1
|
Liu YF, Tian Y, Chen XF, Zhang C, Huang L. Role of osteokines in atherosclerosis. Cell Biochem Funct 2024; 42:e4107. [PMID: 39154288 DOI: 10.1002/cbf.4107] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/21/2024] [Revised: 06/03/2024] [Accepted: 08/04/2024] [Indexed: 08/19/2024]
Abstract
Despite their diverse physiologies and roles, the heart, skeletal muscles, and smooth muscles all derive from a common embryonic source as bones. Moreover, bone tissue, skeletal and smooth muscles, and the heart share conserved signaling pathways. The maintenance of skeletal health is precisely regulated by osteocytes, osteoblasts, and osteoclasts through coordinated secretion of bone-derived factors known as osteokines. Increasing evidence suggests the involvement of osteokines in regulating atherosclerotic vascular disease. Therefore, this review aims to examine the evidence for the role of osteokines in atherosclerosis development and progression comprehensively. Specifically discussed are extensively studied osteokines in atherosclerosis such as osteocalcin, osteopontin, osteoprotegerin, and fibroblast growth factor 23. Additionally, we highlighted the effects of exercise on modulating these key regulators derived from bone tissue metabolism. We believe that gaining an enhanced understanding of how osteocalcin contributes to the process of atherosclerosis will enable us to develop targeted and comprehensive therapeutic strategies against diseases associated with its progression.
Collapse
Affiliation(s)
- Yi-Fan Liu
- Institute of Translational Medicine, School of Basic Medical, Hengyang Medical School, University of South China, Hengyang, Hunan, China
| | - Yuan Tian
- Institute of Cardiovascular Disease, Key Lab for Arteriosclerology of Hunan province, Hengyang Medical School, University of South China, Hengyang, Hunan, People's Republic of China
| | - Xiao-Fang Chen
- Institute of Translational Medicine, School of Basic Medical, Hengyang Medical School, University of South China, Hengyang, Hunan, China
| | - Chi Zhang
- Institute of Cardiovascular Disease, Key Lab for Arteriosclerology of Hunan province, Hengyang Medical School, University of South China, Hengyang, Hunan, People's Republic of China
| | - Liang Huang
- Institute of Translational Medicine, School of Basic Medical, Hengyang Medical School, University of South China, Hengyang, Hunan, China
| |
Collapse
|
2
|
Deng X, Wang J, Yu S, Tan S, Yu T, Xu Q, Chen N, Zhang S, Zhang M, Hu K, Xiao Z. Advances in the treatment of atherosclerosis with ligand-modified nanocarriers. EXPLORATION (BEIJING, CHINA) 2024; 4:20230090. [PMID: 38939861 PMCID: PMC11189587 DOI: 10.1002/exp.20230090] [Citation(s) in RCA: 5] [Impact Index Per Article: 5.0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Figures] [Subscribe] [Scholar Register] [Received: 07/07/2023] [Accepted: 11/08/2023] [Indexed: 06/29/2024]
Abstract
Atherosclerosis, a chronic disease associated with metabolism, poses a significant risk to human well-being. Currently, existing treatments for atherosclerosis lack sufficient efficiency, while the utilization of surface-modified nanoparticles holds the potential to deliver highly effective therapeutic outcomes. These nanoparticles can target and bind to specific receptors that are abnormally over-expressed in atherosclerotic conditions. This paper reviews recent research (2018-present) advances in various ligand-modified nanoparticle systems targeting atherosclerosis by specifically targeting signature molecules in the hope of precise treatment at the molecular level and concludes with a discussion of the challenges and prospects in this field. The intention of this review is to inspire novel concepts for the design and advancement of targeted nanomedicines tailored specifically for the treatment of atherosclerosis.
