1
|
Katsiaunis A, Lipner SR. Devices for treatment of nail psoriasis. Ital J Dermatol Venerol 2024; 159:561-565. [PMID: 39422529 DOI: 10.23736/s2784-8671.24.07919-2] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 10/19/2024]
Abstract
INTRODUCTION Nail psoriasis (NP) affects a significant proportion of cutaneous psoriasis patients, often leading to functional impairment and psychosocial distress. Despite available treatment options, challenges persist in achieving efficacy and with drug delivery, prompting investigation into novel therapeutic devices. EVIDENCE ACQUISITION A literature search was performed using the PubMed database for devices and lasers for NP on 17 October 2023 using the following search terms: device OR laser AND "nail psoriasis." Twenty-two articles were included describing treatment with pulsed dye laser, fractional carbon dioxide (CO2) laser, long-pulsed Nd:YAG laser, excimer laser, photodynamic therapy, intense pulsed light, and microneedling device. EVIDENCE SYNTHESIS While some recent studies on use of therapeutic devices have shown promising results for NP treatment, current evidence supports an algorithmic approach including topical therapies, intralesional kenalog injections, and systemic therapies, depending on number of nails affected, presence of psoriatic arthritis, cutaneous psoriasis, comorbidities, and effect on quality of life. Laser therapy, although promising, requires further validation through extensive randomized trials before its inclusion in treatment regimens. CONCLUSIONS These exploratory findings highlight emerging therapies that may expand the spectrum of options available. Use of lasers for NP treatment could provide dermatologists with a broader arsenal for customizing treatment plans that address individual patient needs, taking into account comfort, cost, and compliance to enhance overall patient outcomes.
Collapse
Affiliation(s)
| | - Shari R Lipner
- Department of Dermatology, Weill Cornell Medicine, New York City, NY, USA -
| |
Collapse
|
2
|
Nikam RV, Gowtham M, More PS, Shinde AS. Current and emerging prospects in the psoriatic treatment. Int Immunopharmacol 2023; 120:110331. [PMID: 37210912 DOI: 10.1016/j.intimp.2023.110331] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/10/2023] [Revised: 05/06/2023] [Accepted: 05/09/2023] [Indexed: 05/23/2023]
Abstract
Psoriasis is an autoimmune chronic disorder that causes inflammation and a scaly epidermis. The exact pathogenesis of the disease is not known yet. According to the studies, psoriasis is considered an immune-mediated disease. Until now it is believed that genetic and environmental factors are responsible for the disease. There are many comorbidities associated with psoriasis which increases difficulties as patients in some cases get addicted to drugs, alcohol, and smoking which reduces their quality of life. The patient may face social ignorance or suicidal thoughts which may arise in the patient's mind. Due to the undefined trigger of the disease, the treatment is not fully established but by considering the severe impact of the disease researchers are focusing on novel approaches for successful treatment. which has succeeded to a large extent. Here we review pathogenesis, problems faced by psoriatic patients, the need for the development of new treatments over conventional therapies, and the history of psoriatic treatments. We thoroughly focus on emerging treatments like biologics, biosimilars, and small molecules which are now showing more efficacy and safety than conventional treatments. Also, this review article discusses novel approaches which are now in research such as drug repurposing, treatment by stimulation of the vagus nerve, regulation of microbiota, and autophagy for improving disease conditions.
Collapse
Affiliation(s)
- Rutuja Vilas Nikam
- Department of Pharmaceutics, Sanjivani College of Pharmaceutical Education and Research, At Sahajanandnagar, Post-Shinganapur, Tal-Kopargaon, Dist-Ahmednagar, Maharashtra 423603, India.
| | - M Gowtham
- Department of Pharmaceutics, Sanjivani College of Pharmaceutical Education and Research, At Sahajanandnagar, Post-Shinganapur, Tal-Kopargaon, Dist-Ahmednagar, Maharashtra 423603, India.
| | - Pratiksha Sanjay More
- Department of Pharmaceutics, Sanjivani College of Pharmaceutical Education and Research, At Sahajanandnagar, Post-Shinganapur, Tal-Kopargaon, Dist-Ahmednagar, Maharashtra 423603, India.
