S, Wilhite A, Singleton MH, Catranis E, Scalici J, Lee KJ. The relationship between acid-sensing ion channel, ASIC2, and oncogenic β-catenin signaling in ovarian cancer. Sci Rep 2025; 15:18633. [PMID: 40437028 PMCID: PMC12119882 DOI: 10.1038/s41598-025-03429-2] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/28/2025] [Accepted: 05/20/2025] [Indexed: 06/01/2025] Open
Abstract
Inflammation associated with incessant ovulation plays a key role in epithelial ovarian cancer (EOC) pathogenesis. Ion channels, such as acid-sensing ion channel-2 or ASIC2 are known to be upregulated in inflammatory conditions and may play a role in cancer cell invasion and metastasis. Previously we reported the role of phosphodiesterase 10A (PDE10) modulation of β-catenin in ovarian cancer, and are currently investigating its contribution to ovarian pathogenesis. Differential ASIC2 expression was noted with PDE10 modulation in both pre-malignant and ovarian cancer tissues. Hence, we presently report the potential role of ASIC2 in EOC development and progression as well as involvement with PDE10. ASIC2 protein is expressed across all EOC cell lines, primarily within the nucleus. Knockout of PDE10 decreased ASIC2. Conversely, ASIC2 inhibition decreased ASIC2 as well as PDE10 protein levels. ASIC2 inhibition via Diminazene also produced marked ovarian cancer death. While changes in extracellular pH did not impact ASIC2 expression, intracellular pH and calcium levels increased with ASIC inhibition. Calcium increases induced a decrease in oncogenic β-catenin. There may be a direct relationship between PDE10 and ASIC2 protein expression in EOC through convergence on a β-catenin mediated signaling pathway. This could potentially implicate ion channels, specifically ASIC2, as a link between the acidic tumor microenvironment and cancer cell signaling. It is also possible that ASIC2 plays a crucial role in acidosis-mediated tumorigenesis in ovarian cancer.
Collapse
Affiliation(s)
- Tanvi Joshi
- USA Health Mitchell Cancer Institute, University of South Alabama, 1660 Springhill Ave, Mobile, AL, 36604, USA
| | - Sagar Chokshi
- USA Health Mitchell Cancer Institute, University of South Alabama, 1660 Springhill Ave, Mobile, AL, 36604, USA
| | - Annelise Wilhite
- Carilion Clinic, Virginia Tech School of Medicine, Roanoke, VA, USA
| | - Mary Howard Singleton
- USA Health Mitchell Cancer Institute, University of South Alabama, 1660 Springhill Ave, Mobile, AL, 36604, USA
| | - Elizabeth Catranis
- USA Health Mitchell Cancer Institute, University of South Alabama, 1660 Springhill Ave, Mobile, AL, 36604, USA
| | | | - Kevin J Lee
- USA Health Mitchell Cancer Institute, University of South Alabama, 1660 Springhill Ave, Mobile, AL, 36604, USA.
| |
Collapse
|
2
|
Zhang Z, Li J, Willis D, Shi S, Tu H, Costa M. Isorhapontigenin Inhibits Cell Growth, Angiogenesis, Migration, and Invasion of Non-Small-Cell Lung Cancer Cells Through NEDD9 Signaling. Int J Mol Sci 2025; 26:4207. [PMID: 40362444 PMCID: PMC12071804 DOI: 10.3390/ijms26094207] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/27/2025] [Revised: 04/22/2025] [Accepted: 04/28/2025] [Indexed: 05/15/2025] Open
Abstract
Lung cancer is the leading cause of cancer deaths among American men, even though various treatments are available. The discovery and use of new alternative drugs to treat lung cancers are needed to reduce lung cancer mortality. Phytochemicals are potentially desirable therapeutic agents due to their better safety profiles. Isorhapontigenin (ISO) is an orally bioavailable dietary stilbene. Our studies show that treatment with ISO inhibits human lung cancer cell growth, angiogenesis, invasion, and migration. Neural precursor cell expressed developmentally downregulated 9 (NEDD9), a multi-domain scaffolding protein, regulates various processes crucial for tumorigenesis and metastasis. Our results show that NEDD9 is upregulated in the lung tissues from human lung adenocarcinomas (LUADs) and squamous-cell carcinomas (LUSCs) compared to normal lungs. Overexpression of NEDD9 elevates the invasion and migration of human lung cancer cells. Treatment of human lung cancer cells with ISO decreases NEDD9 protein levels. Our studies have also demonstrated that NEDD9 positively regulates angiogenesis, an essential factor in cancer progression. ISO treatment reduces angiogenesis. Moreover, ISO reduces the protein levels of hypoxia-inducible factor-1α (HIF-1α), a transcription factor critical for angiogenesis. Aberrant high expression of β-Catenin leads to various diseases including cancer. Our results show that ISO treatment reduces the activation of β-Catenin through the downregulation of NEDD9. Studies indicate that ISO decreases NEDD9, causing the suppression of cell growth, angiogenesis, invasion, and migration of human lung cancer cells. ISO is a potent therapeutic agent for lung cancer treatment.
Collapse
MESH Headings
- Humans
- Cell Movement/drug effects
- Lung Neoplasms/metabolism
- Lung Neoplasms/pathology
- Lung Neoplasms/drug therapy
- Cell Proliferation/drug effects
- Neovascularization, Pathologic/drug therapy
- Neovascularization, Pathologic/metabolism
- Adaptor Proteins, Signal Transducing/metabolism
- Adaptor Proteins, Signal Transducing/genetics
- Carcinoma, Non-Small-Cell Lung/metabolism
- Carcinoma, Non-Small-Cell Lung/pathology
- Carcinoma, Non-Small-Cell Lung/drug therapy
- Carcinoma, Non-Small-Cell Lung/genetics
- Stilbenes/pharmacology
- Signal Transduction/drug effects
- Cell Line, Tumor
- Neoplasm Invasiveness
- Phosphoproteins/metabolism
- Phosphoproteins/genetics
- Hypoxia-Inducible Factor 1, alpha Subunit/metabolism
- Gene Expression Regulation, Neoplastic/drug effects
- Angiogenesis
Collapse
Affiliation(s)
| | | | | | | | | | - Max Costa
- Division of Environmental Medicine, Department of Medicine, New York University Grossman School of Medicine, 341 E 25th Street, New York, NY 10010, USA
| |
Collapse
|
3
|
Murtazina A, Jimenez-Martinez Y, Ruiz Alcala G, Marchal JA, Tarabayeva A, Bitanova E, Rakhimbayev I, McDougall GJ, Bishimbayeva N, Boulaiz H. In Vitro Inhibition of Colon Cancer Stem Cells by Natural Polysaccharides Obtained from Wheat Cell Culture. Polymers (Basel) 2025; 17:1048. [PMID: 40284312 PMCID: PMC12030112 DOI: 10.3390/polym17081048] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/13/2025] [Revised: 04/05/2025] [Accepted: 04/10/2025] [Indexed: 04/29/2025] Open
Abstract
Natural polysaccharides (PSs) have shown inhibitory effects on differentiated cancer cells (DCCs), but their activity against cancer stem cells (CSCs) remains poorly understood. Here, we report that PSs from wheat cell cultures (WCCPSs) inhibit the proliferation of both DCCs and CSCs derived from HCT-116 colorectal cancer cells. Among them, NA and DC fractions showed the strongest anti-CSC activity. NA, rich in xylose, was effective at lower concentrations, while DC, enriched in xylose and galacturonic acid (GalUA), exhibited higher potency, with a lower IC50 and preferential activity against CSCs at higher doses. WCCPSs reduced β-catenin levels, and some fractions also downregulated Ep-CAM, CD44, and c-Myc. Notably, DC increased caspase-3 without inducing cytochrome C and caspase-8 overexpression, suggesting a mechanism promoting CSC differentiation rather than apoptosis. Correlation analysis linked xylose content to reduced c-Myc expression, and GalUA levels to increased caspase-3. These results suggest that WCCPS bioactivity may be related to their monosaccharide composition. Overall, our findings support the potential of wheat-derived PSs as CSC-targeting agents that suppress self-renewal and promote differentiation, offering a promising approach to reduce tumor aggressiveness and recurrence.
Collapse
Affiliation(s)
- Alima Murtazina
- Department of General Immunology, Faculty of Medicine, Asfendyarov Kazakh National Medical University, Almaty 050012, Kazakhstan; (A.M.); (A.T.); (E.B.)
- Biopathology and Regenerative Medicine Institute (IBIMER), Centre for Biomedical Research, University of Granada, 18016 Granada, Spain; (Y.J.-M.); (G.R.A.); (J.A.M.)
- Research Center “Bioscience Technologies”, Almaty 050057, Kazakhstan
| | - Yaiza Jimenez-Martinez
- Biopathology and Regenerative Medicine Institute (IBIMER), Centre for Biomedical Research, University of Granada, 18016 Granada, Spain; (Y.J.-M.); (G.R.A.); (J.A.M.)
- Instituto de Investigación Biosanitaria ibs. GRANADA, University Hospitals of Granada-University of Granada, 18014 Granada, Spain
| | - Gloria Ruiz Alcala
- Biopathology and Regenerative Medicine Institute (IBIMER), Centre for Biomedical Research, University of Granada, 18016 Granada, Spain; (Y.J.-M.); (G.R.A.); (J.A.M.)
- Instituto de Investigación Biosanitaria ibs. GRANADA, University Hospitals of Granada-University of Granada, 18014 Granada, Spain
| | - Juan Antonio Marchal
- Biopathology and Regenerative Medicine Institute (IBIMER), Centre for Biomedical Research, University of Granada, 18016 Granada, Spain; (Y.J.-M.); (G.R.A.); (J.A.M.)
- Instituto de Investigación Biosanitaria ibs. GRANADA, University Hospitals of Granada-University of Granada, 18014 Granada, Spain
- Department of Human Anatomy and Embryology, Faculty of Medicine, University of Granada, 18016 Granada, Spain
- Research Unit “Modeling Nature” (MNat), University of Granada, 18016 Granada, Spain
| | - Anel Tarabayeva
- Department of General Immunology, Faculty of Medicine, Asfendyarov Kazakh National Medical University, Almaty 050012, Kazakhstan; (A.M.); (A.T.); (E.B.)
| | - Elmira Bitanova
- Department of General Immunology, Faculty of Medicine, Asfendyarov Kazakh National Medical University, Almaty 050012, Kazakhstan; (A.M.); (A.T.); (E.B.)
| | | | - Gordon J. McDougall
- Plant Biochemistry and Food Quality Group, Environmental and Biochemical Sciences Department, The James Hutton Institute, Invergowrie, Dundee DD2 5DA, UK;
| | - Nazira Bishimbayeva
- Research Center “Bioscience Technologies”, Almaty 050057, Kazakhstan
- Research Institute for Problems of Biology and Biotechnology, Al-Farabi Kazakh National University, Almaty 050040, Kazakhstan
| | - Houria Boulaiz
- Biopathology and Regenerative Medicine Institute (IBIMER), Centre for Biomedical Research, University of Granada, 18016 Granada, Spain; (Y.J.-M.); (G.R.A.); (J.A.M.)
- Research Center “Bioscience Technologies”, Almaty 050057, Kazakhstan
- Instituto de Investigación Biosanitaria ibs. GRANADA, University Hospitals of Granada-University of Granada, 18014 Granada, Spain
- Department of Human Anatomy and Embryology, Faculty of Medicine, University of Granada, 18016 Granada, Spain
| |
Collapse
|
4
|
Zhuravleva E, Lewinska M, O'Rourke CJ, Pea A, Rashid A, Hsing AW, Taranta A, Chang D, Gao YT, Koshiol J, Oliveira RC, Andersen JB. Mutational signatures define immune and Wnt-associated subtypes of ampullary carcinoma. Gut 2025; 74:804-814. [PMID: 39725462 PMCID: PMC12013699 DOI: 10.1136/gutjnl-2024-333368] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 07/16/2024] [Accepted: 11/21/2024] [Indexed: 12/28/2024]
Abstract
BACKGROUND AND OBJECTIVE Ampullary carcinoma (AMPAC) taxonomy is based on morphology and immunohistochemistry. This classification lacks prognostic reliability and unique genetic associations. We applied an approach of integrative genomics characterising patients with AMPAC exploring molecular subtypes that may guide personalised treatments. DESIGN We analysed the mutational landscapes of 170 patients with AMPAC. The discovery included 110 tumour/normal pairs and the validation comprised 60 patients. In a tumour subset, we interrogated the transcriptomes and DNA methylomes. Patients were stratified based on mutational signatures and associated with molecular and clinical features. To evaluate tumour and immune cellularity, 22 tumours were independently assessed histomorphologically and by digital pathology. RESULTS We defined three patient clusters by mutational signatures independent of histomorphology. Cluster 1 (C1) was defined by spontaneous deamination of DNA 5-methylcytosine and defective mismatch repair. C2 and C3 were related to the activity of transcription-coupled nucleotide excision repair but C3 was further defined by the polymerase eta mutational process. C1-2 showed enrichment of Wnt pathway alterations, aberrant DNA methylation profiles, immune cell exclusion and patients with poor prognosis. These features were associated with a hypermutator phenotype caused by C>T alterations at CpGs. C3 patients with improved overall survival were associated with activation of immune-related pathways, immune infiltration and elevated expression of immunoinhibitory checkpoint genes. CONCLUSION Immunogenicity and Wnt pathway associations, emphasised by the mutational signatures, defined patients with prospective sensitivity to either immunotherapy or Wnt pathway inhibitors. This emphasises a novel mutational signature-based AMPAC classification with prognostic potential, suggesting prospective implications for subgroup-specific management of patients with AMPAC.
Collapse
Affiliation(s)
- Ekaterina Zhuravleva
- Biotech Research and Innovation Center (BRIC), Department of Health and Medical Sciences, University of Copenhagen, Copenhagen, Denmark
| | - Monika Lewinska
- Biotech Research and Innovation Center (BRIC), Department of Health and Medical Sciences, University of Copenhagen, Copenhagen, Denmark
| | - Colm J O'Rourke
- Biotech Research and Innovation Center (BRIC), Department of Health and Medical Sciences, University of Copenhagen, Copenhagen, Denmark
| | - Antonio Pea
- University of Glasgow, Wolfson Wohl Cancer Research Centre, School of Cancer Sciences, Glasgow, UK
- University of Verona, Verona, Italy
| | - Asif Rashid
- Department of Pathology, Division of Pathology/Lab Medicine, MD Anderson Cancer Center, The University of Texas, Houston, Texas, USA
| | - Ann W Hsing
- Stanford Cancer Institute and Stanford Prevention Research Center, Department of Medicine, Stanford School of Medicine, Stanford University, Palo Alto, California, USA
| | - Andrzej Taranta
- Biotech Research and Innovation Center (BRIC), Department of Health and Medical Sciences, University of Copenhagen, Copenhagen, Denmark
| | - David Chang
- University of Glasgow, Wolfson Wohl Cancer Research Centre, School of Cancer Sciences, Glasgow, UK
| | - Yu-Tang Gao
- Department of Epidemiology, Shanghai Cancer Institute, Shanghai, Shanghai, China
| | - Jill Koshiol
- Division of Cancer Epidemiology and Genetics, NIH, Rockville, Maryland, USA
| | | | - Jesper B Andersen
- Biotech Research and Innovation Center (BRIC), Department of Health and Medical Sciences, University of Copenhagen, Copenhagen, Denmark
| |
Collapse
|
5
|
Nguyen NTB, Gevers S, Kok RNU, Burgering LM, Neikes H, Akkerman N, Betjes MA, Ludikhuize MC, Gulersonmez C, Stigter ECA, Vercoulen Y, Drost J, Clevers H, Vermeulen M, van Zon JS, Tans SJ, Burgering BMT, Rodríguez Colman MJ. Lactate controls cancer stemness and plasticity through epigenetic regulation. Cell Metab 2025; 37:903-919.e10. [PMID: 39933514 DOI: 10.1016/j.cmet.2025.01.002] [Citation(s) in RCA: 4] [Impact Index Per Article: 4.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 01/03/2024] [Revised: 11/04/2024] [Accepted: 01/03/2025] [Indexed: 02/13/2025]
Abstract
Tumors arise from uncontrolled cell proliferation driven by mutations in genes that regulate stem cell renewal and differentiation. Intestinal tumors, however, retain some hierarchical organization, maintaining both cancer stem cells (CSCs) and cancer differentiated cells (CDCs). This heterogeneity, coupled with cellular plasticity enabling CDCs to revert to CSCs, contributes to therapy resistance and relapse. Using genetically encoded fluorescent reporters in human tumor organoids, combined with our machine-learning-based cell tracker, CellPhenTracker, we simultaneously traced cell-type specification, metabolic changes, and reconstructed cell lineage trajectories during tumor organoid development. Our findings reveal distinctive metabolic phenotypes in CSCs and CDCs. We find that lactate regulates tumor dynamics, suppressing CSC differentiation and inducing dedifferentiation into a proliferative CSC state. Mechanistically, lactate increases histone acetylation, epigenetically activating MYC. Given that lactate's regulation of MYC depends on the bromodomain-containing protein 4 (BRD4), targeting cancer metabolism and BRD4 inhibitors emerge as a promising strategy to prevent tumor relapse.
