1
|
Drew KL, Bhowmick S, Laughlin BW, Goropashnaya AV, Tøien Ø, Sugiura MH, Wong A, Pourrezaei K, Barati Z, Chen CY. Opportunities and barriers to translating the hibernation phenotype for neurocritical care. Front Neurol 2023; 14:1009718. [PMID: 36779060 PMCID: PMC9911456 DOI: 10.3389/fneur.2023.1009718] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/02/2022] [Accepted: 01/11/2023] [Indexed: 01/28/2023] Open
Abstract
Targeted temperature management (TTM) is standard of care for neonatal hypoxic ischemic encephalopathy (HIE). Prevention of fever, not excluding cooling core body temperature to 33°C, is standard of care for brain injury post cardiac arrest. Although TTM is beneficial, HIE and cardiac arrest still carry significant risk of death and severe disability. Mammalian hibernation is a gold standard of neuroprotective metabolic suppression, that if better understood might make TTM more accessible, improve efficacy of TTM and identify adjunctive therapies to protect and regenerate neurons after hypoxic ischemia brain injury. Hibernating species tolerate cerebral ischemia/reperfusion better than humans and better than other models of cerebral ischemia tolerance. Such tolerance limits risk of transitions into and out of hibernation torpor and suggests that a barrier to translate hibernation torpor may be human vulnerability to these transitions. At the same time, understanding how hibernating mammals protect their brains is an opportunity to identify adjunctive therapies for TTM. Here we summarize what is known about the hemodynamics of hibernation and how the hibernating brain resists injury to identify opportunities to translate these mechanisms for neurocritical care.
Collapse
Affiliation(s)
- Kelly L. Drew
- Center for Transformative Research in Metabolism, Institute of Arctic Biology, University of Alaska Fairbanks, Fairbanks, AK, United States
| | - Saurav Bhowmick
- Center for Transformative Research in Metabolism, Institute of Arctic Biology, University of Alaska Fairbanks, Fairbanks, AK, United States
| | - Bernard W. Laughlin
- Center for Transformative Research in Metabolism, Institute of Arctic Biology, University of Alaska Fairbanks, Fairbanks, AK, United States
| | - Anna V. Goropashnaya
- Center for Transformative Research in Metabolism, Institute of Arctic Biology, University of Alaska Fairbanks, Fairbanks, AK, United States
| | - Øivind Tøien
- Center for Transformative Research in Metabolism, Institute of Arctic Biology, University of Alaska Fairbanks, Fairbanks, AK, United States
| | - M. Hoshi Sugiura
- Center for Transformative Research in Metabolism, Institute of Arctic Biology, University of Alaska Fairbanks, Fairbanks, AK, United States
| | - Ardy Wong
- Drexel University School of Biomedical Engineering, Science and Health Systems, Philadelphia, PA, United States
| | - Kambiz Pourrezaei
- Drexel University School of Biomedical Engineering, Science and Health Systems, Philadelphia, PA, United States
| | - Zeinab Barati
- Center for Transformative Research in Metabolism, Institute of Arctic Biology, University of Alaska Fairbanks, Fairbanks, AK, United States
- Barati Medical LLC, Fairbanks, AK, United States
| | - Chao-Yin Chen
- Department of Pharmacology, University of California, Davis, Davis, CA, United States
| |
Collapse
|
3
|
Marutani E, Morita M, Hirai S, Kai S, Grange RMH, Miyazaki Y, Nagashima F, Traeger L, Magliocca A, Ida T, Matsunaga T, Flicker DR, Corman B, Mori N, Yamazaki Y, Batten A, Li R, Tanaka T, Ikeda T, Nakagawa A, Atochin DN, Ihara H, Olenchock BA, Shen X, Nishida M, Hanaoka K, Kevil CG, Xian M, Bloch DB, Akaike T, Hindle AG, Motohashi H, Ichinose F. Sulfide catabolism ameliorates hypoxic brain injury. Nat Commun 2021; 12:3108. [PMID: 34035265 PMCID: PMC8149856 DOI: 10.1038/s41467-021-23363-x] [Citation(s) in RCA: 76] [Impact Index Per Article: 19.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/11/2020] [Accepted: 04/27/2021] [Indexed: 01/09/2023] Open
Abstract
The mammalian brain is highly vulnerable to oxygen deprivation, yet the mechanism underlying the brain's sensitivity to hypoxia is incompletely understood. Hypoxia induces accumulation of hydrogen sulfide, a gas that inhibits mitochondrial respiration. Here, we show that, in mice, rats, and naturally hypoxia-tolerant ground squirrels, the sensitivity of the brain to hypoxia is inversely related to the levels of sulfide:quinone oxidoreductase (SQOR) and the capacity to catabolize sulfide. Silencing SQOR increased the sensitivity of the brain to hypoxia, whereas neuron-specific SQOR expression prevented hypoxia-induced sulfide accumulation, bioenergetic failure, and ischemic brain injury. Excluding SQOR from mitochondria increased sensitivity to hypoxia not only in the brain but also in heart and liver. Pharmacological scavenging of sulfide maintained mitochondrial respiration in hypoxic neurons and made mice resistant to hypoxia. These results illuminate the critical role of sulfide catabolism in energy homeostasis during hypoxia and identify a therapeutic target for ischemic brain injury.