| | - Anuja Sanjay Shinde
- Department of Pharmaceutics, Sanjivani College of Pharmaceutical Education and Research, At Sahajanandnagar, Post-Shinganapur, Tal-Kopargaon, Dist-Ahmednagar, Maharashtra 423603, India.
| |
Collapse
|
3
|
Microneedles as a momentous platform for psoriasis therapy and diagnosis: A state-of-the-art review. Int J Pharm 2023; 632:122591. [PMID: 36626973 DOI: 10.1016/j.ijpharm.2023.122591] [Citation(s) in RCA: 16] [Impact Index Per Article: 8.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/20/2022] [Revised: 12/20/2022] [Accepted: 01/04/2023] [Indexed: 01/09/2023]
Abstract
Psoriasis is a chronic, autoimmune, and non-communicable skin disease with a worldwide prevalence rate of 2-3%, creating an economic burden on global health. Some significant risk factors associated with psoriasis include genetic predisposition, pathogens, stress, medications, etc. In addition, most patients with psoriasis should also deal with comorbidities such as psoriatic arthritis, inflammatory bowel diseases, cardiovascular diseases, and psychological conditions, including suicidal thoughts. Based on its severity, the treatment approach for psoriasis is categorised into three types, i.e., topical therapy, systemic therapy, and phototherapy. Topical therapy for mild-to-moderate psoriasis faces several issues, such as poor skin permeability, low skin retention of drug formulation, greasy texture of topical vehicle, lack of controlled release, and so on. On the other arrow, systemic therapy via an oral or parenteral route of drug administration involves numerous drawbacks, including first-pass hepatic metabolism, hepatotoxicity, gastrointestinal disturbances, needle pain and phobia, and requirement of healthcare professional to administer the drug. To overcome these limitations, researchers devised a microneedle-based drug delivery system for treating mild-to-moderate and moderate-to-severe psoriasis. A single microneedle system can deliver the anti-psoriatic drugs either locally (topical) or systemically (transdermal) by adjusting the needle height without involving any pain. In this contemplate, the current review provides concise information on the pathophysiology, risk factors, and comorbidities of psoriasis, followed by their current treatment approaches and limitations. Further, it meticulously discusses the potential of microneedles in psoriasis therapy and diagnosis, along with descriptions of their patents and clinical trials.
Collapse
|
4
|
De Decker I, Logé T, Hoeksema H, Speeckaert MM, Blondeel P, Monstrey S, Claes KEY. Dissolving microneedles for effective and painless intradermal drug delivery in various skin conditions: A systematic review. J Dermatol 2023; 50:422-444. [PMID: 36700529 DOI: 10.1111/1346-8138.16732] [Citation(s) in RCA: 4] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/16/2022] [Revised: 12/21/2022] [Accepted: 01/05/2023] [Indexed: 01/27/2023]
Abstract
Intra- and transdermal administration of substances via percutaneous injection is effective but considered painful, and inconvenient in addition to bringing forth biohazardous waste material. In contrast to injection, topical drug application, which includes ointments, creams and lotions, increases the local drug load. Moreover, it has reduced side effects compared to systemic administration. However, the epidermis poses a barrier to high molecular weight substances, limiting the delivery efficiency. Dissolving microneedles (DMN) are hydrophilic, mostly polymer-based constructs that are capable of skin penetration and were developed to provide painless and direct dermal drug delivery. This systematic review provides a comprehensive overview of the available clinical evidence for the use of DMN to treat various skin conditions. According to the PRISMA statement, a systematic search for articles on the use of DMN for dermatological indications was conducted on three different databases (Pubmed, Embase, and the Cochrane library). Only human clinical trials were considered. Qualitative assessment was done by two separate reviewers using the Cochrane risk of bias (RoB 2) and Chambers' criteria assessment tools. The search yielded 1090 articles. After deduplication and removal of ineligible records, 889 records were screened on title and abstract. Full text screening was done for 18 articles and ultimately 17 articles were included of which 15 were randomized controlled trials and two were case series. The quality assessment showed that the majority of included studies had low to no risk of bias. Clinical data supports that DMN are an excellent, effective, and pain free drug delivery method for multiple dermatological disorders including skin aging, hyperpigmentation, psoriasis, warts, and keloids by supplying a painless and effective vehicle for intradermal/intralesional drug administration. Microneedle technology provides a promising non- to minimally-invasive alternative to percutaneous injection.