Collapse
Affiliation(s)
- Nguyen T B Nguyen
- Molecular Cancer Research, Center for Molecular Medicine, University Medical Center Utrecht, Heidelberglaan 100, 3584 CG Utrecht, the Netherlands; Oncode Institute, Utrecht, the Netherlands
| | - Sira Gevers
- Molecular Cancer Research, Center for Molecular Medicine, University Medical Center Utrecht, Heidelberglaan 100, 3584 CG Utrecht, the Netherlands; Oncode Institute, Utrecht, the Netherlands
| | - Rutger N U Kok
- Molecular Cancer Research, Center for Molecular Medicine, University Medical Center Utrecht, Heidelberglaan 100, 3584 CG Utrecht, the Netherlands; Oncode Institute, Utrecht, the Netherlands
| | - Lotte M Burgering
- Molecular Cancer Research, Center for Molecular Medicine, University Medical Center Utrecht, Heidelberglaan 100, 3584 CG Utrecht, the Netherlands; Oncode Institute, Utrecht, the Netherlands
| | - Hannah Neikes
- Department of Molecular Biology, Faculty of Science, Radboud Institute for Molecular Life Sciences, Oncode Institute, Radboud University Nijmegen, Nijmegen 6525 GA, the Netherlands; Oncode Institute, Utrecht, the Netherlands
| | - Ninouk Akkerman
- Hubrecht Institute, Royal Netherlands Academy of Arts and Sciences, University Medical Center Utrecht, Utrecht, the Netherlands
| | | | - Marlies C Ludikhuize
- Molecular Cancer Research, Center for Molecular Medicine, University Medical Center Utrecht, Heidelberglaan 100, 3584 CG Utrecht, the Netherlands
| | - Can Gulersonmez
- Molecular Cancer Research, Center for Molecular Medicine, University Medical Center Utrecht, Heidelberglaan 100, 3584 CG Utrecht, the Netherlands
| | - Edwin C A Stigter
- Molecular Cancer Research, Center for Molecular Medicine, University Medical Center Utrecht, Heidelberglaan 100, 3584 CG Utrecht, the Netherlands
| | - Yvonne Vercoulen
- Molecular Cancer Research, Center for Molecular Medicine, University Medical Center Utrecht, Heidelberglaan 100, 3584 CG Utrecht, the Netherlands
| | - Jarno Drost
- Oncode Institute, Utrecht, the Netherlands; Princess Máxima Center for Pediatric Oncology, Heidelberglaan 25, 3584 CS Utrecht, the Netherlands
| | - Hans Clevers
- Oncode Institute, Utrecht, the Netherlands; Hubrecht Institute, Royal Netherlands Academy of Arts and Sciences, University Medical Center Utrecht, Utrecht, the Netherlands
| | - Michiel Vermeulen
- Department of Molecular Biology, Faculty of Science, Radboud Institute for Molecular Life Sciences, Oncode Institute, Radboud University Nijmegen, Nijmegen 6525 GA, the Netherlands; Oncode Institute, Utrecht, the Netherlands
| | | | - Sander J Tans
- AMOLF, Amsterdam, the Netherlands; Bionanoscience Department, Kavli Institute of Nanoscience Delft, Delft University of Technology, Delft, the Netherlands
| | - Boudewijn M T Burgering
- Molecular Cancer Research, Center for Molecular Medicine, University Medical Center Utrecht, Heidelberglaan 100, 3584 CG Utrecht, the Netherlands; Oncode Institute, Utrecht, the Netherlands
| | - Maria J Rodríguez Colman
- Molecular Cancer Research, Center for Molecular Medicine, University Medical Center Utrecht, Heidelberglaan 100, 3584 CG Utrecht, the Netherlands; Oncode Institute, Utrecht, the Netherlands.
| |
Collapse
|
6
|
Sahoo K, Sundararajan V. IL-1β and associated molecules as prognostic biomarkers linked with immune cell infiltration in colorectal cancer: an integrated statistical and machine learning approach. Discov Oncol 2025; 16:252. [PMID: 40019680 PMCID: PMC11871282 DOI: 10.1007/s12672-025-01989-3] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 10/12/2024] [Accepted: 02/17/2025] [Indexed: 03/01/2025] Open
Abstract
PURPOSE Colorectal cancer (CRC) is the third most common cancer globally, necessitating novel biomarkers for early diagnosis and treatment. This study proposes an efficient pipeline leveraging an integrated bioinformatics and machine learning framework to enhance the identification of diagnostic and prognostic biomarkers for CRC. METHODS A selection of methylated differentially expressed genes (MeDEGs) and features (genes) was made using both statistical and Machine learning (ML) approaches from publically available datasets. These genes were subjected to STRING network construction and hub genes estimation, separately. Also, essential miRNAs (micro-RNAs) and TFs (Transcription factors) as regulatory elements were revealed and findings were validated through scRNA-seq analysis, promoter methylation, gene expression levels correlated with pathological stage, and interaction with tumor-infiltrating immune cells. RESULTS Through an integrated analysis pipeline, we identified 27 hub genes, among which CTNNB1, GSK3B, IL-1β, MYC, PXDN, TP53, EGFR, SRC, COL1A1, and TGBF1 showed better diagnostic behaviour. Machine learning approach includes the development of K-Nearest Neighbors (KNN), Artificial Neural Networks (ANN), and Random Forest (RF) models using TCGA datasets, achieving an accuracy range between 99 and 100%. The Area Under the Curve (AUC) value for each model is 1.00, signifying good classification performance. The high expression of some diagnostic genes was associated with poor prognosis, concluding IL-1β as both a prognostic and diagnostic biomarker. Additionally, the NF-κB and microRNAs (miR-548d-3p, miR-548-ac) and TFs (NFκB and STAT5A) play a major role in the comprehensive regulatory network for CRC. Furthermore, hub genes such as IL-1β, TGFB1, and COL1A1 were significantly correlated with immune infiltrates, suggesting their potential role in CRC progression. CONCLUSION Overall, the elevated expression of IL-1β coupled with abnormal DNA methylation, and its consequent effect on the PI3K/Akt signaling pathway are relevant prognostic and therapeutic marker in CRC. Additional molecular candidates reveal insights into the epigenetic regulatory targets of CRC and their association with immune cell infiltration.
Collapse
Affiliation(s)
- Karishma Sahoo
- Integrative Multiomics Lab, School of Bio Sciences and Technology, Vellore Institute of Technology, Vellore, Tamil Nadu, 632014, India
| | - Vino Sundararajan
- Integrative Multiomics Lab, School of Bio Sciences and Technology, Vellore Institute of Technology, Vellore, Tamil Nadu, 632014, India.
| |
Collapse
|
7
|
Carranza FG, Waldrup B, Jin Y, Amzaleg Y, Postel M, Craig DW, Carpten JD, Salhia B, Hernandez D, Gutierrez N, Ricker CN, Culver JO, Chavez CE, Stern MC, Baezconde-Garbanati L, Lenz HJ, Velazquez-Villarreal E. Assessment of MYC Gene and WNT Pathway Alterations in Early-Onset Colorectal Cancer Among Hispanic/Latino Patients Using Integrated Multi-Omics Approaches. MEDRXIV : THE PREPRINT SERVER FOR HEALTH SCIENCES 2025:2024.12.05.24318588. [PMID: 40034762 PMCID: PMC11875251 DOI: 10.1101/2024.12.05.24318588] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Download PDF] [Subscribe] [Scholar Register] [Indexed: 03/05/2025]
Abstract
Colorectal cancer (CRC) has increased at an alarming rate amongst younger (< 50 years) individuals. Such early-onset colorectal cancer (EOCRC) has been particularly notable within the Hispanic/Latino population. Yet, this population has not been sufficiently profiled in terms of two critical elements of CRC -- the MYC proto-oncogene and WNT signaling pathway. Here, we performed a comprehensive multi-omics analysis on 30 early-onset and 37 late-onset CRC (≥ 50 years) samples from Hispanic/Latino patients. Our analysis included DNA exome sequencing for somatic mutations, somatic copy number alterations, and global and local genetic similarity. Using RNA sequencing, we also assessed differential gene expression, cellular pathways, and gene fusions. We then compared our findings from early-onset Hispanic/Latino patient samples with publicly available data from Non-Hispanic White cohorts. Across all early-onset patients, which had a median 1000 Genomes Project Peruvian-in-Lima-like (1KG-PEL-like) genetic similarity proportion of 60%, we identified 41 WNT pathway genes with significant mutations. Six important examples were APC, TCF7L2, DKK1, DKK2, FZD10, and LRP5. Notably, patients with mutations in DKK1 and DKK2 had the highest 1KG-PEL-like proportion (79%). When we compared the Hispanic/Latino cohort to the Non-Hispanic White cohorts, four of these key genes -- DKK1, DKK2, FZD10, and LRP5 -- were significant in both risk association analyses and differential gene expression. Interestingly, early-onset tumors (vs. late-onset) exhibited distinct somatic copy number alterations and gene expression profiles; the differences included MYC and drug-targetable WNT pathway genes. We also identified a novel WNT gene fusion, RSPO3, in early-onset tumors; it was associated with enhanced WNT signaling. This integrative analysis underscores the distinct molecular features of EOCRC cancer in the Hispanic/Latino population; reveals potential avenues for tailored precision medicine therapies; and emphasizes the importance of multi-omics approaches in studying colorectal carcinogenesis. We expect this data to help contribute towards reducing cancer health disparities. Significance This study offers multi-omics profiling analysis of early-onset colorectal cancer (EOCRC) in an underserved community, explores the implications of MYC gene and WNT pathway alterations, and provides critical insights into cancer health disparities.
Collapse
Affiliation(s)
- F G Carranza
- City of Hope, Beckman Research Institute, Department of Integrative Translational Sciences, Duarte, CA
| | - B Waldrup
- City of Hope, Beckman Research Institute, Department of Integrative Translational Sciences, Duarte, CA
| | - Y Jin
- City of Hope, Beckman Research Institute, Department of Integrative Translational Sciences, Duarte, CA
| | - Y Amzaleg
- City of Hope, Beckman Research Institute, Department of Integrative Translational Sciences, Duarte, CA
| | - M Postel
- University of Southern California, Keck School of Medicine of USC, Department of Translational Genomics, Los Angeles, CA
| | - D W Craig
- City of Hope, Beckman Research Institute, Department of Integrative Translational Sciences, Duarte, CA
- City of Hope Comprehensive Cancer Center, Duarte, CA
| | - J D Carpten
- City of Hope, Beckman Research Institute, Department of Integrative Translational Sciences, Duarte, CA
- City of Hope Comprehensive Cancer Center, Duarte, CA
| | - B Salhia
- University of Southern California, Keck School of Medicine of USC, Department of Translational Genomics, Los Angeles, CA
- University of Southern California, USC Norris Comprehensive Cancer Center, Los Angeles, CA
| | - D Hernandez
- University of Southern California, Keck School of Medicine of USC, Division of Medical Oncology, Los Angeles, CA
| | - N Gutierrez
- University of Southern California, Keck School of Medicine of USC, Division of Medical Oncology, Los Angeles, CA
| | - C N Ricker
- University of Southern California, USC Norris Comprehensive Cancer Center, Los Angeles, CA
- University of Southern California, Keck School of Medicine of USC, Division of Medical Oncology, Los Angeles, CA
- Los Angeles General Medical Center, Los Angeles, CA
| | - J O Culver
- University of Southern California, USC Norris Comprehensive Cancer Center, Los Angeles, CA
- University of Southern California, Keck School of Medicine of USC, Division of Medical Oncology, Los Angeles, CA
| | - C E Chavez
- University of Southern California, USC Norris Comprehensive Cancer Center, Los Angeles, CA
| | - M C Stern
- University of Southern California, USC Norris Comprehensive Cancer Center, Los Angeles, CA
- University of Southern California, Keck School of Medicine of USC, Department of Population and Public Health Sciences, Los Angeles, CA
| | - L Baezconde-Garbanati
- University of Southern California, USC Norris Comprehensive Cancer Center, Los Angeles, CA
- University of Southern California, Keck School of Medicine of USC, Department of Population and Public Health Sciences, Los Angeles, CA
| | - H J Lenz
- University of Southern California, USC Norris Comprehensive Cancer Center, Los Angeles, CA
- University of Southern California, Keck School of Medicine of USC, Division of Medical Oncology, Los Angeles, CA
| | - E Velazquez-Villarreal
- City of Hope, Beckman Research Institute, Department of Integrative Translational Sciences, Duarte, CA
- City of Hope Comprehensive Cancer Center, Duarte, CA
| |
Collapse
|
8
|
Nair V, Demitri C, Thankam FG. Competitive signaling and cellular communications in myocardial infarction response. Mol Biol Rep 2025; 52:129. [PMID: 39820809 PMCID: PMC11739196 DOI: 10.1007/s11033-025-10236-5] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/08/2024] [Accepted: 01/07/2025] [Indexed: 01/19/2025]
Abstract
Cell communication and competition pathways are malleable to Myocardial Infarction (MI). Key signals, transcriptive regulators, and metabolites associated with apoptotic responses such as Myc, mTOR, and p53 are important players in the myocardium. The individual state of cardiomyocytes, fibroblasts, and macrophages in the heart tissue are adaptable in times of stress. The overlapping communication pathways of Wnt/β-catenin, Notch, and c-Kit exhibit the involvement of important factors in cell competition in the myocardium. Depending on the effects of these pathways on genetic expression and signal amplification, the proliferative capacities of the previously stated cells that make up the myocardium, amplify or diminish. This creates a distinct classification of "fit" and "unfit" cells. Beyond straightforward traits, the intricate metabolite interactions between neighboring cells unveil a complex battle. Strategic manipulation of these pathways holds translational promise for rapid cardiac recovery post-trauma.
Collapse
Affiliation(s)
- Vishnu Nair
- Department of Molecular, Cell, & Developmental Biology, University of California, Los Angeles, CA, 90095, USA
| | - Christian Demitri
- Department of Experimental Medicine, University of Salento, Lecce, 73100, Italy
| | - Finosh G Thankam
- Department of Translational Research, College of Osteopathic Medicine of the Pacific, Western University of Health Sciences, Pomona, CA, 91766-1854, USA.
| |
Collapse
|
9
|
Wu Q, Nandi D, Sharma D. TRIM-endous functional network of tripartite motif 29 (TRIM29) in cancer progression and beyond. Cancer Metastasis Rev 2024; 44:16. [PMID: 39644332 PMCID: PMC11625080 DOI: 10.1007/s10555-024-10226-2] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 06/18/2024] [Accepted: 10/16/2024] [Indexed: 12/09/2024]
Abstract
While most Tripartite motif (TRIM) family proteins are E3 ubiquitin ligases, some members have functions beyond the regulation of ubiquitination, impacting normal physiological processes and disease progression. TRIM29, an important member of the TRIM family, exerts a predominant influence on cancer growth, epithelial-to-mesenchymal transition, stemness and metastatic progression by directly potentiating multiple canonical oncogenic pathways. The cancer-promoting effect of TRIM29 is also evident in metabolic interventions and interference with the efficacy of cancer therapeutics. As expected for any key node in cancer, the expression of TRIM29 is tightly regulated by non-coding RNAs, epigenetic modulation, and post-translational regulation. A systematic discussion of how TRIM29 is regulated in cancer, its influences on cancer progression, and its impact on cancer therapeutics is presented in this review. We also explore the context-dependent alterations between TRIM29 function from oncogenic to tumor suppression. As TRIM29 is involved in multiple aspects of cancer progression, a better understanding of its biological impact in cancer may help improve prognosis and develop novel therapeutic combinations, leading to improved personalized cancer care.
Collapse
Affiliation(s)
- Qitong Wu
- Department of Oncology, Johns Hopkins University School of Medicine and Sidney Kimmel Comprehensive Cancer Center at Johns Hopkins, Baltimore, MD, USA
| | - Deeptashree Nandi
- Department of Oncology, Johns Hopkins University School of Medicine and Sidney Kimmel Comprehensive Cancer Center at Johns Hopkins, Baltimore, MD, USA
| | - Dipali Sharma
- Department of Oncology, Johns Hopkins University School of Medicine and Sidney Kimmel Comprehensive Cancer Center at Johns Hopkins, Baltimore, MD, USA.
