1
|
Faiq MA, Singh HN, Ali M, Dada R, Chan KC, Dada T, Saluja D. Functional genomics of primary congenital glaucoma by pathway analysis and functional characterization of CYP1B1 mutations. Vision Res 2025; 227:108534. [PMID: 39721180 DOI: 10.1016/j.visres.2024.108534] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/31/2024] [Revised: 12/02/2024] [Accepted: 12/03/2024] [Indexed: 12/28/2024]
Abstract
CYP1B1 is the most common gene implicated in primary congenital glaucoma (PCG) - the most common form of childhood glaucoma. How CYP1B1 mutations cause PCG is not known. Understanding the mechanism of PCG caused by CYP1B1 mutations is crucial for disease management, therapeutics development, and potential prevention. We performed a comprehensive metabolome/reactome analysis of CYP1B1 to enlist CYP1B1-mediated processes in eye development. The identified metabolic events were classified into major pathways. Functional analysis of these metabolic pathways was performed after cloning the CYP1B1 wild-type gene and expressing the wild-type and selected novel mutants (previously reported by our group L24R, F190L, H279D, and G329D) in heterologous hosts. Stability and enzymatic functions were investigated. Structural modeling of the wild-type and the variants was also performed. Reactome analysis revealed a total of 166 metabolic processes which could be classified into four major pathways including estradiol metabolism, retinoic acid metabolism, arachidonic acid metabolism, and melatonin metabolism. Stability assay revealed rapid denaturing of mutant proteins compared to wild-type. Enzymatic assays showed functional deficit in mutant proteins in metabolizing estradiol, retinoids, arachidonate, and melatonin. Modeling revealed that the examined mutations induced structural changes likely causative in functional loss in CYB1B1 as observed in enzymatic assays. Hence, mutations in the CYP1B1 gene are associated with a functional deficit in critical pathways of eye development. These findings implicate the potential contributions of altered metabolic regulations of estradiol, retinoids, arachidonate and melatonin to the pathogenesis of PCG during the processes of the formation of ocular structures and function.
Collapse
Affiliation(s)
- Muneeb A Faiq
- Dr. Rajendra Prasad Centre for Ophthalmic Sciences, All India Institute of Medical Sciences, New Delhi 110029, India; Medical Biotechnology Laboratory, Dr. B. R. Ambedkar Center for Biomedical Research, University of Delhi, Delhi 110007, India; Laboratory of Molecular Genetics and Reproduction, Department of Anatomy, All India Institute of Medical Sciences, New Delhi 110029, India; Department of Radiology, NYU Grossman School of Medicine, New York University, New York, NY 10016, USA; Department of Ophthalmology, NYU Grossman School of Medicine, New York University, New York, NY 10017, USA; Tech4Health Institute, NYU Grossman School of Medicine, New York University, Long Island City, NY 11101, USA.
| | - Himanshu N Singh
- Genomics and Molecular Medicine, Centre for Scientific and Industrial Research-Institute of Genomics and Integrative Biology, New Delhi 110029, India; Aix-Marseille University, INSERM, TAGC, UMR 1090, Marseille, France; Department of Radiology, Memorial Sloan-Kettering Cancer Center, New York, NY 10065, USA
| | - Mashooq Ali
- Medical Biotechnology Laboratory, Dr. B. R. Ambedkar Center for Biomedical Research, University of Delhi, Delhi 110007, India
| | - Rima Dada
- Laboratory of Molecular Genetics and Reproduction, Department of Anatomy, All India Institute of Medical Sciences, New Delhi 110029, India
| | - Kevin C Chan
- Department of Radiology, NYU Grossman School of Medicine, New York University, New York, NY 10016, USA; Department of Ophthalmology, NYU Grossman School of Medicine, New York University, New York, NY 10017, USA; Tech4Health Institute, NYU Grossman School of Medicine, New York University, Long Island City, NY 11101, USA
| | - Tanuj Dada
- Dr. Rajendra Prasad Centre for Ophthalmic Sciences, All India Institute of Medical Sciences, New Delhi 110029, India.
| | - Daman Saluja
- Medical Biotechnology Laboratory, Dr. B. R. Ambedkar Center for Biomedical Research, University of Delhi, Delhi 110007, India.