Collapse
Affiliation(s)
- Xiujiao Deng
- Department of PharmacyThe First Affiliated Hospital of Jinan UniversityGuangzhouChina
- The Guangzhou Key Laboratory of Basic and Translational Research on Chronic DiseasesJinan UniversityGuangzhouChina
- Provincial Key Laboratory of New Drug Screening, School of Pharmaceutical SciencesSouthern Medical UniversityGuangzhouChina
| | - Jinghao Wang
- Department of PharmacyThe First Affiliated Hospital of Jinan UniversityGuangzhouChina
- The Guangzhou Key Laboratory of Basic and Translational Research on Chronic DiseasesJinan UniversityGuangzhouChina
| | - Shanshan Yu
- Department of PharmacyZhujiang HospitalSouthern Medical UniversityGuangzhouChina
| | - Suiyi Tan
- Provincial Key Laboratory of New Drug Screening, School of Pharmaceutical SciencesSouthern Medical UniversityGuangzhouChina
| | - Tingting Yu
- Department of PharmacyThe First Affiliated Hospital of Jinan UniversityGuangzhouChina
- The Guangzhou Key Laboratory of Basic and Translational Research on Chronic DiseasesJinan UniversityGuangzhouChina
| | - Qiaxin Xu
- Department of PharmacyThe First Affiliated Hospital of Jinan UniversityGuangzhouChina
- The Guangzhou Key Laboratory of Basic and Translational Research on Chronic DiseasesJinan UniversityGuangzhouChina
| | - Nenghua Chen
- Department of PharmacyThe First Affiliated Hospital of Jinan UniversityGuangzhouChina
- The Guangzhou Key Laboratory of Basic and Translational Research on Chronic DiseasesJinan UniversityGuangzhouChina
| | - Siqi Zhang
- State Key Laboratory of Bioactive Substance and Function of Natural Medicines, Institute of Materia MedicaChinese Academy of Medical Sciences and Peking Union Medical CollegeBeijingChina
| | - Ming‐Rong Zhang
- Department of Advanced Nuclear Medicine Sciences, Institute of Quantum Medical, ScienceNational Institutes for Quantum Science and TechnologyChibaJapan
| | - Kuan Hu
- State Key Laboratory of Bioactive Substance and Function of Natural Medicines, Institute of Materia MedicaChinese Academy of Medical Sciences and Peking Union Medical CollegeBeijingChina
- Department of Advanced Nuclear Medicine Sciences, Institute of Quantum Medical, ScienceNational Institutes for Quantum Science and TechnologyChibaJapan
| | - Zeyu Xiao
- The Guangzhou Key Laboratory of Basic and Translational Research on Chronic DiseasesJinan UniversityGuangzhouChina
- The Guangzhou Key Laboratory of Molecular and Functional Imaging for Clinical TranslationJinan UniversityGuangzhouChina
| |
Collapse
|
3
|
Al Zein M, Zein O, Diab R, Dimachkie L, Sahebkar A, Al-Asmakh M, Kobeissy F, Eid AH. Intermittent fasting favorably modulates adipokines and potentially attenuates atherosclerosis. Biochem Pharmacol 2023; 218:115876. [PMID: 37871879 DOI: 10.1016/j.bcp.2023.115876] [Citation(s) in RCA: 8] [Impact Index Per Article: 8.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/19/2023] [Revised: 10/19/2023] [Accepted: 10/20/2023] [Indexed: 10/25/2023]
Abstract
Adipose tissue is now recognized as an endocrine organ that secretes bioactive molecules called adipokines. These biomolecules regulate key physiological functions, including insulin sensitivity, energy metabolism, appetite regulation, endothelial function and immunity. Dysregulated secretion of adipokines is intimately associated with obesity, and translates into increased risk of obesity-related cardiovasculo-metabolic diseases. In particular, emerging evidence suggests that adipokine imbalance contributes to the pathogenesis of atherosclerosis. One of the promising diet regimens that is beneficial in the fight against obesity and cardiometabolic disorders is intermittent fasting (IF). Indeed, IF robustly suppresses inflammation, meditates weight loss and mitigates many aspects of the cardiometabolic syndrome. In this paper, we review the main adipokines and their role in atherosclerosis, which remains a major contributor to cardiovascular-associated morbidity and mortality. We further discuss how IF can be employed as an effective management modality for obesity-associated atherosclerosis. By exploring a plethora of the beneficial effects of IF, particularly on inflammatory markers, we present IF as a possible intervention to help prevent atherosclerosis.