- Department of Oncology, The Sidney Kimmel Comprehensive Cancer Center, Johns Hopkins University School of Medicine, 1650 Orleans Street, CRB 1, Rm 145, Baltimore, MD, 21231, USA.
| |
Collapse
|
10
|
Permain J, Hock B, Eglinton T, Purcell R. Functional links between the microbiome and the molecular pathways of colorectal carcinogenesis. Cancer Metastasis Rev 2024; 43:1463-1474. [PMID: 39340753 PMCID: PMC11554747 DOI: 10.1007/s10555-024-10215-5] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 04/02/2024] [Accepted: 09/16/2024] [Indexed: 09/30/2024]
Abstract
Colorectal cancer (CRC) is a common cancer, with a concerning rise in early-onset CRC cases, signalling a shift in disease epidemiology. Whilst our understanding of the molecular underpinnings of CRC has expanded, the complexities underlying its initiation remain elusive, with emerging evidence implicating the microbiome in CRC pathogenesis. This review synthesizes current knowledge on the intricate interplay between the microbiome, tumour microenvironment (TME), and molecular pathways driving CRC carcinogenesis. Recent studies have reported how the microbiome may modulate the TME and tumour immune responses, consequently influencing cancer progression, and whilst specific bacteria have been linked with CRC, the underlying mechanisms remains poorly understood. By elucidating the functional links between microbial landscapes and carcinogenesis pathways, this review offers insights into how bacteria orchestrate diverse pathways of CRC development, shedding light on potential therapeutic targets and personalized intervention strategies.
Collapse
Affiliation(s)
- Jessica Permain
- Department of Surgery and Critical Care, University of Otago, Christchurch, New Zealand
| | - Barry Hock
- Department of Pathology and Biomedical Science, University of Otago, Christchurch, New Zealand
| | - Timothy Eglinton
- Department of Surgery and Critical Care, University of Otago, Christchurch, New Zealand
| | - Rachel Purcell
- Department of Surgery and Critical Care, University of Otago, Christchurch, New Zealand.
| |
Collapse
|
11
|
Liu W, Li S, Yang M, Ma J, Liu L, Fei P, Xiang Q, Huang L, Zhao P, Yang Z, Zhu X. Dysfunction of Calcyphosine-Like gene impairs retinal angiogenesis through the MYC axis and is associated with familial exudative vitreoretinopathy. eLife 2024; 13:RP96907. [PMID: 39264149 PMCID: PMC11392532 DOI: 10.7554/elife.96907] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 09/13/2024] Open
Abstract
Familial exudative vitreoretinopathy (FEVR) is a severe genetic disorder characterized by incomplete vascularization of the peripheral retina and associated symptoms that can lead to vision loss. However, the underlying genetic causes of approximately 50% of FEVR cases remain unknown. Here, we report two heterozygous variants in calcyphosine-like gene (CAPSL) that is associated with FEVR. Both variants exhibited compromised CAPSL protein expression. Vascular endothelial cell (EC)-specific inactivation of Capsl resulted in delayed radial/vertical vascular progression, compromised endothelial proliferation/migration, recapitulating the human FEVR phenotypes. CAPSL-depleted human retinal microvascular endothelial cells (HRECs) exhibited impaired tube formation, decreased cell proliferation, disrupted cell polarity establishment, and filopodia/lamellipodia formation, as well as disrupted collective cell migration. Transcriptomic and proteomic profiling revealed that CAPSL abolition inhibited the MYC signaling axis, in which the expression of core MYC targeted genes were profoundly decreased. Furthermore, a combined analysis of CAPSL-depleted HRECs and c-MYC-depleted human umbilical vein endothelial cells uncovered similar transcription patterns. Collectively, this study reports a novel FEVR-associated candidate gene, CAPSL, which provides valuable information for genetic counseling of FEVR. This study also reveals that compromised CAPSL function may cause FEVR through MYC axis, shedding light on the potential involvement of MYC signaling in the pathogenesis of FEVR.
Collapse
Affiliation(s)
- Wenjing Liu
- The Sichuan Provincial Key Laboratory for Human Disease Gene Study, Center for The Sichuan Provincial Key Laboratory for Human Disease Gene Study, Center for Medical Genetics, Sichuan Provincial People's Hospital, University of Electronic Science and Technology of China, Chengdu, China
- Center for Natural Products Research, Chengdu Institute of Biology, Chinese Academy of Sciences, Chengdu, China
- Henan Branch of National Clinical Research Center for Ocular Diseases, Henan Eye Hospital, People's Hospital of Zhengzhou University, Henan Provincial People's Hospital, Zhengzhou, China
| | - Shujin Li
- The Sichuan Provincial Key Laboratory for Human Disease Gene Study, Center for The Sichuan Provincial Key Laboratory for Human Disease Gene Study, Center for Medical Genetics, Sichuan Provincial People's Hospital, University of Electronic Science and Technology of China, Chengdu, China
- Center for Natural Products Research, Chengdu Institute of Biology, Chinese Academy of Sciences, Chengdu, China
| | - Mu Yang
- The Sichuan Provincial Key Laboratory for Human Disease Gene Study, Center for The Sichuan Provincial Key Laboratory for Human Disease Gene Study, Center for Medical Genetics, Sichuan Provincial People's Hospital, University of Electronic Science and Technology of China, Chengdu, China
- Center for Natural Products Research, Chengdu Institute of Biology, Chinese Academy of Sciences, Chengdu, China
| | - Jie Ma
- The Sichuan Provincial Key Laboratory for Human Disease Gene Study, Center for The Sichuan Provincial Key Laboratory for Human Disease Gene Study, Center for Medical Genetics, Sichuan Provincial People's Hospital, University of Electronic Science and Technology of China, Chengdu, China
| | - Lu Liu
- The Sichuan Provincial Key Laboratory for Human Disease Gene Study, Center for The Sichuan Provincial Key Laboratory for Human Disease Gene Study, Center for Medical Genetics, Sichuan Provincial People's Hospital, University of Electronic Science and Technology of China, Chengdu, China
| | - Ping Fei
- Department of Ophthalmology, Xinhua Hospital Affiliated to Shanghai Jiao Tong University School of Medicine, Shanghai, China
| | - Qianchun Xiang
- The Sichuan Provincial Key Laboratory for Human Disease Gene Study, Center for The Sichuan Provincial Key Laboratory for Human Disease Gene Study, Center for Medical Genetics, Sichuan Provincial People's Hospital, University of Electronic Science and Technology of China, Chengdu, China
| | - Lulin Huang
- The Sichuan Provincial Key Laboratory for Human Disease Gene Study, Center for The Sichuan Provincial Key Laboratory for Human Disease Gene Study, Center for Medical Genetics, Sichuan Provincial People's Hospital, University of Electronic Science and Technology of China, Chengdu, China
| | - Peiquan Zhao
- Department of Ophthalmology, Xinhua Hospital Affiliated to Shanghai Jiao Tong University School of Medicine, Shanghai, China
| | - Zhenglin Yang
- The Sichuan Provincial Key Laboratory for Human Disease Gene Study, Center for The Sichuan Provincial Key Laboratory for Human Disease Gene Study, Center for Medical Genetics, Sichuan Provincial People's Hospital, University of Electronic Science and Technology of China, Chengdu, China
- Center for Natural Products Research, Chengdu Institute of Biology, Chinese Academy of Sciences, Chengdu, China
- Jinfeng Laboratory, Chongqing, China
- Research Unit for Blindness Prevention of Chinese Academy of Medical Sciences (2019RU026), Sichuan Academy of Medical Sciences and Sichuan Provincial People's Hospital, Chengdu, China
| | - Xianjun Zhu
- The Sichuan Provincial Key Laboratory for Human Disease Gene Study, Center for The Sichuan Provincial Key Laboratory for Human Disease Gene Study, Center for Medical Genetics, Sichuan Provincial People's Hospital, University of Electronic Science and Technology of China, Chengdu, China
- Center for Natural Products Research, Chengdu Institute of Biology, Chinese Academy of Sciences, Chengdu, China
- Henan Branch of National Clinical Research Center for Ocular Diseases, Henan Eye Hospital, People's Hospital of Zhengzhou University, Henan Provincial People's Hospital, Zhengzhou, China
- Jinfeng Laboratory, Chongqing, China
- Research Unit for Blindness Prevention of Chinese Academy of Medical Sciences (2019RU026), Sichuan Academy of Medical Sciences and Sichuan Provincial People's Hospital, Chengdu, China
| |
Collapse
|
12
|
Ormsbee Golden BD, Gonzalez DV, Yochum GS, Coulter DW, Rizzino A. SOX2 represses c-MYC transcription by altering the co-activator landscape of the c-MYC super-enhancer and promoter regions. J Biol Chem 2024; 300:107642. [PMID: 39122009 PMCID: PMC11408076 DOI: 10.1016/j.jbc.2024.107642] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/15/2024] [Revised: 07/05/2024] [Accepted: 07/22/2024] [Indexed: 08/12/2024] Open
Abstract
Our previous studies determined that elevating SOX2 in a wide range of tumor cells leads to a reversible state of tumor growth arrest. Efforts to understand how tumor cell growth is inhibited led to the discovery of a SOX2:MYC axis that is responsible for downregulating c-MYC (MYC) when SOX2 is elevated. Although we had determined that elevating SOX2 downregulates MYC transcription, the mechanism responsible was not determined. Given the challenges of targeting MYC clinically, we set out to identify how elevating SOX2 downregulates MYC transcription. In this study, we focused on the MYC promoter region and an upstream region of the MYC locus that contains a MYC super-enhancer encompassing five MYC enhancers and which is associated with several cancers. Here we report that BRD4 and p300 associate with each of the MYC enhancers in the upstream MYC super-enhancer as well as the MYC promoter region and that elevating SOX2 decreases the recruitment of BRD4 and p300 to these sites. Additionally, we determined that elevating SOX2 leads to increases in the association of SOX2 and H3K27me3 within the MYC super-enhancer and the promoter region of MYC. Importantly, we conclude that the increases in SOX2 within the MYC super-enhancer precipitate a cascade of events that culminates in the repression of MYC transcription. Together, our studies identify a novel molecular mechanism able to regulate MYC transcription in two distinctly different tumor types and provide new mechanistic insights into the molecular interrelationships between two master regulators, SOX2 and MYC, widely involved in multiple cancers.
Collapse
Affiliation(s)
- Briana D Ormsbee Golden
- Eppley Institute for Research in Cancer and Allied Diseases, University of Nebraska Medical Center, Omaha, Nebraska, USA
| | - Daisy V Gonzalez
- Eppley Institute for Research in Cancer and Allied Diseases, University of Nebraska Medical Center, Omaha, Nebraska, USA
| | - Gregory S Yochum
- Department of Surgery & Biochemistry & Molecular Biology, Pennsylvania State University College of Medicine, Hershey, Pennsylvania, USA
| | - Donald W Coulter
- Hematology and Oncology Division, Department of Pediatrics, Nebraska Medical Center, Omaha, Nebraska, USA; Child Health Research Institute, University of Nebraska Medical Center, Omaha, Nebraska, USA; Fred & Pamela Buffett Cancer Center, University of Nebraska Medical Center, Omaha, Nebraska, USA
| | - Angie Rizzino
- Eppley Institute for Research in Cancer and Allied Diseases, University of Nebraska Medical Center, Omaha, Nebraska, USA; Fred & Pamela Buffett Cancer Center, University of Nebraska Medical Center, Omaha, Nebraska, USA.
| |
Collapse
|
13
|
Wang Y, Lu Y, Xu C. Tensin 4 facilitates aerobic glycolysis, migration and invasion of colorectal cancer cells through the β‑catenin/c‑Myc signaling pathway. Oncol Lett 2024; 28:356. [PMID: 38881712 PMCID: PMC11176887 DOI: 10.3892/ol.2024.14489] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/19/2023] [Accepted: 05/08/2024] [Indexed: 06/18/2024] Open
Abstract
Tensin 4 (TNS4) is overexpressed in multiple cancers, including colorectal cancer (CRC), and is associated with a poor prognosis of patients with CRC. However, the role and underlying mechanisms of TNS4 in CRC have yet to be elucidated. The expression of TNS4 in CRC tissues were analyzed by immunohistochemistry. Cell migration and invasion were assessed in vitro using Transwell assay. Western blot and reverse transcription (RT)-quantitative (q)PCR were used to investigate the molecular mechanisms by which TNS4 regulates aerobic glycolysis, migration and invasion of CRC cells. The present study demonstrated that TNS4 was highly expressed in the cancer tissues of patients with CRC and significantly associated with the tumor-node-metastasis stages. TNS4 silencing led to a significant decrease in glucose consumption and lactate production in CRC cells, and knockdown of TNS4 suppressed the migration and invasion of CRC cells via aerobic glycolysis through the β-catenin/c-Myc pathway. Notably, treatment with DASA-58, an activator of glycolysis, or SKL2001, an activator of β-catenin/c-Myc signaling, significantly reversed the effect of TNS4 knockdown on aerobic glycolysis, migration and invasion of CRC cells. Collectively, these results suggest that TNS4 may act as a novel regulator of aerobic glycolysis, migration and invasion of CRC cells by modulating β-catenin/c-Myc signaling, providing a new potential biomarker and therapeutic target in CRC.
Collapse
Affiliation(s)
- Yan Wang
- Department of Gastroenterology, The First Affiliated Hospital of Soochow University, Suzhou, Jiangsu 215000, P.R. China
| | - Yongda Lu
- Department of Gastroenterology, The First Affiliated Hospital of Soochow University, Suzhou, Jiangsu 215000, P.R. China
| | - Chunfang Xu
- Department of Gastroenterology, The First Affiliated Hospital of Soochow University, Suzhou, Jiangsu 215000, P.R. China
| |
Collapse
|
14
|
Morena F, Cabrera AR, Greene NP. Exploring heterogeneity: a dive into preclinical models of cancer cachexia. Am J Physiol Cell Physiol 2024; 327:C310-C328. [PMID: 38853648 PMCID: PMC11427020 DOI: 10.1152/ajpcell.00317.2024] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/12/2024] [Revised: 05/31/2024] [Accepted: 05/31/2024] [Indexed: 06/11/2024]
Abstract
Cancer cachexia (CC) is a multifactorial and complex syndrome experienced by up to 80% of patients with cancer and implicated in ∼40% of cancer-related deaths. Given its significant impact on patients' quality of life and prognosis, there has been a growing emphasis on elucidating the underlying mechanisms of CC using preclinical models. However, the mechanisms of cachexia appear to differ across several variables including tumor type and model and biologic variables such as sex. These differences may be exacerbated by variance in experimental approaches and data reporting. This review examines literature spanning from 2011 to March 2024, focusing on common preclinical models of CC, including Lewis Lung Carcinoma, pancreatic KPC, and colorectal colon-26 and Apcmin/+ models. Our analysis reveals considerable heterogeneity in phenotypic outcomes, and investigated mechanisms within each model, with particular attention to sex differences that may be exacerbated through methodological differences. Although searching for unified mechanisms is critical, we posit that effective treatment approaches are likely to leverage the heterogeneity presented by the tumor and pertinent biological variables to direct specific interventions. In exploring this heterogeneity, it becomes critical to consider methodological and data reporting approaches to best inform further research.
Collapse
Affiliation(s)
- Francielly Morena
- Cachexia Research Laboratory, Exercise Science Research Center, Department of Health, Human Performance and Recreation, University of Arkansas, Fayetteville, Arkansas, United States
| | - Ana Regina Cabrera
- Cachexia Research Laboratory, Exercise Science Research Center, Department of Health, Human Performance and Recreation, University of Arkansas, Fayetteville, Arkansas, United States
| | - Nicholas P Greene
- Cachexia Research Laboratory, Exercise Science Research Center, Department of Health, Human Performance and Recreation, University of Arkansas, Fayetteville, Arkansas, United States
| |
Collapse
|
15
|
Bogale DE. The roles of FGFR3 and c-MYC in urothelial bladder cancer. Discov Oncol 2024; 15:295. [PMID: 39031286 PMCID: PMC11264706 DOI: 10.1007/s12672-024-01173-z] [Citation(s) in RCA: 5] [Impact Index Per Article: 5.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 04/24/2024] [Accepted: 07/16/2024] [Indexed: 07/22/2024] Open
Abstract
Bladder cancer is one of the most frequently occurring cancers worldwide. At diagnosis, 75% of urothelial bladder cancer cases have non-muscle invasive bladder cancer while 25% have muscle invasive or metastatic disease. Aberrantly activated fibroblast growth factor receptor (FGFR)-3 has been implicated in the pathogenesis of bladder cancer. Activating mutations of FGFR3 are observed in around 70% of NMIBC cases and ~ 15% of MIBCs. Activated FGFR3 leads to ligand-independent receptor dimerization and activation of downstream signaling pathways that promote cell proliferation and survival. FGFR3 is an important therapeutic target in bladder cancer, and clinical studies have shown the benefit of FGFR inhibitors in a subset of bladder cancer patients. c-MYC is a well-known major driver of carcinogenesis and is one of the most commonly deregulated oncogenes identified in human cancers. Studies have shown that the antitumor effects of FGFR inhibition in FGFR3 dependent bladder cancer cells and other FGFR dependent cancers may be mediated through c-MYC, a key downstream effector of activated FGFR that is involved tumorigenesis. This review will summarize the current general understanding of FGFR signaling and MYC alterations in cancer, and the role of FGFR3 and MYC dysregulation in the pathogenesis of urothelial bladder cancer with the possible therapeutic implications.