| |
Collapse
|
2
|
Chacon-Camacho OF, Arce-Gonzalez R, Sanchez-de la Rosa F, Urióstegui-Rojas A, Hofmann-Blancas ME, Mata-Flores F, Zenteno JC. Genetic Aspects of Glaucoma: An Updated Review. Curr Mol Med 2024; 24:1231-1249. [PMID: 37272463 DOI: 10.2174/1566524023666230602143617] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/01/2022] [Revised: 04/17/2023] [Accepted: 04/20/2023] [Indexed: 06/06/2023]
Abstract
Glaucoma is a group of diverse diseases characterized by cupping of the optic nerve head due to the loss of retinal ganglion cells. It is the most common cause of irreversible blindness throughout the world; therefore, its timely diagnosis and early detection through an ophthalmological examination are very important. We, herein, present the information on the epidemiology, pathophysiology, clinical diagnosis, and treatment of glaucoma. We also emphasize the investigations of the last decades that have allowed identifying numerous genes and susceptibility genetic factors. We have also described in detail the genes whose mutations cause or contribute to the development of the disease.
Collapse
Affiliation(s)
- Oscar Francisco Chacon-Camacho
- Department of Genetics, Institute of Ophthalmology "Conde de Valenciana", Mexico City, Mexico
- Laboratorio 5 Edificio A-4, Carrera de Médico Cirujano, Facultad de Estudios Superiores Iztacala, Universidad Nacional Autónoma de México, Mexico City, Mexico
| | - Rocio Arce-Gonzalez
- Department of Genetics, Institute of Ophthalmology "Conde de Valenciana", Mexico City, Mexico
| | | | - Andrés Urióstegui-Rojas
- Department of Integral Ophthalmology, Institute of Ophthalmology "Conde de Valenciana", Mexico City, Mexico
| | | | - Felipe Mata-Flores
- Department of Glaucoma, Institute of Ophthalmology "Conde de Valenciana", Mexico City, Mexico
| | - Juan Carlos Zenteno
- Department of Genetics, Institute of Ophthalmology "Conde de Valenciana", Mexico City, Mexico
- Biochemistry Department, Faculty of Medicine, National Autonomous University of Mexico, Mexico City, Mexico
| |
Collapse
|
3
|
Carstens N, Goolam S, Hulley M, Brandenburg JT, Ramsay M, Williams SEI. Exome-based mutation screening in South African children with primary congenital glaucoma. Eye (Lond) 2023; 37:362-368. [PMID: 35094026 PMCID: PMC9873788 DOI: 10.1038/s41433-022-01941-7] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/24/2021] [Revised: 01/03/2022] [Accepted: 01/14/2022] [Indexed: 01/29/2023] Open
Abstract
OBJECTIVES To identify pathogenic variants in a cohort of 23 black South African children with sporadic primary congenital glaucoma (PCG) using an exome-based approach. METHODS Children with PCG were recruited from two Paediatric Ophthalmology Clinics in Johannesburg, South Africa. Whole exome sequencing was performed on genomic DNA. Of the 23 children, 19 were male and 19 had bilateral PCG. A variant prioritization strategy was employed whereby variants in known PCG genes (CYP1B1, LTBP2 and TEK) were evaluated first, followed by the identification of putative disease-causing variants in other genes related to eye diseases and phenotypes. RESULTS Validated pathogenic variants in the CYP1B1 gene (c.1169 G>A; p.Arg390His) and TEK gene (c.922 G>A; p.Gly308Arg) were identified in one child each. No LTBP2 mutations were identified in this cohort. In silico predictions identified potentially damaging rare variants in genes previously associated with eye development phenotypes or glaucoma in a further 12 children. CONCLUSIONS This study demonstrates the value of whole exome sequencing in identifying disease-causing variants in African children with PCG. It is the first report of a TEK disease-causing variant in an African PCG patient. Potential causative variants detected in PCG candidate genes warrant further investigation.