Collapse
Affiliation(s)
- Mohammad Al Zein
- Faculty of Medical Sciences, Lebanese University, Hadath, Beirut, Lebanon
| | - Omar Zein
- Faculty of Medicine, American University of Beirut, Beirut, Lebanon
| | - Rawan Diab
- Faculty of Medicine, American University of Beirut, Beirut, Lebanon
| | - Lina Dimachkie
- Faculty of Medicine, American University of Beirut, Beirut, Lebanon
| | - Amirhossein Sahebkar
- Biotechnology Research Center, Pharmaceutical Technology Institute, Mashhad University of Medical Sciences, Mashhad, Iran; Applied Biomedical Research Center, Mashhad University of Medical Sciences, Mashhad, Iran
| | - Maha Al-Asmakh
- Department of Biomedical Sciences, College of Health Sciences, QU Health, Qatar University, Doha, Qatar; Biomedical Research Center, Qatar University, Doha, Qatar
| | - Firas Kobeissy
- Department of Neurobiology and Neuroscience, Morehouse School of Medicine, Atlanta, GA, USA
| | - Ali H Eid
- Department of Basic Medical Sciences, College of Medicine, QU Health, Qatar University, Doha, Qatar.
| |
Collapse
|
4
|
Dabravolski SA, Markin AM, Andreeva ER, Eremin II, Orekhov AN, Melnichenko AA. Emerging role of pericytes in therapy of cardiovascular diseases. Biomed Pharmacother 2022; 156:113928. [DOI: 10.1016/j.biopha.2022.113928] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/31/2022] [Revised: 10/17/2022] [Accepted: 10/24/2022] [Indexed: 11/17/2022] Open
|
5
|
Dabravolski SA, Markin AM, Andreeva ER, Eremin II, Orekhov AN, Melnichenko AA. Molecular Mechanisms Underlying Pathological and Therapeutic Roles of Pericytes in Atherosclerosis. Int J Mol Sci 2022; 23:11663. [PMID: 36232962 PMCID: PMC9570222 DOI: 10.3390/ijms231911663] [Citation(s) in RCA: 9] [Impact Index Per Article: 4.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/02/2022] [Revised: 09/27/2022] [Accepted: 09/28/2022] [Indexed: 11/17/2022] Open
Abstract
Pericytes are multipotent mesenchymal stromal cells playing an active role in angiogenesis, vessel stabilisation, maturation, remodelling, blood flow regulation and are able to trans-differentiate into other cells of the mesenchymal lineage. In this review, we summarised recent data demonstrating that pericytes play a key role in the pathogenesis and development of atherosclerosis (AS). Pericytes are involved in lipid accumulation, inflammation, growth, and vascularization of the atherosclerotic plaque. Decreased pericyte coverage, endothelial and pericyte dysfunction is associated with intraplaque angiogenesis and haemorrhage, calcification and cholesterol clefts deposition. At the same time, pericytes can be used as a novel therapeutic target to promote vessel maturity and stability, thus reducing plaque vulnerability. Finally, we discuss recent studies exploring effective AS treatments with pericyte-mediated anti-atherosclerotic, anti-inflammatory and anti-apoptotic effects.