Collapse
Affiliation(s)
- Eizo Marutani
- Anesthesia Center for Critical Care Research of the Department of Anesthesia, Critical Care and Pain Medicine, Massachusetts General Hospital, Boston, MA, USA
- Harvard Medical School, Boston, MA, USA
| | - Masanobu Morita
- Department of Environmental Medicine and Molecular Toxicology, Tohoku University Graduate School of Medicine, Sendai, Japan
| | - Shuichi Hirai
- Anesthesia Center for Critical Care Research of the Department of Anesthesia, Critical Care and Pain Medicine, Massachusetts General Hospital, Boston, MA, USA
- Harvard Medical School, Boston, MA, USA
| | - Shinichi Kai
- Anesthesia Center for Critical Care Research of the Department of Anesthesia, Critical Care and Pain Medicine, Massachusetts General Hospital, Boston, MA, USA
- Harvard Medical School, Boston, MA, USA
| | - Robert M H Grange
- Anesthesia Center for Critical Care Research of the Department of Anesthesia, Critical Care and Pain Medicine, Massachusetts General Hospital, Boston, MA, USA
- Harvard Medical School, Boston, MA, USA
| | - Yusuke Miyazaki
- Anesthesia Center for Critical Care Research of the Department of Anesthesia, Critical Care and Pain Medicine, Massachusetts General Hospital, Boston, MA, USA
- Harvard Medical School, Boston, MA, USA
| | - Fumiaki Nagashima
- Anesthesia Center for Critical Care Research of the Department of Anesthesia, Critical Care and Pain Medicine, Massachusetts General Hospital, Boston, MA, USA
- Harvard Medical School, Boston, MA, USA
| | - Lisa Traeger
- Anesthesia Center for Critical Care Research of the Department of Anesthesia, Critical Care and Pain Medicine, Massachusetts General Hospital, Boston, MA, USA
- Harvard Medical School, Boston, MA, USA
| | - Aurora Magliocca
- Anesthesia Center for Critical Care Research of the Department of Anesthesia, Critical Care and Pain Medicine, Massachusetts General Hospital, Boston, MA, USA
- Harvard Medical School, Boston, MA, USA
| | - Tomoaki Ida
- Department of Environmental Medicine and Molecular Toxicology, Tohoku University Graduate School of Medicine, Sendai, Japan
| | - Tetsuro Matsunaga
- Department of Environmental Medicine and Molecular Toxicology, Tohoku University Graduate School of Medicine, Sendai, Japan
| | - Daniel R Flicker
- Department of Systems Biology, Harvard Medical School, Boston, MA, USA
- Howard Hughes Medical Institute and Department of Molecular Biology, Massachusetts General Hospital, Boston, MA, USA
- Broad Institute of MIT and Harvard, Cambridge, MA, USA
| | - Benjamin Corman
- Anesthesia Center for Critical Care Research of the Department of Anesthesia, Critical Care and Pain Medicine, Massachusetts General Hospital, Boston, MA, USA
- Division of Rheumatology, Allergy and Immunology, Department of Medicine, Massachusetts General Hospital, Boston, MA, USA
| | - Naohiro Mori
- Anesthesia Center for Critical Care Research of the Department of Anesthesia, Critical Care and Pain Medicine, Massachusetts General Hospital, Boston, MA, USA
- Harvard Medical School, Boston, MA, USA
| | - Yumiko Yamazaki
- Anesthesia Center for Critical Care Research of the Department of Anesthesia, Critical Care and Pain Medicine, Massachusetts General Hospital, Boston, MA, USA
| | - Annabelle Batten
- Anesthesia Center for Critical Care Research of the Department of Anesthesia, Critical Care and Pain Medicine, Massachusetts General Hospital, Boston, MA, USA
| | - Rebecca Li
