1
|
Volkova T, Simonova O, Perlovich G. Controlling the Solubility, Release Rate and Permeation of Riluzole with Cyclodextrins. Pharmaceutics 2024; 16:757. [PMID: 38931879 PMCID: PMC11206789 DOI: 10.3390/pharmaceutics16060757] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/13/2024] [Revised: 05/31/2024] [Accepted: 05/31/2024] [Indexed: 06/28/2024] Open
Abstract
Riluzole (RLZ), a sodium channel-blocking benzothiazole anticonvulsant BCS class II drug, is very slightly soluble in aqueous medium. To improve aqueous solubility and modulate dissolution rate and membrane permeability, complex formation of RLZ with two cyclodextrin, α-cyclodextrin (α-CD) and sulfobutylether-β-cyclodextrin (SBE-β-CD), was studied. The stability constants demonstrated a greater affinity of SBE-β-CD towards RLZ compared to α-CD. A solubility growth of 1.7-fold and 3.7-fold with α-CD and SBE-β-CD, respectively, was detected in the solutions of 1% cyclodextrins and accompanied by the permeability reduction. For 1% CD solutions, several biopolymers (1% w/v) were tested for the membrane permeability under static conditions. The synergistic positive effect of α-CD and polymer on the solubility accompanied by unchanged permeability was revealed in RLZ/α-CD/PG, RLZ/α-CD/PEG400, and RLZ/α-CD/PEG1000 systems. Solid RLZ/CD complexes were prepared. Dynamic dissolution/permeation experiments for the solid samples disclosed the characteristic features of the release processes and permeation rate through different artificial membranes. The maximal permeation rate was determined across the hydrophilic semi-permeable cellulose membrane followed by the lipophilic PermeaPad barrier (model of intestinal and buccal absorption) and polydimethylsiloxane-polycarbonate membrane (simulating transdermal delivery way). Different mode of the permeation between the membranes was estimated and discussed.
Collapse
Affiliation(s)
| | | | - German Perlovich
- G.A. Krestov Institute of Solution Chemistry RAS, 153045 Ivanovo, Russia; (T.V.); (O.S.)
| |
Collapse
|
2
|
Sharif AP, Habibi K, Bijarpas ZK, Tolami HF, Alkinani TA, Jameh M, Dehkaei AA, Monhaser SK, Daemi HB, Mahmoudi A, Masouleh RS, Salehzadeh A. Cytotoxic Effect of a Novel GaFe2O4@Ag Nanocomposite Synthesized by Scenedesmus obliquus on Gastric Cancer Cell Line and Evaluation of BAX, Bcl-2 and CASP8 Genes Expression. J CLUST SCI 2022. [DOI: 10.1007/s10876-022-02288-5] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 10/18/2022]
|
3
|
Hajializadeh D, Saber AA, Jameh M, Ahang B, Moafy A, Bijarpas ZK, Masouleh RS, Kia MB, Mojdehi SR, Salehzadeh A. Potential of Apoptosis-Inducing by a Novel Bio-synthesized CoFe2O4@Ag Nanocomposite in Gastric Cell Line at the Cellular and Molecular Level. J CLUST SCI 2022. [DOI: 10.1007/s10876-022-02228-3] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/19/2022]
|
4
|
Antitumoral Activities of Curcumin and Recent Advances to ImProve Its Oral Bioavailability. Biomedicines 2021; 9:biomedicines9101476. [PMID: 34680593 PMCID: PMC8533288 DOI: 10.3390/biomedicines9101476] [Citation(s) in RCA: 33] [Impact Index Per Article: 8.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/22/2021] [Revised: 10/05/2021] [Accepted: 10/07/2021] [Indexed: 12/12/2022] Open
Abstract
Curcumin, a main bioactive component of the Curcuma longa L. rhizome, is a phenolic compound that exerts a wide range of beneficial effects, acting as an antimicrobial, antioxidant, anti-inflammatory and anticancer agent. This review summarizes recent data on curcumin's ability to interfere with the multiple cell signaling pathways involved in cell cycle regulation, apoptosis and the migration of several cancer cell types. However, although curcumin displays anticancer potential, its clinical application is limited by its low absorption, rapid metabolism and poor bioavailability. To overcome these limitations, several curcumin-based derivatives/analogues and different drug delivery approaches have been developed. Here, we also report the anticancer mechanisms and pharmacokinetic characteristics of some derivatives/analogues and the delivery systems used. These strategies, although encouraging, require additional in vivo studies to support curcumin clinical applications.