Collapse
Affiliation(s)
- Nadia Carstens
- Division of Human Genetics, National Health Laboratory Service and School of Pathology, Faculty of Health Sciences, University of the Witwatersrand, Johannesburg, South Africa
| | - Saadiah Goolam
- Division of Ophthalmology, Department of Neurosciences, School of Clinical Medicine, Faculty of Health Sciences, University of the Witwatersrand, Johannesburg, South Africa
| | - Michaella Hulley
- Division of Human Genetics, National Health Laboratory Service and School of Pathology, Faculty of Health Sciences, University of the Witwatersrand, Johannesburg, South Africa
| | - Jean-Tristan Brandenburg
- Sydney Brenner Institute for Molecular Bioscience, Faculty of Health Sciences, University of the Witwatersrand, Johannesburg, South Africa
| | - Michele Ramsay
- Division of Human Genetics, National Health Laboratory Service and School of Pathology, Faculty of Health Sciences, University of the Witwatersrand, Johannesburg, South Africa
- Sydney Brenner Institute for Molecular Bioscience, Faculty of Health Sciences, University of the Witwatersrand, Johannesburg, South Africa
| | - Susan Eileen Isabella Williams
- Division of Ophthalmology, Department of Neurosciences, School of Clinical Medicine, Faculty of Health Sciences, University of the Witwatersrand, Johannesburg, South Africa.
| |
Collapse
|
4
|
Animal Model Contributions to Primary Congenital Glaucoma. J Ophthalmol 2022; 2022:6955461. [PMID: 35663518 PMCID: PMC9162845 DOI: 10.1155/2022/6955461] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/29/2022] [Accepted: 05/12/2022] [Indexed: 11/17/2022] Open
Abstract
Primary congenital glaucoma (PCG) is an ocular disease characterized by congenital anterior segmental maldevelopment with progressive optic nerve degeneration. Certain genes, such as cytochrome P450 family 1 subfamily B member 1 and latent TGF-β-binding protein 2, are involved in the pathogenesis of PCG, but the exact pathogenic mechanism has not yet been fully elucidated. There is an urgent need to determine the etiology and pathophysiology of PCG and develop new therapeutic methods to stop disease progression. Animal models can simulate PCG and are essential to study the pathogenesis and treatment of PCG. Various animal species have been used in the study of PCG, including rabbits, rats, mice, cats, zebrafish, and quails. These models are formed spontaneously or by combining with genetic engineering technology. The focus of the present study is to review the characteristics and potential applications of animal models in PCG and provide new approaches to understand the mechanism and develop new treatment strategies for patients with PCG.
Collapse
|
5
|
Capponi G, Giovannini M, Koniari I, Mori F, Rubino C, Spaziani G, Calabri GB, Favilli S, Novembre E, Indolfi G, De Simone L, Trapani S. Case Report: Perioperative Kounis Syndrome in an Adolescent With Congenital Glaucoma. Front Cardiovasc Med 2021; 8:676188. [PMID: 34568441 PMCID: PMC8461009 DOI: 10.3389/fcvm.2021.676188] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/04/2021] [Accepted: 07/13/2021] [Indexed: 11/13/2022] Open
Abstract
A 12-year-old male patient suffering from congenital glaucoma developed bradycardia, left ventricular failure, and hypotension after induction of anesthesia. Electrocardiography and echocardiography revealed a complete normalization of ECG and a complete spontaneous recovery in the cardiac function 72 hours from the beginning of the clinical manifestations, while cardiac Magnetic Resonance Imaging was performed, and coronary Computed Tomography scan revealed a myocardial bridge of a tract of the left anterior descendent coronary artery. Diagnosis of Kounis syndrome (KS) was made, a relatively novel, under-recognized clinical condition, defined as the manifestation of an acute coronary syndrome accompanied by mast cell activation and platelet aggregation involving interrelated and interacting inflammatory cells in the setting of allergic, hypersensitivity, anaphylactic or anaphylactoid insults. We described one of the first pediatric cases of KS related to anesthetic medications. In children, this syndrome has been only described in isolated case reports or small case series. Thus, it appears critical to report new cases of KS in children to increase the awareness of this disease in pediatric healthcare workers so as to enhance its early recognition and optimal therapeutic strategy. Furthermore, it appears of paramount importance the implementation of universal guidelines accepted by allergology and cardiology societies, in order to standardize the management of pediatric and adult patients with KS. Finally, a close collaboration between pediatric allergists and cardiologists seems fundamental for an optimal multidisciplinary patient care.