- Anesthesia Center for Critical Care Research of the Department of Anesthesia, Critical Care and Pain Medicine, Massachusetts General Hospital, Boston, MA, USA
| | - Tomohiro Tanaka
- Division of Cardiocirculatory Signaling, National Institute for Physiological Sciences & Exploratory Research Center on Life and Living Systems & Center for Novel Science Initiatives, National Institutes of Natural Sciences, Okazaki, Japan
| | - Takamitsu Ikeda
- Anesthesia Center for Critical Care Research of the Department of Anesthesia, Critical Care and Pain Medicine, Massachusetts General Hospital, Boston, MA, USA
- Harvard Medical School, Boston, MA, USA
| | - Akito Nakagawa
- Anesthesia Center for Critical Care Research of the Department of Anesthesia, Critical Care and Pain Medicine, Massachusetts General Hospital, Boston, MA, USA
- Harvard Medical School, Boston, MA, USA
| | - Dmitriy N Atochin
- Harvard Medical School, Boston, MA, USA
- Cardiovascular Research Center, Division of Cardiology, Department of Medicine, Harvard Medical School, Massachusetts General Hospital, Charlestown, MA, USA
| | - Hideshi Ihara
- Department of Biological Science, Graduate School of Science, Osaka Prefecture University, Osaka, Japan
| | - Benjamin A Olenchock
- Harvard Medical School, Boston, MA, USA
- Division of Cardiovascular Medicine, Department of Medicine, The Brigham and Women's Hospital, Boston, MA, USA
| | - Xinggui Shen
- Department of Pathology and Translational Pathobiology, Louisiana State University Health Sciences Center-Shreveport, Shreveport, LA, USA
| | - Motohiro Nishida
- Division of Cardiocirculatory Signaling, National Institute for Physiological Sciences & Exploratory Research Center on Life and Living Systems & Center for Novel Science Initiatives, National Institutes of Natural Sciences, Okazaki, Japan
- Department of Physiology, Graduate School of Pharmaceutical Sciences, Kyushu University, Fukuoka, Japan
| | - Kenjiro Hanaoka
- Graduate School of Pharmaceutical Sciences, The University of Tokyo, Bunkyo-ku, Tokyo, Japan
| | - Christopher G Kevil
- Department of Pathology and Translational Pathobiology, Louisiana State University Health Sciences Center-Shreveport, Shreveport, LA, USA
| | - Ming Xian
- Department of Chemistry, Brown University, Providence, RI, USA
| | - Donald B Bloch
- Anesthesia Center for Critical Care Research of the Department of Anesthesia, Critical Care and Pain Medicine, Massachusetts General Hospital, Boston, MA, USA
- Harvard Medical School, Boston, MA, USA
- Division of Rheumatology, Allergy and Immunology, Department of Medicine, Massachusetts General Hospital, Boston, MA, USA
| | - Takaaki Akaike
- Department of Environmental Medicine and Molecular Toxicology, Tohoku University Graduate School of Medicine, Sendai, Japan
| | - Allyson G Hindle
- Anesthesia Center for Critical Care Research of the Department of Anesthesia, Critical Care and Pain Medicine, Massachusetts General Hospital, Boston, MA, USA
- Harvard Medical School, Boston, MA, USA
- School of Life Sciences, University of Nevada Las Vegas, Las Vegas, NV, USA
| | - Hozumi Motohashi
- Department of Gene Expression Regulation, Institute of Development, Aging and Cancer, Tohoku University, Sendai, Japan.
| | - Fumito Ichinose
- Anesthesia Center for Critical Care Research of the Department of Anesthesia, Critical Care and Pain Medicine, Massachusetts General Hospital, Boston, MA, USA.
- Harvard Medical School, Boston, MA, USA.