Collapse
|
5
|
Abd-Algaleel SA, Metwally AA, Abdel-Bar HM, Kassem DH, Hathout RM. Synchronizing In Silico, In Vitro, and In Vivo Studies for the Successful Nose to Brain Delivery of an Anticancer Molecule. Mol Pharm 2021; 18:3763-3776. [PMID: 34460250 DOI: 10.1021/acs.molpharmaceut.1c00276] [Citation(s) in RCA: 15] [Impact Index Per Article: 3.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/29/2022]
Abstract
Sesamol is a sesame seed constituent with reported activity against many types of cancer. In this work, two types of nanocarriers, solid lipid nanoparticles (SLNs) and polymeric nanoparticles (PNs), were exploited to improve sesamol efficiency against the glioma cancer cell line. The ability of the proposed systems for efficient brain targeting intranasally was also inspected. By the aid of two docking programs, the virtual loading pattern inside these nanocarriers was matched to the real experimental results. Interactions involved in sesamol-carrier binding were also assessed, followed by a discussion of how different scoring functions account for these interactions. The study is an extension of the computer-assisted drug formulation design series, which represents a promising initiative for an upcoming industrial innovation. The results proved the power of combined in silico tools in predicting members with the highest sesamol payload suitable for delivering a sufficient dose to the brain. Among nine carriers, glyceryl monostearate (GMS) and polycaprolactone (PCL) scored the highest sesamol payload practically and computationally. The EE % was 66.09 ± 0.92 and 61.73 ± 0.47 corresponding to a ΔG (binding energy) of -8.85 ± 0.16 and -5.04 ± 0.11, respectively. Dynamic light scattering evidenced the formation of 215.1 ± 7.2 nm and 414.25 ± 1.6 nm nanoparticles, respectively. Both formulations demonstrated an efficient cytotoxic effect and brain-targeting ability compared to the sesamol solution. This was evidenced by low IC50 (38.50 ± 10.37 μM and 27.81 ± 2.76 μM) and high drug targeting efficiency (7.64 ± 1.89-fold and 13.72 ± 4.1-fold) and direct transport percentages (86.12 ± 3.89 and 92.198 ± 2.09) for GMS-SLNs and PCL-PNs, respectively. The results also showed how different formulations, having different compositions and characteristics, could affect the cytotoxic and targeting ability.