Collapse
Affiliation(s)
- Guglielmo Capponi
- Cardiology Unit, Department of Pediatrics, Meyer Children's University Hospital, Florence, Italy
| | - Mattia Giovannini
- Allergy Unit, Department of Pediatrics, Meyer Children's University Hospital, Florence, Italy
| | - Ioanna Koniari
- Electrophysiology and Device Department, University Hospital of South Manchester NHS Foundation Trust, Manchester, United Kingdom
| | - Francesca Mori
- Allergy Unit, Department of Pediatrics, Meyer Children's University Hospital, Florence, Italy
| | - Chiara Rubino
- Department of Pediatrics, Meyer Children's Hospital, Florence, Italy
| | - Gaia Spaziani
- Cardiology Unit, Department of Pediatrics, Meyer Children's University Hospital, Florence, Italy
| | | | - Silvia Favilli
- Cardiology Unit, Department of Pediatrics, Meyer Children's University Hospital, Florence, Italy
| | - Elio Novembre
- Allergy Unit, Department of Pediatrics, Meyer Children's University Hospital, Florence, Italy
| | - Giuseppe Indolfi
- Department of Pediatrics, Meyer Children's Hospital, Florence, Italy.,Department of NEUROFARBA, Meyer Children's Hospital, University of Florence, Florence, Italy
| | - Luciano De Simone
- Cardiology Unit, Department of Pediatrics, Meyer Children's University Hospital, Florence, Italy
| | - Sandra Trapani
- Department of Pediatrics, Meyer Children's Hospital, Florence, Italy.,Department of Health Sciences, Meyer Children's Hospital, University of Florence, Florence, Italy
| |
Collapse
|
6
|
Alghamdi A, Aldossary W, Albahkali S, Alotaibi B, Alrfaei BM. The loss of microglia activities facilitates glaucoma progression in association with CYP1B1 gene mutation (p.Gly61Glu). PLoS One 2020; 15:e0241902. [PMID: 33170892 PMCID: PMC7654781 DOI: 10.1371/journal.pone.0241902] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/22/2020] [Accepted: 10/22/2020] [Indexed: 12/17/2022] Open
Abstract
Background Glaucoma represents the second main cause of irreversible loss of eyesight worldwide. Progression of the disease is due to changes around the optic nerve, eye structure and optic nerve environment. Focusing on primary congenital glaucoma, which is not completely understood, we report an evaluation of an untested mutation (c.182G>A, p.Gly61Glu) within the CYP1B1 gene in the context of microglia, astrocytes and mesenchymal stem cells. We investigated the behaviours of these cells, which are needed to maintain eye homeostasis, in response to the CYP1B1 mutation. Methods and results CRISPR technology was used to edit normal CYP1B1 genes within normal astrocytes, microglia and stem cells in vitro. Increased metabolic activities were found in microglia and astrocytes 24 hours after CYP1B1 manipulation. However, these activities dropped by 40% after 72 hrs. In addition, the nicotinamide adenine dinucleotide phosphate (NADP)/NADPH reducing equivalent process decreased by 50% on average after 72 hrs of manipulation. The cytokines measured in mutated microglia showed progressive activation leading to apoptosis, which was confirmed with annexin-V. The cytokines evaluated in mutant astrocytes were abnormal in comparison to those in the control. Conclusions The results suggest a progressive inflammation that was induced by mutations (p.Gly61Glu) on CYP1B1. Furthermore, the mutations enhanced the microglia’s loss of activity. We are the first to show the direct impact of the mutation on microglia. This progressive inflammation might be responsible for primary congenital glaucoma complications, which could be avoided via an anti-inflammatory regimen. This finding also reveals that progressive inflammation affects recovery failure after surgeries to relieve glaucoma. Moreover, microglia are important for the survival of ganglion cells, along with the clearing of pathogens and inflammation. The reduction of their activities may jeopardise homeostasis within the optic nerve environment and complicate the protection of optic nerve components (such as retinal ganglion and glial cells).