Collapse
Affiliation(s)
- Dereje E Bogale
- School of Medicine, Department of Oncology, Addis Ababa University, Addis Ababa, Ethiopia.
| |
Collapse
|
16
|
Na J, Shaji S, Hanemann CO. Targeting histone deacetylase 6 (HDAC6) to enhance radiation therapy in meningiomas in a 2D and 3D in vitro study. EBioMedicine 2024; 105:105211. [PMID: 38917510 PMCID: PMC11255518 DOI: 10.1016/j.ebiom.2024.105211] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/28/2023] [Revised: 06/05/2024] [Accepted: 06/06/2024] [Indexed: 06/27/2024] Open
Abstract
BACKGROUND External radiation therapy (RT) is often a primary treatment for inoperable meningiomas in the absence of established chemotherapy. Histone deacetylase 6 (HDAC6) overexpression, commonly found in cancer, is acknowledged as a driver of cellular growth, and inhibiting HDACs holds promise in improving radiotherapeutic efficacy. Downregulation of HDAC6 facilitates the degradation of β-catenin. This protein is a key element in the Wnt/β-catenin signalling pathway, contributing to the progression of meningiomas. METHODS In order to elucidate the associations and therapeutic potential of HDAC6 inhibitors (HDAC6i) in conjunction with RT, we administered Cay10603, HDAC6i, to both immortalised and patient-derived meningioma cells prior to RT in this study. FINDINGS Our findings reveal an increase in HDAC6 expression following exposure to RT, which is effectively mitigated with pre-treated Cay10603. The combination of Cay10603 with RT resulted in a synergistic augmentation of cytotoxic effects, as demonstrated through a range of functional assays conducted in both 2D as well as 3D settings; the latter containing syngeneic tumour microenvironment (TME). Radiation-induced DNA damage was augmented by pre-treatment with Cay10603, concomitant with the inhibition of β-catenin and minichromosome maintenance complex component 2 (MCM2) accumulation within the nucleus. This subsequently inhibited c-myc oncogene expression. INTERPRETATION Our findings demonstrate the therapeutic potential of Cay10603 to improve the radiosensitisation and provide rationale for combining HDAC6i with RT for the treatment of meningioma. FUNDING This work was funded by Brain Tumour Research Centre of Excellence award to C Oliver Hanemann.
Collapse
Affiliation(s)
- Juri Na
- Peninsula Medical School, Faculty of Health, University of Plymouth, Devon, United Kingdom
| | - Shahana Shaji
- Peninsula Medical School, Faculty of Health, University of Plymouth, Devon, United Kingdom
| | - C Oliver Hanemann
- Peninsula Medical School, Faculty of Health, University of Plymouth, Devon, United Kingdom.
| |
Collapse
|
17
|
Sun L, Xing J, Zhou X, Song X, Gao S. Wnt/β-catenin signalling, epithelial-mesenchymal transition and crosslink signalling in colorectal cancer cells. Biomed Pharmacother 2024; 175:116685. [PMID: 38710151 DOI: 10.1016/j.biopha.2024.116685] [Citation(s) in RCA: 17] [Impact Index Per Article: 17.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/28/2023] [Revised: 04/24/2024] [Accepted: 04/29/2024] [Indexed: 05/08/2024] Open
Abstract
Colorectal cancer (CRC), with its significant incidence and metastatic rates, profoundly affects human health. A common oncogenic event in CRC is the aberrant activation of the Wnt/β-catenin signalling pathway, which drives both the initiation and progression of the disease. Persistent Wnt/β-catenin signalling facilitates the epithelial-mesenchymal transition (EMT), which accelerates CRC invasion and metastasis. This review provides a summary of recent molecular studies on the role of the Wnt/β-catenin signalling axis in regulating EMT in CRC cells, which triggers metastatic pathogenesis. We present a comprehensive examination of the EMT process and its transcriptional controllers, with an emphasis on the crucial functions of β-catenin, EMT transcription factors (EMT-TFs). We also review recent evidences showing that hyperactive Wnt/β-catenin signalling triggers EMT and metastatic phenotypes in CRC via "Destruction complex" of β-catenin mechanisms. Potential therapeutic and challenges approache to suppress EMT and prevent CRC cells metastasis by targeting Wnt/β-catenin signalling are also discussed. These include direct β-catenin inhibitors and novel targets of the Wnt pathway, and finally highlight novel potential combinational treatment options based on the inhibition of the Wnt pathway.
Collapse
Affiliation(s)
- Luanbiao Sun
- China-Japan Union Hospital of Jilin University, Changchun, Jilin 130000, PR China
| | - Jianpeng Xing
- China-Japan Union Hospital of Jilin University, Changchun, Jilin 130000, PR China
| | - Xuanpeng Zhou
- China-Japan Union Hospital of Jilin University, Changchun, Jilin 130000, PR China
| | - Xinyuan Song
- The Chinese University of Hong Kong, New Territories 999077, Hong Kong Special Administrative Region of China
| | - Shuohui Gao
- China-Japan Union Hospital of Jilin University, Changchun, Jilin 130000, PR China.
| |
Collapse
|
18
|
Ran R, Muñoz Briones J, Jena S, Anderson NL, Olson MR, Green LN, Brubaker DK. Detailed survey of an in vitro intestinal epithelium model by single-cell transcriptomics. iScience 2024; 27:109383. [PMID: 38523788 PMCID: PMC10959667 DOI: 10.1016/j.isci.2024.109383] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/11/2023] [Revised: 12/01/2023] [Accepted: 02/27/2024] [Indexed: 03/26/2024] Open
Abstract
The co-culture of two adult human colorectal cancer cell lines, Caco-2 and HT29, on Transwell is commonly used as an in vitro gut mimic, yet the translatability of insights from such a system to adult human physiological contexts is not fully characterized. Here, we used single-cell RNA sequencing on the co-culture to obtain a detailed survey of cell type heterogeneity in the system and conducted a holistic comparison with human physiology. We identified the intestinal stem cell-, transit amplifying-, enterocyte-, goblet cell-, and enteroendocrine-like cells in the system. In general, the co-culture was fetal intestine-like, with less variety of gene expression compared to the adult human gut. Transporters for major types of nutrients were found in the majority of the enterocytes-like cells in the system. TLR 4 was not expressed in the sample, indicating that the co-culture model is incapable of mimicking the innate immune aspect of the human epithelium.
Collapse
Affiliation(s)
- Ran Ran
- Center for Global Health and Diseases, Department of Pathology, Case Western Reserve University, Cleveland, OH, USA
| | - Javier Muñoz Briones
- Weldon School of Biomedical Engineering, Purdue University, West Lafayette, IN, USA
- Purdue Interdisciplinary Life Science Program, West Lafayette, IN, USA
| | - Smrutiti Jena
- Weldon School of Biomedical Engineering, Purdue University, West Lafayette, IN, USA
| | - Nicole L. Anderson
- Department of Biological Sciences, Purdue University, West Lafayette, IN, USA
| | - Matthew R. Olson
- Department of Biological Sciences, Purdue University, West Lafayette, IN, USA
| | - Leopold N. Green
- Weldon School of Biomedical Engineering, Purdue University, West Lafayette, IN, USA
| | - Douglas K. Brubaker
- Center for Global Health and Diseases, Department of Pathology, Case Western Reserve University, Cleveland, OH, USA
- The Blood, Heart, Lung, and Immunology Research Center, Case Western Reserve University, University Hospitals of Cleveland, Cleveland, OH, USA
| |
Collapse
|
19
|
Chen X, Yang F, Zhang C, Wang X, Yuan C, Shi D, Zhu S, Zhang X, Chen X, Zhao W. BLVRA exerts its biological effects to induce malignant properties of hepatocellular carcinoma cells via Wnt/β-catenin pathway. J Mol Histol 2024; 55:159-167. [PMID: 38216836 DOI: 10.1007/s10735-023-10179-w] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/25/2023] [Accepted: 12/03/2023] [Indexed: 01/14/2024]
Abstract
The function of Biliverdin Reductase A (BLVRA) in hepatocellular carcinoma (HCC) cells proliferation, invasion and migration remains unclear. Therefore, this research intends to explore the effect of BLVRA on HCC cells growth and metastasis. BLVRA expression was analyzed in public dataset and examined by using western blot. The malignant function of BLVRA in HCC cell lines and its effect on Wnt/β-catenin pathway were measured. Analysis from GEPIA website showed that BLVRA expression was significantly increased in HCC tissues, and high expression of BLVRA resulted in worse prognosis of HCC patients. Results from western blot showed that BLVRA expression was obviously increased in HCC cell lines. Moreover, HepG2 and Hep3B cells in si-BLVRA-1 or si-BLVRA-2 group displayed an obvious reduction in its proliferation, cell cycle, invasion and migration compared to those in the si-control group. Additionally, si-BLVRA-1 or si-BLVRA-2 transfection significantly reduced the protein levels of Vimentin, Snail1 and Snail2, as well as decreased Bcl-2 expression and increased Bax and cleaved-caspase 3 expression. Furthermore, si-BLVRA treatment inhibited the protein levels of c-MYC, β-catenin, and Cyclin D1. After IWP-4 (Wnt/β-catenin inhibitor) treatment, the proliferation ability of HCC cells was significantly reduced. BLVRA expression was significantly increased in HCC tissues and cell lines, and knocked down of BLVRA could suppress the proliferation, invasion and migration in HCC cell lines, as well as induce cell apoptosis. Moreover, si-BLVRA transfection blocked the activation of Wnt/β-catenin pathway.
Collapse
Affiliation(s)
- Xinju Chen
- First Affiliated Hospital of Henan University of Chinese Medicine, The First Affiliated Hospital of Henan University of Traditional Chinese Medicine, No. 19 Renmin Road, Jinshui District, Zhengzhou City, 450000, Henan Province, People's Republic of China
| | - Fangming Yang
- First Affiliated Hospital of Henan University of Chinese Medicine, The First Affiliated Hospital of Henan University of Traditional Chinese Medicine, No. 19 Renmin Road, Jinshui District, Zhengzhou City, 450000, Henan Province, People's Republic of China
| | - Chuanlei Zhang
- First Affiliated Hospital of Henan University of Chinese Medicine, The First Affiliated Hospital of Henan University of Traditional Chinese Medicine, No. 19 Renmin Road, Jinshui District, Zhengzhou City, 450000, Henan Province, People's Republic of China
| | - Xinting Wang
- First Affiliated Hospital of Henan University of Chinese Medicine, The First Affiliated Hospital of Henan University of Traditional Chinese Medicine, No. 19 Renmin Road, Jinshui District, Zhengzhou City, 450000, Henan Province, People's Republic of China
| | - Changwei Yuan
- First Affiliated Hospital of Henan University of Chinese Medicine, The First Affiliated Hospital of Henan University of Traditional Chinese Medicine, No. 19 Renmin Road, Jinshui District, Zhengzhou City, 450000, Henan Province, People's Republic of China
| | - Dandan Shi
- First Affiliated Hospital of Henan University of Chinese Medicine, The First Affiliated Hospital of Henan University of Traditional Chinese Medicine, No. 19 Renmin Road, Jinshui District, Zhengzhou City, 450000, Henan Province, People's Republic of China
| | - Shuaishuai Zhu
- First Affiliated Hospital of Henan University of Chinese Medicine, The First Affiliated Hospital of Henan University of Traditional Chinese Medicine, No. 19 Renmin Road, Jinshui District, Zhengzhou City, 450000, Henan Province, People's Republic of China
| | - Xiaotong Zhang
- First Affiliated Hospital of Henan University of Chinese Medicine, The First Affiliated Hospital of Henan University of Traditional Chinese Medicine, No. 19 Renmin Road, Jinshui District, Zhengzhou City, 450000, Henan Province, People's Republic of China
| | - Xiaoqi Chen
- First Affiliated Hospital of Henan University of Chinese Medicine, The First Affiliated Hospital of Henan University of Traditional Chinese Medicine, No. 19 Renmin Road, Jinshui District, Zhengzhou City, 450000, Henan Province, People's Republic of China.
| | - Wenxia Zhao
- First Affiliated Hospital of Henan University of Chinese Medicine, The First Affiliated Hospital of Henan University of Traditional Chinese Medicine, No. 19 Renmin Road, Jinshui District, Zhengzhou City, 450000, Henan Province, People's Republic of China.
| |
Collapse
|
20
|
Facey COB, Hunsu VO, Zhang C, Osmond B, Opdenaker LM, Boman BM. CYP26A1 Links WNT and Retinoic Acid Signaling: A Target to Differentiate ALDH+ Stem Cells in APC-Mutant CRC. Cancers (Basel) 2024; 16:264. [PMID: 38254755 PMCID: PMC10813786 DOI: 10.3390/cancers16020264] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/14/2023] [Revised: 01/02/2024] [Accepted: 01/02/2024] [Indexed: 01/24/2024] Open
Abstract
APC mutation is the main driving mechanism of CRC development and leads to constitutively activated WNT signaling, overpopulation of ALDH+ stem cells (SCs), and incomplete differentiation. We previously reported that retinoic acid (RA) receptors are selectively expressed in ALDH+ SCs, which provides a way to target cancer SCs with retinoids to induce differentiation. Hypotheses: A functional link exists between the WNT and RA pathways, and APC mutation generates a WNT:RA imbalance that decreases retinoid-induced differentiation and increases ALDH+ SCs. Accordingly, to restore parity in WNT:RA signaling, we induce wt-APC expression in APC-mutant CRC cells, and we assess the ability of all-trans retinoic acid (ATRA) to induce differentiation. We found that ATRA increased expression of the WNT target gene, CYP26A1, and inducing wt-APC reduced this expression by 50%. Thus, the RA and WNT pathways crosstalk to modulate CYP26A1, which metabolizes retinoids. Moreover, inducing wt-APC augments ATRA-induced cell differentiation by: (i) decreasing cell proliferation; (ii) suppressing ALDH1A1 expression; (iii) decreasing ALDH+ SCs; and (iv) increasing neuroendocrine cell differentiation. A novel CYP26A1-based network that links WNT and RA signaling was also identified by NanoString profiling/bioinformatics analysis. Furthermore, CYP26A1 inhibitors sensitized CRC cells to the anti-proliferative effect of drugs that downregulate WNT signaling. Notably, in wt-APC-CRCs, decreased CYP26A1 improved patient survival. These findings have strong potential for clinical translation.
Collapse
Affiliation(s)
- Caroline O. B. Facey
- Cawley Center for Translational Cancer Research, Helen F. Graham Cancer Center and Research Institute, Newark, DE 19713, USA; (C.O.B.F.); (V.O.H.); (C.Z.); (B.O.); (L.M.O.)
| | - Victoria O. Hunsu
- Cawley Center for Translational Cancer Research, Helen F. Graham Cancer Center and Research Institute, Newark, DE 19713, USA; (C.O.B.F.); (V.O.H.); (C.Z.); (B.O.); (L.M.O.)
- Department Biological Sciences, University of Delaware, Newark, DE 19716, USA
| | - Chi Zhang
- Cawley Center for Translational Cancer Research, Helen F. Graham Cancer Center and Research Institute, Newark, DE 19713, USA; (C.O.B.F.); (V.O.H.); (C.Z.); (B.O.); (L.M.O.)
- Department Biological Sciences, University of Delaware, Newark, DE 19716, USA
| | - Brian Osmond
- Cawley Center for Translational Cancer Research, Helen F. Graham Cancer Center and Research Institute, Newark, DE 19713, USA; (C.O.B.F.); (V.O.H.); (C.Z.); (B.O.); (L.M.O.)
- Department Biological Sciences, University of Delaware, Newark, DE 19716, USA
| | - Lynn M. Opdenaker
- Cawley Center for Translational Cancer Research, Helen F. Graham Cancer Center and Research Institute, Newark, DE 19713, USA; (C.O.B.F.); (V.O.H.); (C.Z.); (B.O.); (L.M.O.)
| | - Bruce M. Boman
- Cawley Center for Translational Cancer Research, Helen F. Graham Cancer Center and Research Institute, Newark, DE 19713, USA; (C.O.B.F.); (V.O.H.); (C.Z.); (B.O.); (L.M.O.)