Collapse
Affiliation(s)
| | - Abdelkader A Metwally
- Department of Pharmaceutics and Industrial Pharmacy, Faculty of Pharmacy, Ain Shams University, Cairo 11566, Egypt.,Department of Pharmaceutics, Faculty of Pharmacy, Health Sciences Center, Kuwait University, Safat, 13110 Kuwait, Kuwait
| | - Hend Mohamed Abdel-Bar
- Department of Pharmaceutics, Faculty of Pharmacy, University of Sadat City, Menofia 32897, Egypt
| | - Dina H Kassem
- Department of Biochemistry, Faculty of Pharmacy, Ain Shams University, Cairo 11566, Egypt
| | - Rania M Hathout
- Department of Pharmaceutics and Industrial Pharmacy, Faculty of Pharmacy, Ain Shams University, Cairo 11566, Egypt
| |
Collapse
|
6
|
Mirchandani Y, Patravale VB, S B. Solid lipid nanoparticles for hydrophilic drugs. J Control Release 2021; 335:457-464. [PMID: 34048841 DOI: 10.1016/j.jconrel.2021.05.032] [Citation(s) in RCA: 103] [Impact Index Per Article: 25.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/05/2021] [Revised: 05/21/2021] [Accepted: 05/22/2021] [Indexed: 12/16/2022]
Abstract
Hydrophilic drugs are proficient therapeutic agents however, delivery of these drugs is a difficult task. Hence, developing an efficient drug delivery system may require a multipronged approach. Colloidal drug delivery systems such as emulsions, liposomes, nanoemulsions, polymeric nanoparticles, and niosomes are known to enhance drug entrapment, bioavailability, and to improve the pharmacokinetic profiles of hydrophilic drugs. However, issues such as drug leakage and burst release are frequently reported with such systems. Solid lipid nanoparticles (SLNs) were developed as an alternative to the traditional colloidal drug carriers to overcome these issues. Although SLNs have been widely studied as carriers for hydrophobic drugs, delivery of hydrophilic molecules remains a challenge. Hence, the current review focuses on different approaches that have been used for the delivery of hydrophilic drugs using SLNs. It not only discusses various modifications in the traditional methods for the synthesis but also emphasizes modifications of the hydrophilic drugs itself that can help in their efficient entrapment into SLNs drug carriers.
Collapse
Affiliation(s)
- Yashika Mirchandani
- Sunandan Divatia School of Science, NMIMS (Deemed-to-be) University, 3rd Floor, Bhaidas Sabhagriha Building, Bhaktivedanta Swami Marg, Vile Parle (W), Mumbai 400056, India
| | - Vandana B Patravale
- Department of Pharmaceutical Sciences and Technology, Institute of Chemical Technology, Matunga, Mumbai 400019. India
| | - Brijesh S
- Sunandan Divatia School of Science, NMIMS (Deemed-to-be) University, 3rd Floor, Bhaidas Sabhagriha Building, Bhaktivedanta Swami Marg, Vile Parle (W), Mumbai 400056, India.
| |
Collapse
|
7
|
Volkova TV, Perlovich GL. Comparative analysis of solubilization and complexation characteristics for new antifungal compound with cyclodextrins. Impact of cyclodextrins on distribution process. Eur J Pharm Sci 2020; 154:105531. [PMID: 32871213 DOI: 10.1016/j.ejps.2020.105531] [Citation(s) in RCA: 8] [Impact Index Per Article: 1.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/23/2020] [Revised: 08/21/2020] [Accepted: 08/24/2020] [Indexed: 11/24/2022]
Abstract
From a pharmaceutical standpoint, cyclodextrin-based products have deservedly gained substantial market share due to their ability to improve undesirable physicochemical properties of drugs. In this study the solubility of a potenial antifungal compound (L-173) has been improved essentially by addition of β-cyclodextrin (β-CD), 2-hydroxypropyl-β-cyclodextrin (HP-β-CD), and heptakis(2,6-di-O-methyl)-β-cyclodextrin (DM-β-CD) in aqueous solutions (pH 2.0 and pH 7.4) at 298.15-313.15 K. The phase solubility diagrams were constructed. The stoichiometric ratio of the complexes was determined as 1:1. The stability constants of L-173 with all three CDs in acidic medium belong to the range optimal for the improvement of the bioavailability of hydrophobic drugs. DM-β-CD was assigned as the best solubilizer for L-173. The driving forces of the solubilization and complexation process were revealed by evaluating the thermodynamic parameters. The distribution behavior of L-173 in the 1-octanol/buffer and 1-hexane buffer systems at pH 2.0 and pH 7.4 in the presence of different CDs concentrations was studied. The reduction of the distribution coefficients with the increasing of CD concentration was detected due to complex formation. Based on the analysis of the solubility-distribution relationship, the L-173 partitioning between the biological tissues and penetration through the biological membranes in case when cyclodextrins are used as solubilizers was evaluated, and the optimal CD concentrations were proposed.