Collapse
Affiliation(s)
- Amani Alghamdi
- Biochemistry Department, King Saud University (KSU), Riyadh, Saudi Arabia
| | - Wadha Aldossary
- Biochemistry Department, King Saud University (KSU), Riyadh, Saudi Arabia
| | - Sarah Albahkali
- Stem Cells and Regenerative Medicine, King Abdullah International Medical Research Center (KAIMRC), Riyadh, Saudi Arabia
| | - Batoul Alotaibi
- Stem Cells and Regenerative Medicine, King Abdullah International Medical Research Center (KAIMRC), Riyadh, Saudi Arabia
| | - Bahauddeen M. Alrfaei
- Stem Cells and Regenerative Medicine, King Abdullah International Medical Research Center (KAIMRC), Riyadh, Saudi Arabia
- King Saud Bin Abdulaziz University for Health Sciences (KSAU-HS), Riyadh, Saudi Arabia
- * E-mail:
| |
Collapse
|
7
|
Ling C, Zhang D, Zhang J, Sun H, Du Q, Li X. Updates on the molecular genetics of primary congenital glaucoma (Review). Exp Ther Med 2020; 20:968-977. [PMID: 32742340 PMCID: PMC7388405 DOI: 10.3892/etm.2020.8767] [Citation(s) in RCA: 14] [Impact Index Per Article: 2.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/05/2019] [Accepted: 04/01/2020] [Indexed: 12/14/2022] Open
Abstract
Primary congenital glaucoma (PCG) is one of the primary causes of blindness in children and is characterized by congenital trabecular meshwork and anterior chamber angle dysplasia. While being a rare condition, PCG severely impairs the quality of life of affected patients. However, the pathogenesis of PCG remains to be fully elucidated. It has previously been indicated that genetic factors serve a critical role in the pathogenesis of PCG, although patients with PCG exhibit significant genetic heterogeneity. Mutations in the cytochrome P450 family 1 subfamily B member 1 gene have been implicated in PCG and further genes that have been reported to be involved in PCG are myocilin, forkhead box C1, collagen type I α1 chain and latent transforming growth factor β binding protein 2. The present review aims to provide an up to date understanding of the genes associated with PCG and the use of molecular technologies in the identification of such genes and mutations. This may pave the way for the development of preventative methods, early diagnosis and improved therapeutic strategies in PCG.
Collapse
Affiliation(s)
- Chen Ling
- Sichuan Provincial Key Laboratory for Genetic Disease, Sichuan Provincial People's Hospital, School of Medicine, University of Electronic Science and Technology of China, Chengdu, Sichuan 611731, P.R. China
- Chinese Academy of Sciences Sichuan Translational Medicine Research Hospital, School of Medicine, University of Electronic Science and Technology of China, Chengdu, Sichuan, 610072, P.R. China
| | - Dingding Zhang
- Sichuan Provincial Key Laboratory for Genetic Disease, Sichuan Provincial People's Hospital, School of Medicine, University of Electronic Science and Technology of China, Chengdu, Sichuan 611731, P.R. China
- Chinese Academy of Sciences Sichuan Translational Medicine Research Hospital, School of Medicine, University of Electronic Science and Technology of China, Chengdu, Sichuan, 610072, P.R. China
| | - Jing Zhang
- Department of Thoracic Surgery, Sichuan Provincial People's Hospital, University of Electronic Science and Technology of China, Chengdu, Sichuan 611731, P.R. China
| | - Huanxin Sun
- Department of Immunology, North Sichuan Medical College, Nanchong, Sichuan 637100, P.R. China
| | - Qiu Du
- College of Medical Technology, Chengdu University of Traditional Chinese Medicine, Chengdu, Sichuan 610072, P.R. China
| | - Xuefei Li
- College of Medical Technology, Chengdu University of Traditional Chinese Medicine, Chengdu, Sichuan 610072, P.R. China
| |
Collapse
|
8
|
Jubair S, N Al-Rubae'i SH, M Al-Sharifi AN, Jabbar Suleiman AA. Investigation of CYP1B1 Gene Involvement in Primary Congenital Glaucoma in Iraqi Children. Middle East Afr J Ophthalmol 2020; 26:203-209. [PMID: 32153331 PMCID: PMC7034157 DOI: 10.4103/meajo.meajo_116_19] [Citation(s) in RCA: 6] [Impact Index Per Article: 1.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/30/2019] [Revised: 10/24/2019] [Accepted: 12/24/2019] [Indexed: 01/21/2023] Open
Abstract