| |
Collapse
|
4
|
Singhal NS, Bai M, Lee EM, Luo S, Cook KR, Ma DK. Cytoprotection by a naturally occurring variant of ATP5G1 in Arctic ground squirrel neural progenitor cells. eLife 2020; 9:55578. [PMID: 33050999 PMCID: PMC7671683 DOI: 10.7554/elife.55578] [Citation(s) in RCA: 8] [Impact Index Per Article: 1.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/29/2020] [Accepted: 10/08/2020] [Indexed: 02/06/2023] Open
Abstract
Many organisms in nature have evolved mechanisms to tolerate severe hypoxia or ischemia, including the hibernation-capable Arctic ground squirrel (AGS). Although hypoxic or ischemia tolerance in AGS involves physiological adaptations, little is known about the critical cellular mechanisms underlying intrinsic AGS cell resilience to metabolic stress. Through cell survival-based cDNA expression screens in neural progenitor cells, we identify a genetic variant of AGS Atp5g1 that confers cell resilience to metabolic stress. Atp5g1 encodes a subunit of the mitochondrial ATP synthase. Ectopic expression in mouse cells and CRISPR/Cas9 base editing of endogenous AGS loci revealed causal roles of one AGS-specific amino acid substitution in mediating cytoprotection by AGS ATP5G1. AGS ATP5G1 promotes metabolic stress resilience by modulating mitochondrial morphological change and metabolic functions. Our results identify a naturally occurring variant of ATP5G1 from a mammalian hibernator that critically contributes to intrinsic cytoprotection against metabolic stress. When animals hibernate, they lower their body temperature and metabolism to conserve the energy they need to withstand cold harsh winters. One such animal is the Arctic ground squirrel, an extreme hibernator that can drop its body temperatures to below 0°C. This hibernation ability means the cells of Arctic ground squirrels can survive severe shortages of blood and oxygen. But, it is unclear how their cells are able to endure this metabolic stress. To answer this question, Singhal, Bai et al. studied the cells of Arctic ground squirrels for unique features that might make them more durable to stress. Examining the genetic code of these resilient cells revealed that Arctic ground squirrels may have a variant form of a protein called ATP5G1. This protein is found in a cellular compartment called the mitochondria, which is responsible for supplying energy to the rest of the cell and therefore plays an important role in metabolic processes. Singhal, Bai et al. found that when this variant form of ATP5G1 was introduced into the cells of mice, their mitochondria was better at coping with stress conditions, such as low oxygen, low temperature and poisoning. Using a gene editing tool to selectively substitute some of the building blocks, also known as amino acids, that make up the ATP5G1 protein revealed that improvements to the mitochondria were caused by switching specific amino acids. However, swapping these amino acids, which presumably affects the role of ATP5G1, did not completely remove the cells’ resilience to stress. This suggests that variants of other genes and proteins may also be involved in providing protection. These findings provide the first evidence of a protein variant that is responsible for protecting cells during the metabolic stress conditions caused by hibernation. The approach taken by Singhal, Bai et al. could be used to identify and study other proteins that increase resilience to metabolic stress. These findings could help develop new treatments for diseases caused by a limited blood supply to human organs, such as a stroke or heart attack.
Collapse
Affiliation(s)
- Neel S Singhal
- Department of Neurology, University of California-San Francisco, San Francisco, United States
| | - Meirong Bai
- Cardiovascular Research Institute, University of California-San Francisco, San Francisco, United States.,Department of Physiology, University of California-San Francisco, San Francisco, United States
| | - Evan M Lee
- Cardiovascular Research Institute, University of California-San Francisco, San Francisco, United States.,Department of Physiology, University of California-San Francisco, San Francisco, United States
| | - Shuo Luo
- Cardiovascular Research Institute, University of California-San Francisco, San Francisco, United States.,Department of Physiology, University of California-San Francisco, San Francisco, United States
| | - Kayleigh R Cook
- Cardiovascular Research Institute, University of California-San Francisco, San Francisco, United States.,Department of Physiology, University of California-San Francisco, San Francisco, United States
| | - Dengke K Ma
- Cardiovascular Research Institute, University of California-San Francisco, San Francisco, United States.,Department of Physiology, University of California-San Francisco, San Francisco, United States.,Innovative Genomics Institute, Berkeley, United States
| |
Collapse
|
5
|
Ou J, Rosa S, Berchowitz LE, Li W. Induced pluripotent stem cells as a tool for comparative physiology: lessons from the thirteen-lined ground squirrel. J Exp Biol 2019; 222:jeb196493. [PMID: 31585999 PMCID: PMC6806009 DOI: 10.1242/jeb.196493] [Citation(s) in RCA: 8] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/20/2022]
Abstract
Comparative physiologists are often interested in adaptive physiological phenomena found in unconventional model organisms; however, research on these species is frequently constrained by the limited availability of investigative tools. Here, we propose that induced pluripotent stem cells (iPSCs) from unconventional model organisms may retain certain species-specific features that can consequently be investigated in depth in vitro; we use hibernating mammals as an example. Many species (including ground squirrels, bats and bears) can enter a prolonged state of physiological dormancy known as hibernation to survive unfavorable seasonal conditions. Our understanding of the mechanisms underpinning the rapid transition and adaptation to a hypothermic, metabolically suppressed winter torpor state remains limited partially because of the lack of an easily accessible model. To address the fascinating unanswered questions underlying hibernation biology, we have developed a powerful model system: iPSCs from a hibernating species, the thirteen-lined ground squirrel (Ictidomys tridecemlineatus). These stem cells can potentially be differentiated into any cell type, and can be used for the analysis of cell-autonomous mechanisms that facilitate adaptation to hibernation and for comparisons with non-hibernators. Furthermore, we can manipulate candidate molecular and cellular pathways underlying relevant physiological phenomena by pharmacological or RNAi-based methods, and CRISPR/Cas9 gene editing. Moreover, iPSC strategies can be applied to other species (e.g. seals, naked mole rats, humming birds) for in vitro studies on adaptation to extreme physiological conditions. In this Commentary, we discuss factors to consider when attempting to generate iPSCs from unconventional model organisms, based on our experience with the thirteen-lined ground squirrel.