Collapse
Affiliation(s)
- Tatyana V Volkova
- G.A. Krestov Institute of Solution Chemistry RAS, 153045 Ivanovo, Russia
| | - German L Perlovich
- G.A. Krestov Institute of Solution Chemistry RAS, 153045 Ivanovo, Russia..
| |
Collapse
|
8
|
|
9
|
Kunz-Schughart LA, Dubrovska A, Peitzsch C, Ewe A, Aigner A, Schellenburg S, Muders MH, Hampel S, Cirillo G, Iemma F, Tietze R, Alexiou C, Stephan H, Zarschler K, Vittorio O, Kavallaris M, Parak WJ, Mädler L, Pokhrel S. Nanoparticles for radiooncology: Mission, vision, challenges. Biomaterials 2016; 120:155-184. [PMID: 28063356 DOI: 10.1016/j.biomaterials.2016.12.010] [Citation(s) in RCA: 71] [Impact Index Per Article: 7.9] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/21/2016] [Revised: 12/08/2016] [Accepted: 12/09/2016] [Indexed: 12/29/2022]
Abstract
Cancer is one of the leading non-communicable diseases with highest mortality rates worldwide. About half of all cancer patients receive radiation treatment in the course of their disease. However, treatment outcome and curative potential of radiotherapy is often impeded by genetically and/or environmentally driven mechanisms of tumor radioresistance and normal tissue radiotoxicity. While nanomedicine-based tools for imaging, dosimetry and treatment are potential keys to the improvement of therapeutic efficacy and reducing side effects, radiotherapy is an established technique to eradicate the tumor cells. In order to progress the introduction of nanoparticles in radiooncology, due to the highly interdisciplinary nature, expertise in chemistry, radiobiology and translational research is needed. In this report recent insights and promising policies to design nanotechnology-based therapeutics for tumor radiosensitization will be discussed. An attempt is made to cover the entire field from preclinical development to clinical studies. Hence, this report illustrates (1) the radio- and tumor-biological rationales for combining nanostructures with radiotherapy, (2) tumor-site targeting strategies and mechanisms of cellular uptake, (3) biological response hypotheses for new nanomaterials of interest, and (4) challenges to translate the research findings into clinical trials.
Collapse
Affiliation(s)
- Leoni A Kunz-Schughart
- OncoRay-National Center for Radiation Research in Oncology, Faculty of Medicine and University Hospital Carl Gustav Carus, Technische Universität Dresden and Helmholtz-Zentrum Dresden-Rossendorf, Dresden, Germany
| | - Anna Dubrovska
- OncoRay-National Center for Radiation Research in Oncology, Faculty of Medicine and University Hospital Carl Gustav Carus, Technische Universität Dresden and Helmholtz-Zentrum Dresden-Rossendorf, Dresden, Germany
| | - Claudia Peitzsch
- OncoRay-National Center for Radiation Research in Oncology, Faculty of Medicine and University Hospital Carl Gustav Carus, Technische Universität Dresden and Helmholtz-Zentrum Dresden-Rossendorf, Dresden, Germany
| | - Alexander Ewe
- Rudolf-Boehm-Institute for Pharmacology and Toxicology, Clinical Pharmacology, University of Leipzig, Germany
| | - Achim Aigner
- Rudolf-Boehm-Institute for Pharmacology and Toxicology, Clinical Pharmacology, University of Leipzig, Germany
| | - Samuel Schellenburg
- Institute of Pathology, University Hospital, Carl Gustav Carus, TU Dresden, Germany
| | - Michael H Muders
- Institute of Pathology, University Hospital, Carl Gustav Carus, TU Dresden, Germany
| | - Silke Hampel
- Leibniz Institute of Solid State and Material Research Dresden, 01171 Dresden, Germany
| | - Giuseppe Cirillo