Collapse
Affiliation(s)
- Ignace De Decker
- Burn Center, Ghent University Hospital, Ghent, Belgium.,Department of Plastic Surgery, Ghent University Hospital, Ghent, Belgium
| | - Thomas Logé
- Faculty of Medicine and Health Sciences, Ghent University, Ghent, Belgium
| | - Henk Hoeksema
- Burn Center, Ghent University Hospital, Ghent, Belgium.,Department of Plastic Surgery, Ghent University Hospital, Ghent, Belgium
| | | | - Phillip Blondeel
- Burn Center, Ghent University Hospital, Ghent, Belgium.,Department of Plastic Surgery, Ghent University Hospital, Ghent, Belgium
| | - Stan Monstrey
- Burn Center, Ghent University Hospital, Ghent, Belgium.,Department of Plastic Surgery, Ghent University Hospital, Ghent, Belgium
| | - Karel E Y Claes
- Burn Center, Ghent University Hospital, Ghent, Belgium.,Department of Plastic Surgery, Ghent University Hospital, Ghent, Belgium
| |
Collapse
|
5
|
De Decker I, Szabó A, Hoeksema H, Speeckaert M, Delanghe JR, Blondeel P, Van Vlierberghe S, Monstrey S, Claes KEY. Treatment of Hypertrophic Scars with Corticoid-Embedded Dissolving Microneedles. J Burn Care Res 2023; 44:158-169. [PMID: 36318807 DOI: 10.1093/jbcr/irac165] [Citation(s) in RCA: 5] [Impact Index Per Article: 2.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/22/2022] [Indexed: 11/23/2022]
Abstract
Hypertrophic scarring (HTS) is frequently observed after deep dermal and full-thickness skin defects. Local drug delivery in HTS has been shown more effective compared to other (minimally) invasive treatments. Disadvantages being operator-dependency and non-uniform drug distribution. Moreover, injections are painful and difficult when confronted with extensive scars or HTS in children. Corticoid-embedded dissolving microneedles (CEDMN) were developed that provide painless skin penetration and direct dermal drug delivery. Hyaluronic acid-based DMN and CEDMN patches were utilized. Structural analysis was performed via nuclear magnetic resonance (NMR) spectroscopy while gel permeation chromatography (GPC) was applied to determine chain length (molar mass) and dispersity of hyaluronic acid. Mechanical properties were evaluated by compression testing. Five burn victims with HTS were included. For each individual, three comparable scars were chosen. One control scar was left untreated. Two scars were treated with either 600 or 800 µm CEDMN patches. Patients were treated monthly for 4 months. Treatment with 800 µm CEDMN was initiated after 8 weeks. Assessor-blinded POSAS was registered. Hydration, evaporation, color and elasticity were recorded. The physico-chemical characterization suggests that the mechanical properties enable skin penetration and adequate drug delivery. Patients experienced the therapy as painless. According to the POSAS, all scars improved over time. However, the scars that were treated with CEDMN patches improved faster and with increased increment. The 800 µm CEDMN ensured the fastest POSAS-decrease. Hyaluronic acid-based CEDMN patches are valuable alternatives to intracicatrical injections, as they offer a painless and effective method for administering corticosteroids in HTS.