- Department Biological Sciences, University of Delaware, Newark, DE 19716, USA
- Department Pharmacology & Experimental Therapeutics, Thomas Jefferson University, Philadelphia, PA 19107, USA
| |
Collapse
|
21
|
Hakami MA, Hazazi A, Abdulaziz O, Almasoudi HH, Alhazmi AYM, Alkhalil SS, Alharthi NS, Alhuthali HM, Almalki WH, Gupta G, Khan FR. HOTAIR: A key regulator of the Wnt/β-catenin signaling cascade in cancer progression and treatment. Pathol Res Pract 2024; 253:154957. [PMID: 38000201 DOI: 10.1016/j.prp.2023.154957] [Citation(s) in RCA: 12] [Impact Index Per Article: 12.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 10/17/2023] [Revised: 11/12/2023] [Accepted: 11/15/2023] [Indexed: 11/26/2023]
Abstract
The long non-coding RNA (lncRNA) HOTAIR occupies a central position in the complex domain of cancer biology, particularly concerning its intricate interplay with the Wnt/β-catenin signaling pathway. This comprehensive review explores the multifaceted interactions between HOTAIR and the Wnt/β-catenin cascade, elucidating their profound function in cancer growth, progression, and therapeutic strategies. The study commences by underscoring the pivotal role of the Wnt/β-catenin cascade in governing essential cellular activities, emphasizing its dysregulation as a linchpin in cancer initiation and advancement. It introduces HOTAIR as a crucial regulatory entity, influencing gene expression in both healthy and diseased. The core of this review plunges into the intricacies of HOTAIR's engagement with Wnt/β-catenin signaling. It unravels how HOTAIR, through epigenetic modifications and transcriptional control, exerts its influence over key pathway constituents, including β-catenin, Wnt ligands, and target genes. This influence drives unchecked cancer cell growth, invasion, and metastasis. Furthermore, the review underscores the clinical significance of the HOTAIR-Wnt/β-catenin interplay, elucidating its associations with diverse cancer subtypes, patient prognoses, and prospects as a therapy. It provides insights into ongoing research endeavors to develop HOTAIR-targeted treatments and initiatives to facilitate aberrant Wnt/β-catenin activation. Concluding on a forward-looking note, the article accentuates the broader implications of HOTAIR's involvement in cancer biology, including its contributions to therapy resistance and metastatic dissemination. It underscores the importance of delving deeper into these intricate molecular relationships to pave the way for groundbreaking cancer treatment.
Collapse
Affiliation(s)
- Mohammed Ageeli Hakami
- Department of Clinical Laboratory Sciences, College of Applied Medical Sciences, Al-Quwayiyah, Shaqra University, Riyadh, Saudi Arabia
| | - Ali Hazazi
- Department of Pathology and Laboratory Medicine, Security Forces Hospital Program, Riyadh, Saudi Arabia
| | - Osama Abdulaziz
- Clinical Laboratory Sciences Department, College of Applied Medical Sciences, Taif University, Taif Province, Saudi Arabia
| | - Hassan Hussain Almasoudi
- Department of Clinical Laboratory Sciences, College of Applied Medical Sciences, Najran University, Najran 61441, Saudi Arabia
| | | | - Samia S Alkhalil
- Department of Clinical Laboratory Sciences, College of Applied Medical Sciences, Al-Quwayiyah, Shaqra University, Riyadh, Saudi Arabia
| | - Nahed S Alharthi
- Department of Medical Laboratory Sciences. College of Applied Medical Sciences in Al-Kharj, Prince Sattam Bin Abdulaziz University, Al-Kharj 11942, Saudia Arabia
| | - Hayaa M Alhuthali
- Clinical Laboratory Sciences Department, College of Applied Medical Sciences, Taif University, Taif Province, Saudi Arabia
| | - Waleed Hassan Almalki
- Department of Pharmacology, College of Pharmacy, Umm Al-Qura University, Makkah, Saudi Arabia
| | - Gaurav Gupta
- Centre for Global Health Research, Saveetha Medical College, Saveetha Institute of Medical and Technical Sciences, Saveetha University, India; School of Pharmacy, Graphic Era Hill University, Dehradun 248007, India; School of Pharmacy, Suresh Gyan Vihar University, Jagatpura, Mahal Road, Jaipur 302017, India
| | - Farhan R Khan
- Department of Clinical Laboratory Sciences, College of Applied Medical Sciences, Al-Quwayiyah, Shaqra University, Riyadh, Saudi Arabia.
| |
Collapse
|
22
|
Zang J, Xiao L, Shi X, Liu S, Wang Y, Sun B, Ju S, Cui M, Jing R. Hsa_circ_0001479 accelerates tumorigenesis of gastric cancer and mediates immune escape. Int Immunopharmacol 2023; 124:110887. [PMID: 37683398 DOI: 10.1016/j.intimp.2023.110887] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/07/2023] [Revised: 08/28/2023] [Accepted: 08/29/2023] [Indexed: 09/10/2023]
Abstract
Gastric cancer (GC) is a common fatal malignant tumor of the digestive tract, particularly in Asia. Circular RNA (circRNA) has been proved to regulate malignancy progression and immunotherapeutic efficacy in multiple tumors, including GC. Notably, the function of circRNAs in GC has not been completely revealed. Therefore, exploration of more GC related circRNAs may provide potential strategies for GC treatment. In the study, it was observed that hsa_circ_0001479 exhibited a high level of expression in GC and was subsequently found to be associated with the depth of invasion, lymph node metastasis, and TNM stage. Functionally, the overexpression of hsa_circ_0001479 was found to enhance the proliferation and migration of GC cells, as evidenced by various experiments such as CCK-8, EdU, colony forming and transwell. Dual-luciferase reporter assay verified that hsa_circ_0001479 upregulated DEK expression by sponge targeting miR-133a-5p. Further investigations indicated DEK affected the entry of β-catenin into the nucleus by activating Wnt/β-catenin signaling pathway to promote accumulation of downstream c-Myc. As a transcription factor, c-Myc combined with the promoter of hsa_circ_0001479 parent gene to stimulate hsa_circ_0001479 generation. Besides, hsa_circ_0001479 inhibited theinfiltration with CD8+T cells in GC and associated with immune checkpoints. In summary, hsa_circ_0001479 accelerated the development and metastasis of GC and mediates immune escape of CD8+T cells. Targeting it may provide a novel immunotherapy to better locally treat GC and reduce the incidence of metastases.
Collapse
Affiliation(s)
- Jiayi Zang
- Department of Laboratory Medicine, Affiliated Hospital of Nantong University, Medical School of Nantong University, Nantong, Jiangsu, China
| | - Lin Xiao
- Department of Laboratory Medicine, Affiliated Hospital of Nantong University, Medical School of Nantong University, Nantong, Jiangsu, China
| | - Xin Shi
- Department of Laboratory Medicine, Affiliated Hospital of Nantong University, Medical School of Nantong University, Nantong, Jiangsu, China
| | - Sinan Liu
- Department of Laboratory Medicine, The First People's Hospital of Nantong, The Second Affiliated Hospital of Nantong University, Nantong, Jiangsu, China
| | - Yan Wang
- Department of Pathology, Affiliated Hospital of Nantong University, Nantong, Jiangsu, China
| | - Baolan Sun
- Department of Laboratory Medicine, Affiliated Hospital of Nantong University, Medical School of Nantong University, Nantong, Jiangsu, China
| | - Shaoqing Ju
- Department of Laboratory Medicine, Affiliated Hospital of Nantong University, Medical School of Nantong University, Nantong, Jiangsu, China
| | - Ming Cui
- Department of Laboratory Medicine, Affiliated Hospital of Nantong University, Medical School of Nantong University, Nantong, Jiangsu, China.
| | - Rongrong Jing
- Department of Laboratory Medicine, Affiliated Hospital of Nantong University, Medical School of Nantong University, Nantong, Jiangsu, China.
| |
Collapse
|
23
|
Dadgar-Zankbar L, Shariati A, Bostanghadiri N, Elahi Z, Mirkalantari S, Razavi S, Kamali F, Darban-Sarokhalil D. Evaluation of enterotoxigenic Bacteroides fragilis correlation with the expression of cellular signaling pathway genes in Iranian patients with colorectal cancer. Infect Agent Cancer 2023; 18:48. [PMID: 37644520 PMCID: PMC10463534 DOI: 10.1186/s13027-023-00523-w] [Citation(s) in RCA: 5] [Impact Index Per Article: 2.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/04/2023] [Accepted: 08/02/2023] [Indexed: 08/31/2023] Open
Abstract
BACKGROUND Colorectal cancer (CRC) is one of the most common cancers all over the world, and dysbiosis in the gut microbiota may play a role in colorectal carcinogenesis. Bacteroides fragilis can lead to tumorigenesis by changing signaling pathways, including the WNT/β-catenin pathway. Therefore, in the present study, we investigated the correlation between the enterotoxigenic B. fragilis amount and the expression of signaling pathway genes involved in CRC. MATERIALS AND METHODS B. fragilis was determined in 30 tumors and adjacent healthy tissues by the qPCR method. Next, the relationship between enterotoxigenic B. fragilis and the expression of signaling pathway genes, including CCND1, TP53, BCL2, BAX, WNT, TCF, AXIN, APC, and CTNNB1 was investigated. Additionally, possible correlations between clinicopathological features of the tumor samples and the abundance of B. fragilis were analyzed. RESULTS The results showed that B. fragilis was detected in 100% of tumor samples and 86% of healthy tissues. Additionally, enterotoxigenic B. fragilis colonized 47% of all samples, and bft-1 toxin was the most frequently found isotype among the samples. The analysis showed that the high level of B. fragilis has a significant relationship with the high expression of AXIN, CTNNB1, and BCL2 genes. On the other hand, our results did not show any possible correlation between this bacterium and the clinicopathological features of the tumor sample. CONCLUSION B. fragilis had a higher abundance in the tumor samples than in healthy tissues, and this bacterium may lead to CRC by making changes in cellular signaling pathways and genes. Therefore, to better understand the physiological effects of B. fragilis on the inflammatory response and CRC, future research should focus on dissecting the molecular mechanisms by which this bacterium regulates cellular signaling pathways.
Collapse
Affiliation(s)
- Leila Dadgar-Zankbar
- Department of Microbiology, School of Medicine, Iran University of Medical Sciences, Tehran, Iran
| | - Aref Shariati
- Molecular and Medicine Research Center, Khomein University of Medical Sciences, Khomein, Iran
- Student Research Committee, Khomein University of Medical Sciences, Khomein, Iran
| | - Narjess Bostanghadiri
- Department of Microbiology, School of Medicine, Iran University of Medical Sciences, Tehran, Iran
| | - Zahra Elahi
- Department of Microbiology, School of Medicine, Iran University of Medical Sciences, Tehran, Iran
| | - Shiva Mirkalantari
- Department of Microbiology, School of Medicine, Iran University of Medical Sciences, Tehran, Iran
| | - Shabnam Razavi
- Department of Microbiology, School of Medicine, Iran University of Medical Sciences, Tehran, Iran
| | - Fatemeh Kamali
- Iran National Tumor Bank, Cancer Institute of Iran, Tehran University of Medical Sciences, Tehran, Iran
| | - Davood Darban-Sarokhalil
- Department of Microbiology, School of Medicine, Iran University of Medical Sciences, Tehran, Iran.
| |
Collapse
|
24
|
Abazari N, Stefanucci MR, Bossi LE, Trojani A, Cairoli R, Beghini A. Cordycepin (3'dA) Induces Cell Death of AC133 + Leukemia Cells via Re-Expression of WIF1 and Down-Modulation of MYC. Cancers (Basel) 2023; 15:3931. [PMID: 37568748 PMCID: PMC10417454 DOI: 10.3390/cancers15153931] [Citation(s) in RCA: 4] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/12/2023] [Revised: 07/27/2023] [Accepted: 07/30/2023] [Indexed: 08/13/2023] Open
Abstract
Wnt/β-catenin signaling is critically required for the development and maintenance of leukemia stem cells (LSCs) in acute myeloid leukemia (AML) by constitutive activation of myeloid regeneration-related pathways. Cell-intrinsic activation of canonical Wnt signaling propagates in the nucleus by β-catenin translocation, where it induces expression of target oncogenes such as JUN, MYC and CCND1. As the Wnt/β-catenin pathway is now well established to be a key oncogenic signaling pathway promoting leukemic myelopoiesis, targeting it would be an effective strategy to impair LSC functionality. Although the effects of the adenosine analogue cordycepin in repressing β-catenins and destabilizing the LSC niche have been highlighted, the cellular and molecular effects on AML-LSC have not been fully clarified. In the present study, we evaluated the potency and efficacy of cordycepin, a selective repressor of Wnt/β-catenin signaling with anti-leukemia properties, on the AC133+ LSC fraction. Cordycepin effectively reduces cell viability of the AC133+ LSCs in the MUTZ-2 cell model and patient-derived cells through the induction of apoptosis. By Wnt-targeted RNA sequencing panel, we highlighted the re-expression of WIF1 and DKK1 among others, and the consequent downregulation of MYC and PROM1 (CD133) following MUTZ-2 cell exposure to increasing doses of cordycepin. Our results provide new insights into the molecular circuits involved in pharmacological inhibition mediated by cordycepin reinforcing the potential of targeting the Wnt/β-catenin and co-regulatory complexes in AML.
Collapse
Affiliation(s)
- Nazanin Abazari
- Department of Health Sciences, University of Milan, 20142 Milan, Italy; (N.A.); (M.R.S.)
| | - Marta Rachele Stefanucci
- Department of Health Sciences, University of Milan, 20142 Milan, Italy; (N.A.); (M.R.S.)
- Department of Hematology and Oncology, ASST Grande Ospedale Metropolitano Niguarda, 20162 Milan, Italy; (L.E.B.); (A.T.); (R.C.)
| | - Luca Emanuele Bossi
- Department of Hematology and Oncology, ASST Grande Ospedale Metropolitano Niguarda, 20162 Milan, Italy; (L.E.B.); (A.T.); (R.C.)
| | - Alessandra Trojani
- Department of Hematology and Oncology, ASST Grande Ospedale Metropolitano Niguarda, 20162 Milan, Italy; (L.E.B.); (A.T.); (R.C.)
| | - Roberto Cairoli
- Department of Hematology and Oncology, ASST Grande Ospedale Metropolitano Niguarda, 20162 Milan, Italy; (L.E.B.); (A.T.); (R.C.)
| | - Alessandro Beghini
- Department of Health Sciences, University of Milan, 20142 Milan, Italy; (N.A.); (M.R.S.)
| |
Collapse
|
25
|
Wei PL, Prince GMSH, Batzorig U, Huang CY, Chang YJ. ALDH2 promotes cancer stemness and metastasis in colorectal cancer through activating β-catenin signaling. J Cell Biochem 2023. [PMID: 37183314 DOI: 10.1002/jcb.30418] [Citation(s) in RCA: 9] [Impact Index Per Article: 4.5] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/23/2023] [Revised: 03/29/2023] [Accepted: 04/21/2023] [Indexed: 05/16/2023]
Abstract
Colorectal cancer (CRC) is the primary cause of death from gastrointestinal cancers. Aldehyde dehydrogenase 2 (ALDH2), a crucial mitochondrial enzyme for the oxidative pathway of alcohol metabolism, plays a dual role in cancer progression. In some cancers, it is tumor suppressive; in others, it drives cancer progression. However, whether targeting ALDH2 has any therapeutic implications or prognostic value in CRC is still unclear. Here, we investigated the role of ALDH2 in CRC progression by targeting its enzymatic activity rather than gene expression. We found that inhibiting ALDH2 by CVT-10216 and daidzein significantly decrease migration and stemness properties of both DLD-1 and HCT 116 cells, whereas activating ALDH2 by Alda-1 enhances migration rate. Concomitantly, ALDH2 inhibition by both CVT-10216 and daidzein downregulates the mRNA levels of fibronectin, snail, twist, MMP7, CD44, c-Myc, SOX2, and OCT-4, which are oncogenic in the advanced stage of CRC. Furthermore, Gene Set Enrichment Analysis (GSEA) on ALDH2 co-expressed genes from The Cancer Genome Atlas (TCGA) revealed that MYC target gene sets are upregulated. We found that ALDH2 inhibition decreased the nuclear protein levels of pGSK3β serine 9 and c-Myc. This suggests that ALDH2 probably targets β-catenin signaling in CRC cells. Together, our results demonstrate the prognostic value of ALDH2 in CRC as it regulates both CRC stemness and migration. Our findings also propose that the plant-derived isoflavone daidzein could be a potential chemotherapeutic drug targeting ALDH2 in CRC.