PURPOSE Primary congenital glaucoma (PCG) is a severe type of glaucoma that occurs early in life. PCG is usually inherited in an autosomal recessive pattern. Cytochrome P450, family 1, subfamily B, polypeptide 1 (CYP1B1) gene is reported to be PCG-related gene. It codes for the CYP1B1 enzyme which is considered as phase I xenobiotic-metabolizing enzyme and its function is related to the eye oxidative homeostasis and correspondingly to the normal development of the eye. This is the first genetic study in Iraq that investigates the CYP1B1 polymorphisms behind the PCG disease. METHODS Genomic DNA was extracted from the whole blood of 100 unrelated Iraqi PCG patients and 100 healthy children, all of them were aged between 1 month and 3 years. All the coding sequence of CYP1B1 gene was amplified using polymerase chain reaction; restriction fragment length polymorphism was used to follow G61E and E229K mutations. Direct sequencing was performed to screen for other mutations. RESULTS CYP1B1 mutations were identified in 78 (78%) of the patients. We detected a total of eight mutations: Four missense mutations (c.182G>A, c.685G>A, g.6813G>A, and g.6705G>A), one silence mutation (D449D) and three insertions (g.10068ins10069, g.10138ins10139, and g.10191ins10192). Five mutations (g.6813G>A, g.6705G>A, g.10068ins10069, g.10138ins10139, and g.10191ins10192) are novel. G61E is the only mutation that was detected in patients merely. CONCLUSIONS CYP1B1 mutation (G61E) is considered as PCG-related allele in the Iraqi population.
Collapse
Affiliation(s)
- Suzanne Jubair
- Department of Pharmaceutical Chemistry, College of Pharmacy, University of Kerbala, Kerbala, Iraq
| | - Salwa H N Al-Rubae'i
- Department of Chemistry, College of Science, Mustansiriyah University, Baghdad, Iraq
| | - Ali N M Al-Sharifi
- Department of Glaucoma, Ibn Al-Haitham Teaching Eye Hospital, Baghdad, Iraq
| | | |
Collapse
|
9
|
Faiq MA, Wollstein G, Schuman JS, Chan KC. Cholinergic nervous system and glaucoma: From basic science to clinical applications. Prog Retin Eye Res 2019; 72:100767. [PMID: 31242454 PMCID: PMC6739176 DOI: 10.1016/j.preteyeres.2019.06.003] [Citation(s) in RCA: 77] [Impact Index Per Article: 12.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/28/2019] [Revised: 06/19/2019] [Accepted: 06/21/2019] [Indexed: 02/08/2023]
Abstract
The cholinergic system has a crucial role to play in visual function. Although cholinergic drugs have been a focus of attention as glaucoma medications for reducing eye pressure, little is known about the potential modality for neuronal survival and/or enhancement in visual impairments. Citicoline, a naturally occurring compound and FDA approved dietary supplement, is a nootropic agent that is recently demonstrated to be effective in ameliorating ischemic stroke, traumatic brain injury, Parkinson's disease, Alzheimer's disease, cerebrovascular diseases, memory disorders and attention-deficit/hyperactivity disorder in both humans and animal models. The mechanisms of its action appear to be multifarious including (i) preservation of cardiolipin, sphingomyelin, and arachidonic acid contents of phosphatidylcholine and phosphatidylethanolamine, (ii) restoration of phosphatidylcholine, (iii) stimulation of glutathione synthesis, (iv) lowering glutamate concentrations and preventing glutamate excitotoxicity, (v) rescuing mitochondrial function thereby preventing oxidative damage and onset of neuronal apoptosis, (vi) synthesis of myelin leading to improvement in neuronal membrane integrity, (vii) improving acetylcholine synthesis and thereby reducing the effects of mental stress and (viii) preventing endothelial dysfunction. Such effects have vouched for citicoline as a neuroprotective, neurorestorative and neuroregenerative agent. Retinal ganglion cells are neurons with long myelinated axons which provide a strong rationale for citicoline use in visual pathway disorders. Since glaucoma is a form of neurodegeneration involving retinal ganglion cells, citicoline may help ameliorate glaucomatous damages in multiple facets. Additionally, trans-synaptic degeneration has been identified in humans and experimental models of glaucoma suggesting the cholinergic system as a new brain target for glaucoma management and therapy.