Collapse
Affiliation(s)
- Ignace De Decker
- Burn Center, Ghent University Hospital, C. Heymanslaan 10, 9000, Belgium.,Department of Plastic Surgery, Ghent University Hospital, C. Heymanslaan 10, 9000, Belgium
| | - Anna Szabó
- Polymer Chemistry and Biomaterials Group, Center of Macromolecular Chemistry, Department of Organic and Macromolecular Chemistry, Ghent University, Krijgslaan 281 S4, 9000, Belgium
| | - Henk Hoeksema
- Burn Center, Ghent University Hospital, C. Heymanslaan 10, 9000, Belgium.,Department of Plastic Surgery, Ghent University Hospital, C. Heymanslaan 10, 9000, Belgium
| | | | - Joris R Delanghe
- Department of Diagnostic Sciences, Ghent University Hospital, C. Heymanslaan 10, 9000, Belgium
| | - Phillip Blondeel
- Burn Center, Ghent University Hospital, C. Heymanslaan 10, 9000, Belgium.,Department of Plastic Surgery, Ghent University Hospital, C. Heymanslaan 10, 9000, Belgium
| | - Sandra Van Vlierberghe
- Polymer Chemistry and Biomaterials Group, Center of Macromolecular Chemistry, Department of Organic and Macromolecular Chemistry, Ghent University, Krijgslaan 281 S4, 9000, Belgium
| | - Stan Monstrey
- Burn Center, Ghent University Hospital, C. Heymanslaan 10, 9000, Belgium.,Department of Plastic Surgery, Ghent University Hospital, C. Heymanslaan 10, 9000, Belgium
| | - Karel E Y Claes
- Burn Center, Ghent University Hospital, C. Heymanslaan 10, 9000, Belgium.,Department of Plastic Surgery, Ghent University Hospital, C. Heymanslaan 10, 9000, Belgium
| |
Collapse
|
6
|
Chen A, Luo Y, Xu J, Guan X, He H, Xuan X, Wu J. Latest on biomaterial-based therapies for topical treatment of psoriasis. J Mater Chem B 2022; 10:7397-7417. [PMID: 35770701 DOI: 10.1039/d2tb00614f] [Citation(s) in RCA: 6] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/21/2022]
Abstract
Psoriasis is an autoimmune inflammatory disease which is fundamentally different from dermatitis. Its treatments include topical medications and systemic drugs depending on different stages of the disease. However, these commonly used therapies are falling far short of clinical needs due to various drawbacks. More precise therapeutic strategies with minimized side effects and improved compliance are highly demanded. Recently, the rapid development of biomaterial-based therapies has made it possible and promising to attain topical psoriasis treatment. In this review, we briefly describe the significance and challenges of the topical treatment of psoriasis and emphatically overview the latest progress in novel biomaterial-based topical therapies for psoriasis including microneedles, nanoparticles, nanofibers, and hydrogels. Current clinical trials related to each biomaterial are also summarized and discussed.
Collapse
Affiliation(s)
- Anqi Chen
- Department of Dermatology, The First Affiliated Hospital of Wenzhou Medical University, Wenzhou, 325000, China. .,School of Pharmaceutical Sciences, Key Laboratory of Biotechnology and Pharmaceutical Engineering, Wenzhou Medical University, Wenzhou, 325035, China
| | - Yuting Luo
- School of Pharmaceutical Sciences, Key Laboratory of Biotechnology and Pharmaceutical Engineering, Wenzhou Medical University, Wenzhou, 325035, China
| | - Jie Xu
- School of Pharmaceutical Sciences, Key Laboratory of Biotechnology and Pharmaceutical Engineering, Wenzhou Medical University, Wenzhou, 325035, China
| | - Xueran Guan
- School of Pharmaceutical Sciences, Key Laboratory of Biotechnology and Pharmaceutical Engineering, Wenzhou Medical University, Wenzhou, 325035, China
| | - Huacheng He
- College of Chemistry and Materials Engineering, Wenzhou University, Wenzhou, 325035, China.
| | - Xuan Xuan
- Department of Dermatology, The First Affiliated Hospital of Wenzhou Medical University, Wenzhou, 325000, China.
| | - Jiang Wu
- Department of Dermatology, The First Affiliated Hospital of Wenzhou Medical University, Wenzhou, 325000, China. .,School of Pharmaceutical Sciences, Key Laboratory of Biotechnology and Pharmaceutical Engineering, Wenzhou Medical University, Wenzhou, 325035, China
| |
Collapse
|