Collapse
Affiliation(s)
- Po-Li Wei
- Division of Colorectal Surgery, Department of Surgery, Taipei Medical University Hospital, Taipei Medical University, Taipei, Taiwan
- Department of Surgery, College of Medicine, School of Medicine, Taipei Medical University, Taipei, Taiwan
- Cancer Research Center and Translational Laboratory, Department of Medical Research, Taipei Medical University Hospital, Taipei Medical University, Taipei, Taiwan
- Graduate Institute of Cancer Biology and Drug Discovery, Taipei Medical University, Taipei, Taiwan
| | - G M Shazzad Hossain Prince
- Graduate Institute of Clinical Medicine, School of Medicine, College of Medicine, Taipei Medical University, Taipei, Taiwan
| | - Uyanga Batzorig
- Department of Dermatology, University of California, San Diego, La Jolla, California, USA
| | - Chien-Yu Huang
- School of Medicine, National Tsing Hua University, Hsinchu, Taiwan
- Institute of Molecular and Cellular Biology, National Tsing Hua University, Hsinchu, Taiwan
- Department of Pathology, Wan Fang Hospital, Taipei Medical University, Taipei, Taiwan
| | - Yu-Jia Chang
- Cancer Research Center and Translational Laboratory, Department of Medical Research, Taipei Medical University Hospital, Taipei Medical University, Taipei, Taiwan
- Graduate Institute of Clinical Medicine, School of Medicine, College of Medicine, Taipei Medical University, Taipei, Taiwan
- Department of Pathology, Wan Fang Hospital, Taipei Medical University, Taipei, Taiwan
- Cell Physiology and Molecular Image Research Center, Wan Fang Hospital, Taipei Medical University, Taipei, Taiwan
| |
Collapse
|
26
|
Park WJ, Kim MJ. A New Wave of Targeting 'Undruggable' Wnt Signaling for Cancer Therapy: Challenges and Opportunities. Cells 2023; 12:cells12081110. [PMID: 37190019 DOI: 10.3390/cells12081110] [Citation(s) in RCA: 26] [Impact Index Per Article: 13.0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/31/2023] [Revised: 04/03/2023] [Accepted: 04/05/2023] [Indexed: 05/17/2023] Open
Abstract
Aberrant Wnt signaling activation is frequently observed in many cancers. The mutation acquisition of Wnt signaling leads to tumorigenesis, whereas the inhibition of Wnt signaling robustly suppresses tumor development in various in vivo models. Based on the excellent preclinical effect of targeting Wnt signaling, over the past 40 years, numerous Wnt-targeted therapies have been investigated for cancer treatment. However, Wnt signaling-targeting drugs are still not clinically available. A major obstacle to Wnt targeting is the concomitant side effects during treatment due to the pleiotropic role of Wnt signaling in development, tissue homeostasis, and stem cells. Additionally, the complexity of the Wnt signaling cascades across different cancer contexts hinders the development of optimized targeted therapies. Although the therapeutic targeting of Wnt signaling remains challenging, alternative strategies have been continuously developed alongside technological advances. In this review, we give an overview of current Wnt targeting strategies and discuss recent promising trials that have the potential to be clinically realized based on their mechanism of action. Furthermore, we highlight new waves of Wnt targeting that combine recently developed technologies such as PROTAC/molecular glue, antibody-drug conjugates (ADC), and anti-sense oligonucleotides (ASO), which may provide us with new opportunities to target 'undruggable' Wnt signaling.
Collapse
Affiliation(s)
- Woo-Jung Park
- Department of Life Science, Gachon University, Seongnam 13120, Republic of Korea
| | - Moon Jong Kim
- Department of Life Science, Gachon University, Seongnam 13120, Republic of Korea
- Department of Health Sciences and Technology, GAIHST, Lee Gil Ya Cancer and Diabetes Institute, Incheon 21999, Republic of Korea
| |
Collapse
|
27
|
Wnt/β-catenin modulating drugs regulate somatostatin receptor expression and internalization of radiolabelled octreotide in neuroendocrine tumor cells. Nucl Med Commun 2023; 44:259-269. [PMID: 36804512 DOI: 10.1097/mnm.0000000000001666] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/23/2023]
Abstract
BACKGROUND Differentiated neuroendocrine tumors (NETs) express somatostatin receptors (SSTRs), targets for therapy with either unlabeled or radioactively labeled somatostatin analogs (SSA). Associated with worse prognosis, dedifferentiated NET loose SSTR expression, which may be linked to deregulation of Wnt/β-catenin signaling on an intracellular level. The aim of the present study was to investigate the effect of Wnt/β-catenin signaling pathway alterations on SSTR expression and its function in NET. METHODS The NET cell lines BON-1 and QGP-1 were incubated with the Wnt-inhibitors 5-aza-2'-deoxycytidine (5-aza-CdR), Quercetin, or Niclosamide, or the Wnt activator lithium chloride (LiCl). Expression of SSTR1, SSTR2, and SSTR5 was determined by quantitative RT-PCR (qRT-PCR), immunocytomicroscopy and western blot. Changes in the Wnt pathway were analyzed by qRT-PCR of selected target genes and the TaqMan Array Human WNT Pathway. Receptor-associated function was determined by measuring the cellular uptake of [125I-Tyr3] octreotide. RESULTS The mRNAs of SSTRs 1-5 were expressed in both cell lines. Wnt inhibitors caused downregulation of Wnt target genes, while 5-aza-CdR had the highest inhibitory effect. LiCl lead to an upregulation of Wnt genes, which was more marked in QGP-1 cells. SSTR expression increased in both cell lines upon Wnt inhibition. All three Wnt inhibitors lead to a marked increase in the specific uptake of [125I-Tyr3]octreotide, with 5-aza-CdR showing the greatest effect (increase by more than 50% in BON-1 cells), while a decreased uptake of [125I-Tyr3]octreotide was seen upon activation of Wnt signaling by LiCl. CONCLUSIONS We demonstrate here that Wnt signaling orchestrates SSTR expression and function in a preclinical NET model. Wnt inhibition increases [125I-Tyr3]octreotide uptake offering an opportunity to enhance the efficacy of SSTR-targeted theranostic approaches.
Collapse
|
28
|
Marx O, Mankarious M, Yochum G. Molecular genetics of early-onset colorectal cancer. World J Biol Chem 2023; 14:13-27. [PMID: 37034132 PMCID: PMC10080548 DOI: 10.4331/wjbc.v14.i2.13] [Citation(s) in RCA: 14] [Impact Index Per Article: 7.0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 11/21/2022] [Revised: 12/20/2022] [Accepted: 02/13/2023] [Indexed: 03/24/2023] Open
Abstract
Early-onset colorectal cancer (EOCRC) has been rising in global prevalence and incidence over the past several decades. Environmental influences, including generational lifestyle changes and rising obesity, contribute to these increased rates. While the rise in EOCRC is best documented in western countries, it is seen throughout the world, although EOCRC may have distinct genetic mutations in patients of different ethnic backgrounds. Pathological and molecular characterizations show that EOCRC has a distinct presentation compared with later-onset colorectal cancer (LOCRC). Recent studies have identified DNA, RNA, and protein-level alterations unique to EOCRC, revealing much-needed biomarkers and potential novel therapeutic targets. Many molecular EOCRC studies have been performed with Caucasian and Asian EOCRC cohorts, however, studies of other ethnic backgrounds are limited. In addition, certain molecular characterizations that have been conducted for LOCRC have not yet been repeated in EOCRC, including high-throughput analyses of histone modifications, mRNA splicing, and proteomics on large cohorts. We propose that the complex relationship between cancer and aging should be considered when studying the molecular underpinnings of EOCRC. In this review, we summarize current EOCRC literature, focusing on sporadic molecular alterations in tumors, and their clinical implications. We conclude by discussing current challenges and future directions of EOCRC research efforts.
Collapse
Affiliation(s)
- Olivia Marx
- Department of Biochemistry & Molecular Biology, Pennsylvania State University College of Medicine, Hershey, PA 17033, United States
| | - Marc Mankarious
- Department of Surgery, Division of Colon & Rectal Surgery, Pennsylvania State University Milton S. Hershey Medical Center, Hershey, PA 17033, United States
| | - Gregory Yochum
- Department of Biochemistry & Molecular Biology & Surgery, Pennsylvania State University College of Medicine, Hershey, PA 17033, United States
| |
Collapse
|
29
|
Kawasaki H, Shahin R, Fujimoto S. Proliferative and preparative cell divisions in wing discs of the last larval instar are regulated by different hormones and determine the size and differentiation of the wing of Bombyx mori. JOURNAL OF INSECT PHYSIOLOGY 2023; 145:104476. [PMID: 36623750 DOI: 10.1016/j.jinsphys.2023.104476] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 11/24/2022] [Revised: 01/04/2023] [Accepted: 01/05/2023] [Indexed: 06/17/2023]
Abstract
Through investigating the two different enhanced cell division stages, we tried to clarify the switch from the growth to differentiation in the wing disc of the last larval instar of Bombyx mori. The response to insulin and 20E in vitro was stage specific. Bmmyc expression in V1 wing discs showed differences after being cultured with and without insulin. Bmmyc expression in V5 wing discs also showed differences after being cultured with and without 20E. Cell cycle-related genes, BmE2F1 and BmcycE, were upregulated with insulin or 20E in cultured wing discs of V1 or V5, respectively. Bmwnt1 and Bmras1 showed upregulation with 20E in cultured wing discs. Bmwnt1 showed upregulation with insulin in cultured wing discs, but Bmras1 did not show clear upregulation with insulin treatment. In contrast, Bmdpp showed upregulation with insulin, but did not show clear upregulation with 20E. The addition of PI3K or TOR inhibitors inhibited the upregulation of Bmmyc expression that was upregulated with insulin or 20E. The upregulation of Bmmyc and Bmwnt1 with insulin or 20E was inhibited with the addition of Myc or Wnt inhibitors, respectively. Genes related to matrix metalloprotease showed upregulation with 20E, and the upregulation was inhibited by the addition of Myc or Wnt inhibitors. From the present results, we concluded that cell division during the feeding stage occurred through PI3K/TOR cascade, and that at the wandering stage occurred through ecdysone and PI3K/TOR cascade; the former is for growth and the latter for differentiation.
Collapse
Affiliation(s)
- Hideki Kawasaki
- Department of Bioproductive Science, Faculty of Agriculture, Takasaki University of Health and Welfare, 37-1 Nakaorui-machi, Takasaki-shi, Gunma 370-0033, Japan; Facultyof Agriculture, Utsunomiya University, 350, Mine, Utsunomiya, Tochigi 321-8505, Japan.
| | - Rima Shahin
- Department of Applied Entomology and Zoology, Faculty of Agriculture (El-Shatby), Alexandria University, Alexandria 21545, Egypt
| | - Shota Fujimoto
- Department of Bioproductive Science, Faculty of Agriculture, Takasaki University of Health and Welfare, 37-1 Nakaorui-machi, Takasaki-shi, Gunma 370-0033, Japan
| |
Collapse
|
30
|
Boi D, Rubini E, Breccia S, Guarguaglini G, Paiardini A. When Just One Phosphate Is One Too Many: The Multifaceted Interplay between Myc and Kinases. Int J Mol Sci 2023; 24:4746. [PMID: 36902175 PMCID: PMC10003727 DOI: 10.3390/ijms24054746] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/24/2023] [Revised: 02/19/2023] [Accepted: 02/21/2023] [Indexed: 03/06/2023] Open
Abstract
Myc transcription factors are key regulators of many cellular processes, with Myc target genes crucially implicated in the management of cell proliferation and stem pluripotency, energy metabolism, protein synthesis, angiogenesis, DNA damage response, and apoptosis. Given the wide involvement of Myc in cellular dynamics, it is not surprising that its overexpression is frequently associated with cancer. Noteworthy, in cancer cells where high Myc levels are maintained, the overexpression of Myc-associated kinases is often observed and required to foster tumour cells' proliferation. A mutual interplay exists between Myc and kinases: the latter, which are Myc transcriptional targets, phosphorylate Myc, allowing its transcriptional activity, highlighting a clear regulatory loop. At the protein level, Myc activity and turnover is also tightly regulated by kinases, with a finely tuned balance between translation and rapid protein degradation. In this perspective, we focus on the cross-regulation of Myc and its associated protein kinases underlying similar and redundant mechanisms of regulation at different levels, from transcriptional to post-translational events. Furthermore, a review of the indirect effects of known kinase inhibitors on Myc provides an opportunity to identify alternative and combined therapeutic approaches for cancer treatment.
Collapse
Affiliation(s)
- Dalila Boi
- Department of Biochemical Sciences, Sapienza University of Rome, 00185 Rome, Italy
| | - Elisabetta Rubini
- Department of Biochemical Sciences, Sapienza University of Rome, 00185 Rome, Italy
| | - Sara Breccia
- Department of Biochemical Sciences, Sapienza University of Rome, 00185 Rome, Italy
| | - Giulia Guarguaglini
- Institute of Molecular Biology and Pathology, National Research Council of Italy, Sapienza University of Rome, 00185 Rome, Italy
| | - Alessandro Paiardini
- Department of Biochemical Sciences, Sapienza University of Rome, 00185 Rome, Italy
| |
Collapse
|
31
|
Zhang X, Li C, Wu Y, Cui P. The research progress of Wnt/β-catenin signaling pathway in colorectal cancer. Clin Res Hepatol Gastroenterol 2023; 47:102086. [PMID: 36657523 DOI: 10.1016/j.clinre.2023.102086] [Citation(s) in RCA: 11] [Impact Index Per Article: 5.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 04/01/2022] [Revised: 09/05/2022] [Accepted: 01/15/2023] [Indexed: 01/18/2023]
Abstract
The Wnt/β-catenin signaling pathway is highly conservative. β-catenin is the key molecule in this pathway. The β-catenin target genes regulate cell proliferation and apoptosis. Since Wnt pathway proteins are distributed on the cell membrane, cytoplasm, and nucleus, inhibiting or activating these pathway proteins presents a novel target for cancer treatment via the Wnt signaling pathway. Studies have found that this pathway plays a significant role in the formation and progression of cancers, particularly colorectal cancer. We summarised the activation and inhibition of the Wnt signaling pathway in tumors, its relationship with the microenvironment and crosstalk with other pathways, and the effect of targeting abnormal Wnt signaling in the treatment of colorectal cancer. Here is to review future targeted therapeutics in colorectal cancer research and implementation.
Collapse
Affiliation(s)
- Xueling Zhang
- Department of Internal Medicine, International Medical Services (IMS), Beijing Tiantan Hospital, Capital Medical University, Beijing, China
| | - Congcong Li
- Department of Internal Medicine, International Medical Services (IMS), Beijing Tiantan Hospital, Capital Medical University, Beijing, China
| | - Yue Wu
- Department of Internal Medicine, International Medical Services (IMS), Beijing Tiantan Hospital, Capital Medical University, Beijing, China
| | - Peilin Cui
- Department of Internal Medicine, International Medical Services (IMS), Beijing Tiantan Hospital, Capital Medical University, Beijing, China; Department of Gastroenterology, Beijing Tiantan Hospital, Capital Medical University, Beijing, China.
| |
Collapse
|
32
|
Guowei L, Xiufang L, Qianqian X, Yanping J. The FDX1 methylation regulatory mechanism in the malignant phenotype of glioma. Genomics 2023; 115:110601. [PMID: 36889365 DOI: 10.1016/j.ygeno.2023.110601] [Citation(s) in RCA: 6] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/15/2022] [Revised: 02/04/2023] [Accepted: 03/03/2023] [Indexed: 03/08/2023]
Abstract
To explore FDX1 methylation as a regulatory mechanism in the malignant phenotype of glioma, we screened for pathways involved through bioinformatic analysis, then proceeded with RIP and cell models to verify the regulation of RNAs and mitophagy. We chose Clone and Transwell assays to evaluate the malignant phenotype of glioma cells. MMP was detected by flow cytometry and mitochondrial morphology was observed by TEM. We also constructed animal models to study the sensitivity of glioma cells to cuproptosis. We successfully identified the signalling pathway: our cell model showed that C-MYC could upregulate FDX1 through YTHDF1 and inhibit mitophagy in glioma cells. Functional experiments revealed C-MYC could also enhance glioma cell proliferation and invasion via YTHDF1 and FDX1. In vivo experiments showed glioma cells were highly sensitive to cuproptosis. We concluded that C-MYC could upregulate FDX1 by m6A methylation, thus promoting the malignant phenotype in glioma cells.
Collapse
Affiliation(s)
- Li Guowei
- Department of Neurosurgery, The Second Affiliated Hospital of Soochow University, Suzhou, China
| | - Lu Xiufang
- Department of Obstetrics and Gynecology, The Affiliated Suzhou Hospital of Nanjing Medical University, Suzhou Municipal Hospital North, Suzhou, China
| | - Xu Qianqian
- Department of Obstetrics and Gynecology, The Affiliated Suzhou Hospital of Nanjing Medical University, Suzhou Municipal Hospital North, Suzhou, China
| | - Jin Yanping
- Department of Obstetrics and Gynecology, The Affiliated Suzhou Hospital of Nanjing Medical University, Suzhou Municipal Hospital North, Suzhou, China.
| |
Collapse
|
33
|
Liang Y, Rao Z, Du D, Wang Y, Fang T. Butyrate prevents the migration and invasion, and aerobic glycolysis in gastric cancer via inhibiting Wnt/β-catenin/c-Myc signaling. Drug Dev Res 2023; 84:532-541. [PMID: 36782390 DOI: 10.1002/ddr.22043] [Citation(s) in RCA: 14] [Impact Index Per Article: 7.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/20/2022] [Revised: 01/10/2023] [Accepted: 01/19/2023] [Indexed: 02/15/2023]
Abstract
Gastric cancer (GC) remains a common cause of cancer death worldwide. Evidence has found that butyrate exhibited antitumor effects on GC cells. However, the mechanism by which butyrate regulate GC cell proliferation, migration, invasion, and aerobic glycolysis remains largely unknown. The proliferation, migration, and invasion of GC cells were tested by EdU staining, transwell assays. Additionally, protein expressions were determined by western blot assay. Next, glucose uptake, lactate production, and cellular ATP levels in GC cells were detected. Furthermore, the antitumor effects of butyrate in tumor-bearing nude mice were evaluated. We found, butyrate significantly prevented GC cell proliferation, migration, and invasion (p < .01). Additionally, butyrate markedly inhibited GC cell aerobic glycolysis, as shown by the reduced expressions of GLUT1, HK2, and LDHA (p < .01). Moreover, butyrate notably decreased nuclear β-catenin and c-Myc levels in GC cells (p < .01). Remarkably, through activating Wnt/β-catenin signaling with LiCl, the inhibitory effects of butyrate on the growth and aerobic glycolysis of GC cells were diminished (p < .01). Moreover, butyrate notably suppressed tumor volume and weight in GC cell xenograft nude mice in vivo (p < .01). Meanwhile, butyrate obviously reduced nuclear β-catenin, c-Myc, GLUT1, HK2 and LDHA levels in tumor tissues in GC cell xenograft mice (p < .01). Collectively, butyrate could suppress the growth and aerobic glycolysis of GC cells in vitro and in vivo via downregulating wnt/β-catenin/c-Myc signaling. These findings are likely to prove useful in better understanding the role of butyrate in GC.