Collapse
Affiliation(s)
- Jingxing Ou
- Retinal Neurophysiology Section, National Eye Institute, US National Institutes of Health, Bethesda, MD 20892, USA
| | - Sarah Rosa
- Department of Genetics and Development, Columbia University Medical Center, New York, NY 10032, USA
- Taub Institute for Research on Alzheimer's and the Aging Brain, New York, NY 10032, USA
| | - Luke E Berchowitz
- Department of Genetics and Development, Columbia University Medical Center, New York, NY 10032, USA
- Taub Institute for Research on Alzheimer's and the Aging Brain, New York, NY 10032, USA
| | - Wei Li
- Retinal Neurophysiology Section, National Eye Institute, US National Institutes of Health, Bethesda, MD 20892, USA
| |
Collapse
|
6
|
Lee YJ, Bernstock JD, Klimanis D, Hallenbeck JM. Akt Protein Kinase, miR-200/miR-182 Expression and Epithelial-Mesenchymal Transition Proteins in Hibernating Ground Squirrels. Front Mol Neurosci 2018; 11:22. [PMID: 29440989 PMCID: PMC5797618 DOI: 10.3389/fnmol.2018.00022] [Citation(s) in RCA: 6] [Impact Index Per Article: 0.9] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/14/2017] [Accepted: 01/16/2018] [Indexed: 01/06/2023] Open
Abstract
Hibernating 13-lined ground squirrels (Ictidomys tridecemlineatus; TLGS) rank among the most brain hypoperfusion-tolerant mammals known. Herein we provide some evidence of cycling between an epithelial phenotype and a hybrid epithelial/mesenchymal (E/M) phenotype (partial EMT) within the brains of TLGS during each bout of hibernation torpor. During hibernation torpor, expression of the epithelial marker E-cadherin (E-CDH) was reduced, while expression of the well-known mesenchymal markers vimentin and Sox2 were increased. P-cadherin (P-CDH), which has recently been proposed as a marker of intermediate/partial EMT, also increased during torpor, suggesting that a partial EMT may be taking place during hibernation torpor. Members of the miR-200 family and miR-182 cluster and Akt isoforms (Akt1, Akt2), well-known EMT regulators, were also differentially regulated in the TLGS brain during hibernation bouts. Using SHSY5Y cells, we also demonstrate that the Akt1/Akt2 ratio determined the expression levels of miR-200/miR-182 miRNA family members, and that these miRNAs controlled the expression of EMT-related proteins. Accordingly, we propose that such cell state transitions (EMT/MET) may be one of the mechanisms underlying the extraordinary ischemic tolerance of the TLGS brain during hibernation bouts; hibernator brain cells appear to enter reversible states that confer the stress survival characteristics of cancer cells without the risk of neoplastic transformation.
Collapse
Affiliation(s)
- Yang-Ja Lee
- Clinical Investigation Section, Stroke Branch, National Institute of Neurological Disorders and Stroke, National Institutes of Health (NINDS/NIH), Bethesda, MD, United States
| | - Joshua D Bernstock
- Clinical Investigation Section, Stroke Branch, National Institute of Neurological Disorders and Stroke, National Institutes of Health (NINDS/NIH), Bethesda, MD, United States
| | - Dace Klimanis
- Clinical Investigation Section, Stroke Branch, National Institute of Neurological Disorders and Stroke, National Institutes of Health (NINDS/NIH), Bethesda, MD, United States
| | - John M Hallenbeck
- Clinical Investigation Section, Stroke Branch, National Institute of Neurological Disorders and Stroke, National Institutes of Health (NINDS/NIH), Bethesda, MD, United States
| |
Collapse
|