Collapse
Affiliation(s)
- Siarhei A. Dabravolski
- Department of Biotechnology Engineering, ORT Braude College, Snunit 51, P.O. Box 78, Karmiel 2161002, Israel
| | - Alexander M. Markin
- Petrovsky National Research Center of Surgery, Abrikosovsky Lane, 2, 119991 Moscow, Russia
| | - Elena R. Andreeva
- Laboratory of Cell Physiology, Institute of Biomedical Problems, Russian Academy of Sciences, Khoroshevskoye Shosse, 76a, 123007 Moscow, Russia
| | - Ilya I. Eremin
- Petrovsky National Research Center of Surgery, Abrikosovsky Lane, 2, 119991 Moscow, Russia
| | - Alexander N. Orekhov
- Institute for Atherosclerosis Research, Osennyaya 4-1-207, 121609 Moscow, Russia
| | | |
Collapse
|
6
|
Osteoprotegerin Gene Polymorphisms Are Associated with Subclinical Atherosclerosis in the Mexican Mestizo Population. Diagnostics (Basel) 2022; 12:diagnostics12061433. [PMID: 35741244 PMCID: PMC9221599 DOI: 10.3390/diagnostics12061433] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/12/2022] [Revised: 05/31/2022] [Accepted: 06/06/2022] [Indexed: 11/17/2022] Open
Abstract
Subclinical atherosclerosis (SA) is the presence of coronary calcification in the absence of cardiovascular symptoms, and it usually progresses to atherosclerotic disease. Studies have shown an association of osteoprotegerin gene (OPG) variants with calcification process in cardiovascular diseases; however, to this day there are no studies that evaluate individuals in the asymptomatic stage of atherosclerotic disease. Therefore, the purpose of this study was to analyze the association of four genetic variants and haplotypes of the OPG gene with the development of SA, through TaqMan genotyping assays. We also aimed to identify potential response elements for transcription factors in these genetic variants. The study included 1413 asymptomatic participants (1041 were controls and 372 were individuals with SA). The rs3102735 polymorphism appeared as a protective marker (OR = 0.693; 95% CI = 0.493−0.974; pheterozygote = 0.035; OR = 0.699; 95% CI = 0.496−0.985; pcodominant 1 = 0.040) and two haplotypes were associated with SA, one as a decreased risk: GACC (OR = 0.641, 95% CI = 0.414−0.990, p = 0.045) and another as an increased risk: GACT (OR = 1.208, 95% CI = 1.020−1.431, p = 0.029). Our data suggest a lower risk of SA in rs3102735 C carriers in a representative sample of Mexican mestizo population.
Collapse
|
7
|
Carbone F, Meessen J, Magnoni M, Andreini D, Maggioni AP, Latini R, Montecucco F. Osteopontin as Candidate Biomarker of Coronary Disease despite Low Cardiovascular Risk: Insights from CAPIRE Study. Cells 2022; 11:669. [PMID: 35203321 PMCID: PMC8870389 DOI: 10.3390/cells11040669] [Citation(s) in RCA: 2] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/21/2022] [Revised: 02/02/2022] [Accepted: 02/11/2022] [Indexed: 11/16/2022] Open
Abstract
Stratification according high cardiovascular (CV) risk categories, still represents a clinical challenge. In this analysis of the CAPIRE study (NCT02157662), we investigate whether inflammation could fit between CV risk factors (RFs) and the presence of coronary artery disease (CAD). In total, 544 patients were included and categorized according with the presence of CAD and CV risk factor burden (low/multiple). The primary endpoint was to verify any independent association of neutrophil-related biomarkers with CAD across CV risk categories. The highest values of osteopontin (OPN) were detected in the low RF group and associated with CAD (23.2 vs. 19.4 ng/mL; p = 0.001), although no correlation with plaque extent and/or composition were observed. Conversely, myeloperoxidase (MPO) and resistin did not differ by CAD presence. Again, OPN was identified as independent variable associated with CAD but only in the low RF group (adjOR 8.42 [95% CI 8.42-46.83]; p-value = 0.015). As an ancillary finding, a correlation linked OPN with the neutrophil degranulation biomarker MPO (r = 0.085; p = 0.048) and resistin (r = 0.177; p = 3.4 × 10-5). In the present study, OPN further strengthens its role as biomarker of CAD, potentially bridging subclinical CV risk with development of atherosclerosis.
Collapse
Affiliation(s)
- Federico Carbone
- First Clinic of Internal Medicine, Department of Internal Medicine, University of Genoa, 6 Viale Benedetto XV, 16132 Genoa, Italy;
- IRCCS Ospedale Policlinico San Martino, Genoa—Italian Cardiovascular Network, 10 Largo Benzi, 16132 Genoa, Italy
| | - Jennifer Meessen
- Department of Cardiovascular Research, IRCCS—Istituto di Ricerche Farmacologiche Mario Negri, 19 Via Giuseppe La Masa, 20156 Milan, Italy; (J.M.); (R.L.)
| | | | - Daniele Andreini
- Centro Cardiologico Monzino, IRCCS, 20138 Milan, Italy;
- Department of Biomedical and Clinical Sciences “Luigi Sacco”, University of Milan, 20157 Milan, Italy
| | | | - Roberto Latini
- Department of Cardiovascular Research, IRCCS—Istituto di Ricerche Farmacologiche Mario Negri, 19 Via Giuseppe La Masa, 20156 Milan, Italy; (J.M.); (R.L.)