Collapse
Affiliation(s)
- Yizhi Liang
- Department of Gastroenterology, The Second Affiliated Clinical Medical College of Fujian Medical University, The Second Affiliated Hospital of Fujian Medical University, Fujian, China
| | - Zilan Rao
- Department of Gastroenterology, The Second Affiliated Clinical Medical College of Fujian Medical University, The Second Affiliated Hospital of Fujian Medical University, Fujian, China
| | - Dongwei Du
- Department of Gastroenterology, The Second Affiliated Clinical Medical College of Fujian Medical University, The Second Affiliated Hospital of Fujian Medical University, Fujian, China
| | - Yiwen Wang
- Department of Gastroenterology, The Second Affiliated Clinical Medical College of Fujian Medical University, The Second Affiliated Hospital of Fujian Medical University, Fujian, China
| | - Taiyong Fang
- Department of Gastroenterology, The Second Affiliated Clinical Medical College of Fujian Medical University, The Second Affiliated Hospital of Fujian Medical University, Fujian, China
| |
Collapse
|
34
|
Circular RNAs: Emerging regulators of glucose metabolism in cancer. Cancer Lett 2023; 552:215978. [PMID: 36283584 DOI: 10.1016/j.canlet.2022.215978] [Citation(s) in RCA: 16] [Impact Index Per Article: 8.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/09/2022] [Revised: 09/16/2022] [Accepted: 10/18/2022] [Indexed: 11/23/2022]
Abstract
Aberrant glucose metabolism is one of the most striking characteristics of metabolic reprogramming in cancer. Thus, clarifying the regulatory mechanism of glucose metabolism is crucial to understanding tumor progression and developing novel therapeutic strategies for cancer patients. Recent developments in circular RNAs have explained the regulatory mechanism of glucose metabolism from a new dimension. In this review, we briefly summarize the recent advances in circRNA research on cancer glucose metabolism and emphasize the different regulatory mechanisms, including acting as miRNA sponges, interacting with proteins and being translated into proteins. Additionally, we discuss the future research directions of circular RNAs in the field of glucose metabolism.
Collapse
|
35
|
Beni FA, Kazemi M, Dianat-Moghadam H, Behjati M. MicroRNAs regulating Wnt signaling pathway in colorectal cancer: biological implications and clinical potentials. Funct Integr Genomics 2022; 22:1073-1088. [DOI: 10.1007/s10142-022-00908-x] [Citation(s) in RCA: 7] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/25/2022] [Revised: 10/06/2022] [Accepted: 10/07/2022] [Indexed: 11/09/2022]
|
36
|
PAR-Induced Harnessing of EZH2 to β-Catenin: Implications for Colorectal Cancer. Int J Mol Sci 2022; 23:ijms23158758. [PMID: 35955891 PMCID: PMC9368822 DOI: 10.3390/ijms23158758] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/12/2022] [Revised: 08/02/2022] [Accepted: 08/03/2022] [Indexed: 11/16/2022] Open
Abstract
G-protein-coupled receptors (GPCRs) are involved in a wide array of physiological and disease functions, yet knowledge of their role in colon cancer stem cell maintenance is still lacking. In addition, the molecular mechanisms underlying GPCR-induced post-translational signaling regulation are poorly understood. Here, we find that protease-activated receptor 4 (PAR4) unexpectedly acts as a potent oncogene, inducing β-catenin stability and transcriptional activity. Both PAR4 and PAR2 are able to drive the association of methyltransferase EZH2 with β-catenin, culminating in β-catenin methylation. This methylation on a lysine residue at the N-terminal portion of β-catenin suppresses the ubiquitination of β-catenin, thereby promoting PAR-induced β-catenin stability and transcriptional activity. Indeed, EZH2 is found to be directly correlated with high PAR4-driven tumors, and is abundantly expressed in large tumors, whereas very little to almost none is expressed in small tumors. A truncated form of β-catenin, ∆N133β-catenin, devoid of lysine, as well as serine/threonine residues, exhibits low levels of β-catenin and a markedly reduced transcriptional activity following PAR4 activation, in contrast to wt β-catenin. Our study demonstrates the importance of β-catenin lysine methylation in terms of its sustained expression and function. Taken together, we reveal that PAR-induced post-transcriptional regulation of β-catenin is centrally involved in colon cancer.
Collapse
|
37
|
Kim SJ, Kim S, Choi YJ, Kim UJ, Kang KW. CKD-581 Downregulates Wnt/β-Catenin Pathway by DACT3 Induction in Hematologic Malignancy. Biomol Ther (Seoul) 2022; 30:435-446. [PMID: 35794797 PMCID: PMC9424334 DOI: 10.4062/biomolther.2022.022] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/11/2022] [Revised: 05/10/2022] [Accepted: 05/20/2022] [Indexed: 11/09/2022] Open
Abstract
The present study evaluated the anti-cancer activity of histone deacetylase (HDAC)-inhibiting CKD-581 in multiple myeloma (MM) and its pharmacological mechanisms. CKD-581 potently inhibited a broad spectrum of HDAC isozymes. It concentration-dependently inhibited proliferation of hematologic cancer cells including MM (MM.1S and RPMI8226) and T cell lymphoma (HH and MJ). It increased the expression of the dishevelled binding antagonist of β-catenin 3 (DACT3) in T cell lymphoma and MM cells, and decreased the expression of c-Myc and β-catenin in MM cells. Additionally, it enhanced phosphorylated p53, p21, cleaved caspase-3 and the subG1 population, and reversely, downregulated cyclin D1, CDK4 and the anti-apoptotic BCL-2 family. Finally, administration of CKD-581 exerted a significant anti-cancer activity in MM.1S-implanted xenografts. Overall, CKD-581 shows anti-cancer activity via inhibition of the Wnt/β-catenin signaling pathway in hematologic malignancies. This finding is evidence of the therapeutic potential and rationale of CKD-581 for treatment of MM.
Collapse
Affiliation(s)
- Soo Jin Kim
- College of Pharmacy and Research Institute of Pharmaceutical Sciences, Seoul National University, Seoul 08826, Republic of Korea
- CKD Research Institution, Chong Kun Dang Pharmaceutical Corporation, Yongin 16995, Republic of Korea
| | - Suntae Kim
- College of Pharmacy and Research Institute of Pharmaceutical Sciences, Seoul National University, Seoul 08826, Republic of Korea
| | - Yong June Choi
- College of Pharmacy and Research Institute of Pharmaceutical Sciences, Seoul National University, Seoul 08826, Republic of Korea
| | - U Ji Kim
- CKD Research Institution, Chong Kun Dang Pharmaceutical Corporation, Yongin 16995, Republic of Korea
| | - Keon Wook Kang
- College of Pharmacy and Research Institute of Pharmaceutical Sciences, Seoul National University, Seoul 08826, Republic of Korea
| |
Collapse
|
38
|
Kumar R, Chaudhary AK, Woytash J, Inigo JR, Gokhale AA, Bshara W, Attwood K, Wang J, Spernyak JA, Rath E, Yadav N, Haller D, Goodrich DW, Tang DG, Chandra D. A mitochondrial unfolded protein response inhibitor suppresses prostate cancer growth in mice via HSP60. J Clin Invest 2022; 132:e149906. [PMID: 35653190 PMCID: PMC9246382 DOI: 10.1172/jci149906] [Citation(s) in RCA: 31] [Impact Index Per Article: 10.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/26/2021] [Accepted: 05/19/2022] [Indexed: 11/25/2022] Open
Abstract
Mitochondrial proteostasis, regulated by the mitochondrial unfolded protein response (UPRmt), is crucial for maintenance of cellular functions and survival. Elevated oxidative and proteotoxic stress in mitochondria must be attenuated by the activation of a ubiquitous UPRmt to promote prostate cancer (PCa) growth. Here we show that the 2 key components of the UPRmt, heat shock protein 60 (HSP60, a mitochondrial chaperonin) and caseinolytic protease P (ClpP, a mitochondrial protease), were required for the development of advanced PCa. HSP60 regulated ClpP expression via c-Myc and physically interacted with ClpP to restore mitochondrial functions that promote cancer cell survival. HSP60 maintained the ATP-producing functions of mitochondria, which activated the β-catenin pathway and led to the upregulation of c-Myc. We identified a UPRmt inhibitor that blocked HSP60's interaction with ClpP and abrogated survival signaling without altering HSP60's chaperonin function. Disruption of HSP60-ClpP interaction with the UPRmt inhibitor triggered metabolic stress and impeded PCa-promoting signaling. Treatment with the UPRmt inhibitor or genetic ablation of Hsp60 inhibited PCa growth and progression. Together, our findings demonstrate that the HSP60-ClpP-mediated UPRmt is essential for prostate tumorigenesis and the HSP60-ClpP interaction represents a therapeutic vulnerability in PCa.
Collapse
Affiliation(s)
| | | | | | | | | | - Wiam Bshara
- Department of Pathology and Laboratory Medicine
| | | | - Jianmin Wang
- Department of Biostatistics and Bioinformatics, and
| | - Joseph A. Spernyak
- Department of Cell Stress Biology, Roswell Park Comprehensive Cancer Center, Buffalo, New York, USA
| | - Eva Rath
- Chair of Nutrition and Immunology and
| | | | - Dirk Haller
- Chair of Nutrition and Immunology and
- ZIEL Institute for Food & Health, Technische Universität München, Freising-Weihenstephan, Germany
| | | | | | | |
Collapse
|
39
|
Targeting c-Myc Unbalances UPR towards Cell Death and Impairs DDR in Lymphoma and Multiple Myeloma Cells. Biomedicines 2022; 10:biomedicines10040731. [PMID: 35453482 PMCID: PMC9033049 DOI: 10.3390/biomedicines10040731] [Citation(s) in RCA: 7] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/24/2022] [Revised: 03/17/2022] [Accepted: 03/18/2022] [Indexed: 01/11/2023] Open
Abstract
Multiple myeloma (MM) and primary effusion lymphoma (PEL) are aggressive hematological cancers, for which the search for new and more effective therapies is needed. Both cancers overexpress c-Myc and are highly dependent on this proto-oncogene for their survival. Although c-Myc inhibition has been shown to reduce PEL and MM survival, the underlying mechanisms leading to such an effect are not completely clarified. In this study, by pharmacologic inhibition and silencing, we show that c-Myc stands at the cross-road between UPR and DDR. Indeed, it plays a key role in maintaining the pro-survival function of UPR, through the IRE1α/XBP1 axis, and sustains the expression level of DDR molecules such as RAD51 and BRCA1 in MM and PEL cells. Moreover, we found that c-Myc establishes an interplay with the IRE1α/XBP1 axis whose inhibition downregulated c-Myc, skewed UPR towards cell death and enhanced DNA damage. In conclusion, this study unveils new insights into the molecular mechanisms leading to the cytotoxic effects of c-Myc inhibition and reinforces the idea that its targeting may be a promising therapeutic approach against MM and PEL that, although different cancers, share some similarities, including c-Myc overexpression, constitutive ER stress and poor response to current chemotherapies.
Collapse
|
40
|
Abstract
Deregulated Wnt/β-catenin signaling is one of the main genetic alterations in human hepatocellular carcinoma (HCC). Comprehensive genomic analyses have revealed that gain-of-function mutation of CTNNB1, which encodes β-catenin, and loss-of-function mutation of AXIN1 occur in approximately 35% of human HCC samples. Human HCCs with activation of the Wnt/β-catenin pathway demonstrate unique gene expression patterns and pathological features. Activated Wnt/β-catenin synergizes with multiple signaling cascades to drive HCC formation, and it functions through its downstream effectors. Therefore, strategies targeting Wnt/β-catenin have been pursued as possible therapeutics against HCC. Here, we review the genetic alterations and oncogenic roles of aberrant Wnt/β-catenin signaling during hepatocarcinogenesis. In addition, we discuss the implication of this pathway in HCC diagnosis, classification, and personalized treatment.
Collapse
Affiliation(s)
- Chuanrui Xu
- School of Pharmacy, Tongji Medical College, Huazhong University of Science and Technology, Wuhan, China
| | - Zhong Xu
- Department of Gastroenterology, Zhongnan Hospital of Wuhan University, Wuhan, China
| | - Yi Zhang
- Key Laboratory of Biorheological Science and Technology, Ministry of Education, College of Bioengineering, Chongqing University, Chongqing, China
| | - Matthias Evert
- Institute of Pathology, University of Regensburg, Regensburg, Germany
| | - Diego F. Calvisi
- Institute of Pathology, University of Regensburg, Regensburg, Germany
| | - Xin Chen
- Department of Bioengineering and Therapeutic Sciences and Liver Center, UCSF, San Francisco, California, USA
| |
Collapse
|
41
|
IBtkα Activates the β-Catenin-Dependent Transcription of MYC through Ubiquitylation and Proteasomal Degradation of GSK3β in Cancerous B Cells. Int J Mol Sci 2022; 23:ijms23042044. [PMID: 35216159 PMCID: PMC8875111 DOI: 10.3390/ijms23042044] [Citation(s) in RCA: 7] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/10/2022] [Revised: 02/04/2022] [Accepted: 02/08/2022] [Indexed: 01/18/2023] Open
Abstract
The IBTK gene encodes the IBtkα protein that is a substrate receptor of E3 ubiquitin ligase, Cullin 3. We have previously reported the pro-tumorigenic activity of Ibtk in MYC-dependent B-lymphomagenesis observed in Eμ-myc transgenic mice. Here, we provide mechanistic evidence of the functional interplay between IBtkα and MYC. We show that IBtkα, albeit indirectly, activates the β-catenin-dependent transcription of the MYC gene. Of course, IBtkα associates with GSK3β and promotes its ubiquitylation, which is associated with proteasomal degradation. This event increases the protein level of β-catenin, a substrate of GSK3β, and results in the transcriptional activation of the MYC and CCND1 target genes of β-catenin, which are involved in the control of cell division and apoptosis. In particular, we found that in Burkitt’s lymphoma cells, IBtkα silencing triggered the downregulation of both MYC mRNA and protein expression, as well as a strong decrease of cell survival, mainly through the induction of apoptotic events, as assessed by using flow cytometry-based cell cycle and apoptosis analysis. Collectively, our results shed further light on the complex puzzle of IBtkα interactome and highlight IBtkα as a potential novel therapeutic target to be employed in the strategy for personalized therapy of B cell lymphoma.
Collapse
|
42
|
Telomerase in Cancer: Function, Regulation, and Clinical Translation. Cancers (Basel) 2022; 14:cancers14030808. [PMID: 35159075 PMCID: PMC8834434 DOI: 10.3390/cancers14030808] [Citation(s) in RCA: 51] [Impact Index Per Article: 17.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/10/2021] [Revised: 01/29/2022] [Accepted: 02/02/2022] [Indexed: 02/04/2023] Open
Abstract
Simple Summary Cells undergoing malignant transformation must circumvent replicative senescence and eventual cell death associated with progressive telomere shortening that occurs through successive cell division. To do so, malignant cells reactivate telomerase to extend their telomeres and achieve cellular immortality, which is a “Hallmark of Cancer”. Here we review the telomere-dependent and -independent functions of telomerase in cancer, as well as its potential as a biomarker and therapeutic target to diagnose and treat cancer patients. Abstract During the process of malignant transformation, cells undergo a series of genetic, epigenetic, and phenotypic alterations, including the acquisition and propagation of genomic aberrations that impart survival and proliferative advantages. These changes are mediated in part by the induction of replicative immortality that is accompanied by active telomere elongation. Indeed, telomeres undergo dynamic changes to their lengths and higher-order structures throughout tumor formation and progression, processes overseen in most cancers by telomerase. Telomerase is a multimeric enzyme whose function is exquisitely regulated through diverse transcriptional, post-transcriptional, and post-translational mechanisms to facilitate telomere extension. In turn, telomerase function depends not only on its core components, but also on a suite of binding partners, transcription factors, and intra- and extracellular signaling effectors. Additionally, telomerase exhibits telomere-independent regulation of cancer cell growth by participating directly in cellular metabolism, signal transduction, and the regulation of gene expression in ways that are critical for tumorigenesis. In this review, we summarize the complex mechanisms underlying telomere maintenance, with a particular focus on both the telomeric and extratelomeric functions of telomerase. We also explore the clinical utility of telomeres and telomerase in the diagnosis, prognosis, and development of targeted therapies for primary, metastatic, and recurrent cancers.