Collapse
Affiliation(s)
- Muneeb A Faiq
- Department of Ophthalmology, New York University (NYU) School of Medicine, NYU Langone Health, New York, NY, United States
| | - Gadi Wollstein
- Department of Ophthalmology, New York University (NYU) School of Medicine, NYU Langone Health, New York, NY, United States
| | - Joel S Schuman
- Department of Ophthalmology, New York University (NYU) School of Medicine, NYU Langone Health, New York, NY, United States
| | - Kevin C Chan
- Department of Ophthalmology, New York University (NYU) School of Medicine, NYU Langone Health, New York, NY, United States; Department of Radiology, New York University (NYU) School of Medicine, NYU Langone Health, New York, NY, United States; Center for Neural Science, Faculty of Arts and Science, New York University, New York, NY, United States.
| |
Collapse
|
10
|
Wang HW, Sun P, Chen Y, Jiang LP, Wu HP, Zhang W, Gao F. Research progress on human genes involved in the pathogenesis of glaucoma (Review). Mol Med Rep 2018; 18:656-674. [PMID: 29845210 PMCID: PMC6059695 DOI: 10.3892/mmr.2018.9071] [Citation(s) in RCA: 12] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/10/2017] [Accepted: 04/12/2018] [Indexed: 12/20/2022] Open
Abstract
Glaucoma is the leading cause of irreversible blindness globally. It is known that the incidence of glaucoma is closely associated with inheritance. A large number of studies have suggested that genetic factors are involved in the occurrence and development of glaucoma, and even affect the drug sensitivity and prognosis of glaucoma. In the present review, 22 loci of glaucoma are presented, including the relevant genes (myocilin, interleukin 20 receptor subunit B, optineurin, ankyrin repeat- and SOCS box-containing protein 10, WD repeat-containing protein 36, EGF-containing fibulin-like extracellular matrix protein 1, neurotrophin 4, TANK-binding kinase 1, cytochrome P450 subfamily I polypeptide 1, latent transforming growth factor β binding protein 2 and TEK tyrosine kinase endothelial) and 74 other genes (including toll-like receptor 4, sine oculis homeobox Drosophila homolog of 1, doublecortin-like kinase 1, RE repeats-encoding gene, retinitis pigmentosa GTPase regulator-interacting protein, lysyl oxidase-like protein 1, heat-shock 70-kDa protein 1A, baculoviral IAP repeat-containing protein 6, 5,10-methylenetetrahydrofolate reductase and nitric oxide synthase 3 and nanophthalmos 1) that are more closely associated with glaucoma. The pathogenesis of these glaucoma-associated genes, glaucomatous genetics and genetic approaches, as well as glaucomatous risk factors, including increasing age, glaucoma family history, high myopia, diabetes, ocular trauma, smoking, intraocular pressure increase and/or fluctuation were also discussed.
Collapse
Affiliation(s)
- Hong-Wei Wang
- Department of Ophthalmology, Jingjiang People's Hospital, Jingjiang, Jiangsu 214500, P.R. China
| | - Peng Sun
- Department of Ophthalmology, Longgang District People's Hospital, Shenzhen, Guangdong 518172, P.R. China
| | - Yao Chen
- Department of Ophthalmology, Jingjiang People's Hospital, Jingjiang, Jiangsu 214500, P.R. China
| | - Li-Ping Jiang
- Department of Ophthalmology, The First Affiliated Hospital of Qiqihar Medical University, Qiqihar, Heilongjiang 161041, P.R. China
| | - Hui-Ping Wu
- Department of The Scientific Research, Jingjiang People's Hospital, Jingjiang, Jiangsu 214500, P.R. China
| | - Wen Zhang
- Medical School, Nantong University, Nantong, Jiangsu 226001, P.R. China
| | - Feng Gao
- Department of Hospital Administration, Jingjiang People's Hospital, Jingjiang, Jiangsu 214500, P.R. China
| |
Collapse
|
11
|
Hocking JC, Famulski JK, Yoon KH, Widen SA, Bernstein CS, Koch S, Weiss O, Agarwala S, Inbal A, Lehmann OJ, Waskiewicz AJ. Morphogenetic defects underlie Superior Coloboma, a newly identified closure disorder of the dorsal eye. PLoS Genet 2018. [PMID: 29522511 PMCID: PMC5862500 DOI: 10.1371/journal.pgen.1007246] [Citation(s) in RCA: 27] [Impact Index Per Article: 3.9] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/18/2022] Open
Abstract