- Department of Pharmacy, Health and Nutritional Sciences, University of Calabria, 87036 Rende, CS, Italy
| | - Francesca Iemma
- Department of Pharmacy, Health and Nutritional Sciences, University of Calabria, 87036 Rende, CS, Italy
| | - Rainer Tietze
- ENT-Department, Section for Experimental Oncology and Nanomedicine (SEON), Else Kröner-Fresenius Professorship, University Hospital Erlangen, Erlangen, Germany
| | - Christoph Alexiou
- ENT-Department, Section for Experimental Oncology and Nanomedicine (SEON), Else Kröner-Fresenius Professorship, University Hospital Erlangen, Erlangen, Germany
| | - Holger Stephan
- Helmholtz-Zentrum Dresden-Rossendorf, Institute of Radiopharmaceutical Cancer Research, 01314 Dresden, Germany
| | - Kristof Zarschler
- Helmholtz-Zentrum Dresden-Rossendorf, Institute of Radiopharmaceutical Cancer Research, 01314 Dresden, Germany
| | - Orazio Vittorio
- Children's Cancer Institute Australia, ARC Centre of Excellence in Convergent Bio-Nano Science and Technology and Australian Centre for NanoMedicine, Sydney, UNSW, Australia
| | - Maria Kavallaris
- Children's Cancer Institute Australia, ARC Centre of Excellence in Convergent Bio-Nano Science and Technology and Australian Centre for NanoMedicine, Sydney, UNSW, Australia
| | - Wolfgang J Parak
- Fachbereich Physik, Philipps Universität Marburg, 35037 Marburg, Germany; CIC Biomagune, 20009 San Sebastian, Spain
| | - Lutz Mädler
- Foundation Institute of Materials Science (IWT), Department of Production Engineering, University of Bremen, 28359 Bremen, Germany
| | - Suman Pokhrel
- Foundation Institute of Materials Science (IWT), Department of Production Engineering, University of Bremen, 28359 Bremen, Germany.
| |
Collapse
|
10
|
Tietze R, Zaloga J, Unterweger H, Lyer S, Friedrich RP, Janko C, Pöttler M, Dürr S, Alexiou C. Magnetic nanoparticle-based drug delivery for cancer therapy. Biochem Biophys Res Commun 2015; 468:463-70. [DOI: 10.1016/j.bbrc.2015.08.022] [Citation(s) in RCA: 232] [Impact Index Per Article: 23.2] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/24/2015] [Accepted: 08/05/2015] [Indexed: 01/10/2023]
|
11
|
Lyer S, Tietze R, Unterweger H, Zaloga J, Singh R, Matuszak J, Poettler M, Friedrich RP, Duerr S, Cicha I, Janko C, Alexiou C. Nanomedical innovation: the SEON-concept for an improved cancer therapy with magnetic nanoparticles. Nanomedicine (Lond) 2015; 10:3287-304. [PMID: 26472623 DOI: 10.2217/nnm.15.159] [Citation(s) in RCA: 21] [Impact Index Per Article: 2.1] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/11/2022] Open
Abstract
Nanomedicine offers tremendous opportunities for the development of novel therapeutic and diagnostic tools. During the last decades, extensive knowledge was gained about stabilizing and the coating of nanoparticles, their functionalization for drug binding and drug release and possible strategies for therapies and diagnostics of different diseases. Most recently, more and more emphasis has been placed on nanotoxicology and nanosafety aspects. The section of experimental oncology and nanomedicine developed a concept for translating this knowledge into clinical application of magnetic drug targeting for the treatment of cancer and other diseases using superparamagnetic iron oxide nanoparticles. This approach includes reproducible synthesis, detailed characterization, nanotoxicological testing, evaluation in ex vivo models, preclinical animal studies and production of superparamagnetic iron oxide nanoparticles according to good manufacturing practice regulations.