Collapse
|
43
|
Boudou C, Mattio L, Koval A, Soulard V, Katanaev VL. Wnt-pathway inhibitors with selective activity against triple-negative breast cancer: From thienopyrimidine to quinazoline inhibitors. Front Pharmacol 2022; 13:1045102. [PMID: 36386148 PMCID: PMC9649909 DOI: 10.3389/fphar.2022.1045102] [Citation(s) in RCA: 6] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/15/2022] [Accepted: 10/17/2022] [Indexed: 11/13/2022] Open
Abstract
The Wnt-pathway has a critical role in development and tissue homeostasis and has attracted increased attention to develop anticancer drugs due to its aberrant activation in many cancers. In this study, we identified a novel small molecule series with a thienopyrimidine scaffold acting as a downstream inhibitor of the β-catenin-dependent Wnt-pathway. This novel chemotype was investigated using Wnt-dependent triple-negative breast cancer (TNBC) cell lines. Structure activity relationship (SAR) exploration led to identification of low micromolar compounds such as 5a, 5d, 5e and a novel series with quinazoline scaffold such as 9d. Further investigation showed translation of activity to inhibit cancer survival of HCC1395 and MDA-MB-468 TNBC cell lines without affecting a non-cancerous breast epithelial cell line MCF10a. This anti-proliferative effect was synergistic to docetaxel treatment. Collectively, we identified novel chemotypes acting as a downstream inhibitor of β-catenin-dependent Wnt-pathway that could expand therapeutic options to manage TNBC.
Collapse
Affiliation(s)
- Cédric Boudou
- Department of Cell Physiology and Metabolism, Translational Research Centre in Oncohaematology, Faculty of Medicine, University of Geneva, Geneva, Switzerland
| | - Luce Mattio
- Department of Cell Physiology and Metabolism, Translational Research Centre in Oncohaematology, Faculty of Medicine, University of Geneva, Geneva, Switzerland
| | - Alexey Koval
- Department of Cell Physiology and Metabolism, Translational Research Centre in Oncohaematology, Faculty of Medicine, University of Geneva, Geneva, Switzerland
| | - Valentin Soulard
- Department of Cell Physiology and Metabolism, Translational Research Centre in Oncohaematology, Faculty of Medicine, University of Geneva, Geneva, Switzerland
| | - Vladimir L. Katanaev
- Department of Cell Physiology and Metabolism, Translational Research Centre in Oncohaematology, Faculty of Medicine, University of Geneva, Geneva, Switzerland
- Institute of Life Sciences and Biomedicine, Far Eastern Federal University, Vladivostok, Russia
- *Correspondence: Vladimir L. Katanaev,
| |
Collapse
|
44
|
Ali A, Akhtar J, Ahmad U, Basheer AS, Jaiswal N, Jahan A. Armamentarium in drug delivery for colorectal cancer. Crit Rev Ther Drug Carrier Syst 2022; 40:1-48. [DOI: 10.1615/critrevtherdrugcarriersyst.2022039241] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/24/2022]
|
45
|
Chatterjee A, Paul S, Bisht B, Bhattacharya S, Sivasubramaniam S, Paul MK. Advances in targeting the WNT/β-catenin signaling pathway in cancer. Drug Discov Today 2022; 27:82-101. [PMID: 34252612 DOI: 10.1016/j.drudis.2021.07.007] [Citation(s) in RCA: 65] [Impact Index Per Article: 21.7] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/16/2021] [Revised: 05/27/2021] [Accepted: 07/06/2021] [Indexed: 01/05/2023]
Abstract
WNT/β-catenin signaling orchestrates various physiological processes, including embryonic development, growth, tissue homeostasis, and regeneration. Abnormal WNT/β-catenin signaling is associated with various cancers and its inhibition has shown effective antitumor responses. In this review, we discuss the pathway, potential targets for the development of WNT/β-catenin inhibitors, available inhibitors, and their specific molecular interactions with the target proteins. We also discuss inhibitors that are in clinical trials and describe potential new avenues for therapeutically targeting the WNT/β-catenin pathway. Furthermore, we introduce emerging strategies, including artificial intelligence (AI)-assisted tools and technology-based actionable approaches, to translate WNT/β-catenin inhibitors to the clinic for cancer therapy.
Collapse
Affiliation(s)
- Avradip Chatterjee
- Department of Biomedical Sciences, Cedars-Sinai Medical Center, Los Angeles, CA 90048, USA
| | - Sayan Paul
- Department of Biotechnology, Manonmaniam Sundaranar University, Tirunelveli, Tamil Nadu 627012, India; Centre for Cardiovascular Biology and Disease, Institute for Stem Cell Science and Regenerative Medicine (inStem), Bangalore 560065, India
| | - Bharti Bisht
- Department of Thoracic Surgery, David Geffen School of Medicine, UCLA, Los Angeles, CA 90095, USA
| | - Shelley Bhattacharya
- Environmental Toxicology Laboratory, Department of Zoology (Centre for Advanced Studies), Visva Bharati (A Central University), Santiniketan 731235, India
| | - Sudhakar Sivasubramaniam
- Department of Biotechnology, Manonmaniam Sundaranar University, Tirunelveli, Tamil Nadu 627012, India
| | - Manash K Paul
- Department of Pulmonary and Critical Care Medicine, David Geffen School of Medicine, UCLA, Los Angeles, CA 90095, USA.
| |
Collapse
|
46
|
Ji Y, Lv J, Sun D, Huang Y. Therapeutic strategies targeting Wnt/β‑catenin signaling for colorectal cancer (Review). Int J Mol Med 2022; 49:1. [PMID: 34713301 PMCID: PMC8589460 DOI: 10.3892/ijmm.2021.5056] [Citation(s) in RCA: 48] [Impact Index Per Article: 16.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/16/2021] [Accepted: 10/20/2021] [Indexed: 12/12/2022] Open
Abstract
Colorectal cancer (CRC) is one of the most common carcinomas. Although great progress has been made in recent years, CRC survival remains unsatisfactory due to high metastasis and recurrence. Understanding the underlying molecular mechanisms of CRC tumorigenesis and metastasis has become increasingly important. Recently, aberrant Wnt/β‑catenin signaling has been reported to be strongly associated with CRC tumorigenesis, metastasis and recurrence. Therefore, the Wnt/β‑catenin signaling pathway has potential value as a therapeutic target for CRC. In the present review, the dysregulation of this pathway in CRC and the promoting or suppressing function of therapeutic targets on CRC were explored. In addition, the interaction between this pathway and epithelial‑mesenchymal transition (EMT), cell stemness, mutations, metastasis‑related genes and tumor angiogenesis in CRC cells were also investigated. Numerous studies on this pathway may help identify the potential diagnostic and prognostic markers and therapeutic targets for CRC.
Collapse
Affiliation(s)
- Yong Ji
- Department of General Surgery, Jingjiang People's Hospital, Jingjiang, Jiangsu 214500, P.R. China
| | - Jian Lv
- Department of General Surgery, Jingjiang People's Hospital, Jingjiang, Jiangsu 214500, P.R. China
| | - Di Sun
- Department of General Surgery, Jingjiang People's Hospital, Jingjiang, Jiangsu 214500, P.R. China
| | - Yufeng Huang
- Department of Oncology, Jingjiang People's Hospital, Jingjiang, Jiangsu 214500, P.R. China
| |
Collapse
|
47
|
Reznicek E, Arfeen M, Shen B, Ghouri YA. Colorectal Dysplasia and Cancer Surveillance in Ulcerative Colitis. Diseases 2021; 9:86. [PMID: 34842672 PMCID: PMC8628786 DOI: 10.3390/diseases9040086] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/01/2021] [Revised: 11/15/2021] [Accepted: 11/16/2021] [Indexed: 12/12/2022] Open
Abstract
Ulcerative colitis (UC) is a risk factor for the development of inflammation-associated dysplasia or colitis-associated neoplasia (CAN). This transformation results from chronic inflammation, which induces changes in epithelial proliferation, survival, and migration via the induction of chemokines and cytokines. There are notable differences in genetic mutation profiles between CAN in UC patients and sporadic colorectal cancer in the general population. Colonoscopy is the cornerstone for surveillance and management of dysplasia in these patients. There are several modalities to augment the quality of endoscopy for the better detection of dysplastic or neoplastic lesions, including the use of high-definition white-light exam and image-enhanced colonoscopy, which are described in this review. Clinical practice guidelines regarding surveillance strategies in UC have been put forth by various GI societies, and overall, there is agreement between them except for some differences, which we highlight in this article. These guidelines recommend that endoscopically detected dysplasia, if feasible, should be resected endoscopically. Advanced newer techniques, such as endoscopic mucosal resection and endoscopic submucosal dissection, have been utilized in the treatment of CAN. Surgery has traditionally been the mainstay of treating such advanced lesions, and in cases where endoscopic resection is not feasible, a proctocolectomy, followed by ileal pouch-anal anastomosis, is generally recommended. In this review we summarize the approach to surveillance for cancer and dysplasia in UC. We also highlight management strategies if dysplasia is detected.
Collapse
Affiliation(s)
- Emily Reznicek
- Department of Medicine, Division of Gastroenterology and Hepatology, University of Missouri School of Medicine, Columbia, MO 65212, USA
| | - Mohammad Arfeen
- Department of Gastroenterology, Franciscan Health, Olympia Fields, IL 60461, USA
| | - Bo Shen
- Interventional IBD Center, Department of Medicine and Surgery, Columbia University Irving Medical Center/New York Presbyterian Hospital, New York, NY 10032, USA
| | - Yezaz A. Ghouri
- Department of Medicine, Division of Gastroenterology and Hepatology, University of Missouri School of Medicine, Columbia, MO 65212, USA
| |
Collapse
|
48
|
Yu W, Zhang X, Zhang W, Xiong M, Lin Y, Chang M, Xu L, Lu Y, Liu Y, Zhang J. 19-Hydroxybufalin inhibits non-small cell lung cancer cell proliferation and promotes cell apoptosis via the Wnt/β-catenin pathway. Exp Hematol Oncol 2021; 10:48. [PMID: 34696818 PMCID: PMC8543904 DOI: 10.1186/s40164-021-00243-0] [Citation(s) in RCA: 12] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/15/2021] [Accepted: 10/21/2021] [Indexed: 12/25/2022] Open
Abstract
Background Bufadienolides derived from the skin of toads are often regarded as the main active components with antitumor effects. 19-Hydroxybufalin (19-HB) is a monomer of bufadienolides; however, its effects and underlying molecular mechanisms on tumor growth remain to be ascertained. In this report, we focused on the antitumor effects of 19-HB on non-small cell lung cancer to provide a scientific basis for its further development and utilization. Methods The antitumor effects of 19-HB on the human NSCLC cell lines NCI-H1299 and NCI-H838 were examined in vitro. The cells were treated with different concentrations of 19-HB, and the inhibition of cell growth was measured by CCK-8 and colony formation assays. Furthermore, cell apoptosis was analyzed by flow cytometry, TUNEL staining, JC-1 staining, and western blotting. The effects on migration and invasion were evaluated by wound-healing assay, transwell assay, and western blotting. Finally, the antitumor effects of 19-HB were evaluated in vivo using a xenograft mouse model. Results 19-HB-treated NSCLC cells showed inhibited cell viability and increased apoptosis. The expression levels of cleaved caspase-3, cleaved-PARP, and Bax/Bcl-2 were upregulated, while the mitochondrial membrane potential decreased. In contrast, migration, invasion, as well as the expression of MMP2, MMP7, MMP9, the epithelial–mesenchymal transition-related proteins N-cadherin and Vimentin, and the transcription factors Snail and Slug were inhibited. Furthermore, the expression levels of the key molecules in the Wnt/β-catenin signaling pathway (CyclinD1, c-Myc, and β-catenin) were decreased. In vivo, the growth of xenograft tumors in nude mice was also significantly inhibited by 19-HB, and there were no significant changes in biochemical indicators of hepatic and renal function. Conclusions 19-HB inhibited the proliferation, migration, and invasion, and promoted the apoptosis of NSCLC cells via the Wnt/β-catenin pathway. In addition, 19-HB inhibited the growth of xenograft tumors in nude mice with little toxicity to the liver and kidney. Thus, 19-HB may be a potential antitumor agent for treating NSCLC. Supplementary Information The online version contains supplementary material available at 10.1186/s40164-021-00243-0.
Collapse
Affiliation(s)
- Wei Yu
- Guizhou Provincial College-Based Key Lab for Tumor Prevention and Treatment With Distinctive Medicines, Zunyi Medical University, Zunyi, 563000, China.,School of Medicine, Southern University of Science and Technology, Shenzhen, 518055, Guangdong, China
| | - Xiao Zhang
- School of Medicine, Southern University of Science and Technology, Shenzhen, 518055, Guangdong, China
| | - Wei Zhang
- School of Medicine, Southern University of Science and Technology, Shenzhen, 518055, Guangdong, China
| | - Minggang Xiong
- School of Medicine, Southern University of Science and Technology, Shenzhen, 518055, Guangdong, China
| | - Yuhan Lin
- School of Medicine, Southern University of Science and Technology, Shenzhen, 518055, Guangdong, China
| | - Ming Chang
- School of Medicine, Southern University of Science and Technology, Shenzhen, 518055, Guangdong, China
| | - Lin Xu
- Guizhou Provincial College-Based Key Lab for Tumor Prevention and Treatment With Distinctive Medicines, Zunyi Medical University, Zunyi, 563000, China
| | - Yi Lu
- School of Medicine, Southern University of Science and Technology, Shenzhen, 518055, Guangdong, China. .,Guangdong Provincial Key Laboratory of Cell Microenvironment and Disease Research, Shenzhen, 518055, Guangdong, China.
| | - Yun Liu
- Guizhou Provincial College-Based Key Lab for Tumor Prevention and Treatment With Distinctive Medicines, Zunyi Medical University, Zunyi, 563000, China.
| | - Jian Zhang
- School of Medicine, Southern University of Science and Technology, Shenzhen, 518055, Guangdong, China. .,Guangdong Provincial Key Laboratory of Cell Microenvironment and Disease Research, Shenzhen, 518055, Guangdong, China.
| |
Collapse
|
49
|
Integrated Network Pharmacology Analysis and In Vitro Validation Revealed the Potential Active Components and Underlying Mechanistic Pathways of Herba Patriniae in Colorectal Cancer. Molecules 2021; 26:molecules26196032. [PMID: 34641576 PMCID: PMC8513027 DOI: 10.3390/molecules26196032] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/10/2021] [Revised: 09/29/2021] [Accepted: 10/01/2021] [Indexed: 12/12/2022] Open
Abstract
Herba Patriniae (HP) are medicinal plants commonly used in colorectal cancer (CRC) patients. In this study, network pharmacology was used to predict the active components and key signaling pathways of HP in CRC. Patrinia heterophylla, one type of HP, was chosen for validation of the network pharmacology analysis. The phytochemical profile of Patrinia heterophylla water extract (PHW) was determined by UHPLC-MS. MTT, RT-PCR, and Western blot assays were performed to evaluate the bioactivities of PHW in colon cancer cells. Results showed that 15 potentially active components of HP interacted with 28 putative targets of CRC in the compound–target network, of which asperglaucide had the highest degree. Furthermore, the ErbB signaling pathway was identified as the pathway mediated by HP with the most potential against CRC. Both RT-PCR and Western blot results showed that PHW significantly downregulated the mRNA and protein levels of EGFR, PI3K, and AKT in HCT116 cells. Asperglaucide, present in PHW, exhibited an anti-migratory effect in HCT116 cells, suggesting that it could be an active component of PHW in CRC treatment. In conclusion, this study has provided the first scientific evidence to support the use of PHW in CRC and paved the way for further research into the underlying mechanisms of PHW against CRC.
Collapse
|
50
|
PTPN18 promotes colorectal cancer progression by regulating the c-MYC-CDK4 axis. Genes Dis 2021; 8:838-848. [PMID: 34522712 PMCID: PMC8427258 DOI: 10.1016/j.gendis.2020.08.001] [Citation(s) in RCA: 7] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/16/2020] [Revised: 08/11/2020] [Accepted: 08/12/2020] [Indexed: 01/13/2023] Open
Abstract
Protein tyrosine phosphatase non-receptor type 18 (PTPN18) is often highly expressed in colorectal cancer (CRC), but its role in this disease remains unclear. We demonstrated that PTPN18 overexpression promotes growth and tumorigenesis in CRC cells and that PTPN18 deficiency yields the opposite results in vitro. Moreover, a xenograft assay showed that PTPN18 deficiency significantly inhibited tumorigenesis in vivo. PTPN18 activated the MYC signaling pathway and enhanced CDK4 expression, which is tightly associated with the cell cycle and proliferation in cancer cells. Finally, we found that MYC interacted with PTPN18 and increased the protein level of MYC. In conclusion, our results suggest that PTPN18 promotes CRC development by stabilizing the MYC protein level, which in turn activates the MYC-CDK4 axis. Thus, PTPN18 could be a novel therapeutic target in the future.
Collapse
|