| | - Fabrizio Montecucco
- First Clinic of Internal Medicine, Department of Internal Medicine, University of Genoa, 6 Viale Benedetto XV, 16132 Genoa, Italy;
- IRCCS Ospedale Policlinico San Martino, Genoa—Italian Cardiovascular Network, 10 Largo Benzi, 16132 Genoa, Italy
| |
Collapse
|
8
|
Shirakawa K, Sano M. T Cell Immunosenescence in Aging, Obesity, and Cardiovascular Disease. Cells 2021; 10:cells10092435. [PMID: 34572084 PMCID: PMC8464832 DOI: 10.3390/cells10092435] [Citation(s) in RCA: 34] [Impact Index Per Article: 11.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/31/2021] [Revised: 09/13/2021] [Accepted: 09/14/2021] [Indexed: 12/24/2022] Open
Abstract
Although advances in preventive medicine have greatly improved prognosis, cardiovascular disease (CVD) remains the leading cause of death worldwide. This clearly indicates that there remain residual cardiovascular risks that have not been targeted by conventional therapies. The results of multiple animal studies and clinical trials clearly indicate that inflammation is the most important residual risk and a potential target for CVD prevention. The immune cell network is intricately regulated to maintain homeostasis. Ageing associated changes to the immune system occurs in both innate and adaptive immune cells, however T cells are most susceptible to this process. T-cell changes due to thymic degeneration and homeostatic proliferation, metabolic abnormalities, telomere length shortening, and epigenetic changes associated with aging and obesity may not only reduce normal immune function, but also induce inflammatory tendencies, a process referred to as immunosenescence. Since the disruption of biological homeostasis by T cell immunosenescence is closely related to the development and progression of CVD via inflammation, senescent T cells are attracting attention as a new therapeutic target. In this review, we discuss the relationship between CVD and T cell immunosenescence associated with aging and obesity.
Collapse
Affiliation(s)
- Kohsuke Shirakawa
- Department of Cardiovascular Medicine, Graduate School of Medicine, Juntendo University, Bunkyo-ku, Tokyo 1138421, Japan;
| | - Motoaki Sano
- Department of Cardiology, Keio University School of Medicine, Shinjuku-ku, Tokyo 1608582, Japan
- Correspondence: ; Tel.: +81-(3)-5363-3874
| |
Collapse
|
9
|
Osteopontin in Cardiovascular Diseases. Biomolecules 2021; 11:biom11071047. [PMID: 34356671 PMCID: PMC8301767 DOI: 10.3390/biom11071047] [Citation(s) in RCA: 37] [Impact Index Per Article: 12.3] [Reference Citation Analysis] [Abstract] [Key Words] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/21/2021] [Revised: 07/14/2021] [Accepted: 07/14/2021] [Indexed: 12/12/2022] Open
Abstract
Unprecedented advances in secondary prevention have greatly improved the prognosis of cardiovascular diseases (CVDs); however, CVDs remain a leading cause of death globally. These findings suggest the need to reconsider cardiovascular risk and optimal medical therapy. Numerous studies have shown that inflammation, pro-thrombotic factors, and gene mutations are focused not only on cardiovascular residual risk but also as the next therapeutic target for CVDs. Furthermore, recent clinical trials, such as the Canakinumab Anti-inflammatory Thrombosis Outcomes Study trial, showed the possibility of anti-inflammatory therapy for patients with CVDs. Osteopontin (OPN) is a matricellular protein that mediates diverse biological functions and is involved in a number of pathological states in CVDs. OPN has a two-faced phenotype that is dependent on the pathological state. Acute increases in OPN have protective roles, including wound healing, neovascularization, and amelioration of vascular calcification. By contrast, chronic increases in OPN predict poor prognosis of a major adverse cardiovascular event independent of conventional cardiovascular risk factors. Thus, OPN can be a therapeutic target for CVDs but is not clinically available. In this review, we discuss the role of OPN in the development of CVDs and its potential as a therapeutic target.
Collapse
|