Collapse
Affiliation(s)
- Stefan Lyer
- Department of Otorhinolaryngology, Section of Experimental Oncology & Nanomedicine (SEON), Head & Neck Surgery, Else Kröner-Fresenius-Stiftung-Professorship, University Hospital Erlangen, Glückstraße 10a, 91054 Erlangen, Germany
| | - Rainer Tietze
- Department of Otorhinolaryngology, Section of Experimental Oncology & Nanomedicine (SEON), Head & Neck Surgery, Else Kröner-Fresenius-Stiftung-Professorship, University Hospital Erlangen, Glückstraße 10a, 91054 Erlangen, Germany
| | - Harald Unterweger
- Department of Otorhinolaryngology, Section of Experimental Oncology & Nanomedicine (SEON), Head & Neck Surgery, Else Kröner-Fresenius-Stiftung-Professorship, University Hospital Erlangen, Glückstraße 10a, 91054 Erlangen, Germany
| | - Jan Zaloga
- Department of Otorhinolaryngology, Section of Experimental Oncology & Nanomedicine (SEON), Head & Neck Surgery, Else Kröner-Fresenius-Stiftung-Professorship, University Hospital Erlangen, Glückstraße 10a, 91054 Erlangen, Germany
| | - Raminder Singh
- Department of Otorhinolaryngology, Section of Experimental Oncology & Nanomedicine (SEON), Head & Neck Surgery, Else Kröner-Fresenius-Stiftung-Professorship, University Hospital Erlangen, Glückstraße 10a, 91054 Erlangen, Germany
| | - Jasmin Matuszak
- Department of Otorhinolaryngology, Section of Experimental Oncology & Nanomedicine (SEON), Head & Neck Surgery, Else Kröner-Fresenius-Stiftung-Professorship, University Hospital Erlangen, Glückstraße 10a, 91054 Erlangen, Germany
| | - Marina Poettler
- Department of Otorhinolaryngology, Section of Experimental Oncology & Nanomedicine (SEON), Head & Neck Surgery, Else Kröner-Fresenius-Stiftung-Professorship, University Hospital Erlangen, Glückstraße 10a, 91054 Erlangen, Germany
| | - Ralf P Friedrich
- Department of Otorhinolaryngology, Section of Experimental Oncology & Nanomedicine (SEON), Head & Neck Surgery, Else Kröner-Fresenius-Stiftung-Professorship, University Hospital Erlangen, Glückstraße 10a, 91054 Erlangen, Germany
| | - Stephan Duerr
- Department of Otorhinolaryngology, Section of Experimental Oncology & Nanomedicine (SEON), Head & Neck Surgery, Else Kröner-Fresenius-Stiftung-Professorship, University Hospital Erlangen, Glückstraße 10a, 91054 Erlangen, Germany.,Department of Otorhinolaryngology, Section of Phoniatrics & Pediatric Audiology, Head & Neck Surgery, University Hospital Erlangen, Bohlenplatz 21, 91054 Erlangen, Germany
| | - Iwona Cicha
- Department of Otorhinolaryngology, Section of Experimental Oncology & Nanomedicine (SEON), Head & Neck Surgery, Else Kröner-Fresenius-Stiftung-Professorship, University Hospital Erlangen, Glückstraße 10a, 91054 Erlangen, Germany
| | - Christina Janko
- Department of Otorhinolaryngology, Section of Experimental Oncology & Nanomedicine (SEON), Head & Neck Surgery, Else Kröner-Fresenius-Stiftung-Professorship, University Hospital Erlangen, Glückstraße 10a, 91054 Erlangen, Germany
| | - Christoph Alexiou
- Department of Otorhinolaryngology, Section of Experimental Oncology & Nanomedicine (SEON), Head & Neck Surgery, Else Kröner-Fresenius-Stiftung-Professorship, University Hospital Erlangen, Glückstraße 10a, 91054 Erlangen, Germany
| |
Collapse
|