The eye primordium arises as a lateral outgrowth of the forebrain, with a transient fissure on the inferior side of the optic cup providing an entry point for developing blood vessels. Incomplete closure of the inferior ocular fissure results in coloboma, a disease characterized by gaps in the inferior eye and recognized as a significant cause of pediatric blindness. Here, we identify eight patients with defects in tissues of the superior eye, a congenital disorder that we term superior coloboma. The embryonic origin of superior coloboma could not be explained by conventional models of eye development, leading us to reanalyze morphogenesis of the dorsal eye. Our studies revealed the presence of the superior ocular sulcus (SOS), a transient division of the dorsal eye conserved across fish, chick, and mouse. Exome sequencing of superior coloboma patients identified rare variants in a Bone Morphogenetic Protein (Bmp) receptor (BMPR1A) and T-box transcription factor (TBX2). Consistent with this, we find sulcus closure defects in zebrafish lacking Bmp signaling or Tbx2b. In addition, loss of dorsal ocular Bmp is rescued by concomitant suppression of the ventral-specific Hedgehog pathway, arguing that sulcus closure is dependent on dorsal-ventral eye patterning cues. The superior ocular sulcus acts as a conduit for blood vessels, with altered sulcus closure resulting in inappropriate connections between the hyaloid and superficial vascular systems. Together, our findings explain the existence of superior coloboma, a congenital ocular anomaly resulting from aberrant morphogenesis of a developmental structure. Ocular coloboma is a disease characterized by gaps in the lower portion of the eye and can affect the iris, lens, or retina, and cause loss of vision. Coloboma arises from incomplete closure of a transient fissure on the underside of the developing eye. Therefore, our identification of patients with similar tissue defects, but restricted to the superior half of eye, was surprising. Here, we describe an ocular developmental structure, the superior ocular sulcus, as a potential origin for the congenital disorder superior coloboma. Formation and closure of the sulcus are directed by dorsal-ventral eye patterning, and altered patterning interferes with the role of the sulcus as a pathway for blood vessel growth onto the eye.
Collapse
Affiliation(s)
- Jennifer C Hocking
- Division of Anatomy, Department of Surgery, University of Alberta, Edmonton, Canada.,Women & Children's Health Research Institute, University of Alberta, Edmonton, Canada.,Department of Biological Sciences, University of Alberta, Edmonton, Canada.,Department of Medical Genetics, University of Alberta, Edmonton, Canada
| | - Jakub K Famulski
- Department of Biological Sciences, University of Alberta, Edmonton, Canada.,Department of Biology, University of Kentucky, Lexington, Unites States of America
| | - Kevin H Yoon
- Department of Biological Sciences, University of Alberta, Edmonton, Canada
| | - Sonya A Widen
- Women & Children's Health Research Institute, University of Alberta, Edmonton, Canada.,Department of Biological Sciences, University of Alberta, Edmonton, Canada
| | - Cassidy S Bernstein
- Department of Molecular Biosciences, University of Texas at Austin,Unites States of America
| | - Sophie Koch
- Department of Biological Sciences, University of Alberta, Edmonton, Canada
| | - Omri Weiss
- Department of Medical Neurobiology, Institute for Medical Research-Israel-Canada, The Hebrew University-Hadassah Medical School, Jerusalem, Israel
| | | | - Seema Agarwala
- Department of Molecular Biosciences, University of Texas at Austin,Unites States of America.,Institute for Cell and Molecular Biology, University of Texas at Austin, Austin, Unites States of America.,Institute for Neuroscience, University of Texas at Austin, Austin, Unites States of America
| | - Adi Inbal
- Department of Medical Neurobiology, Institute for Medical Research-Israel-Canada, The Hebrew University-Hadassah Medical School, Jerusalem, Israel
| | - Ordan J Lehmann
- Women & Children's Health Research Institute, University of Alberta, Edmonton, Canada.,Department of Medical Genetics, University of Alberta, Edmonton, Canada.,Department of Ophthalmology, University of Alberta, Edmonton, Canada.,Neuroscience and Mental Health Research Institute, University of Alberta, Edmonton, Canada
| | - Andrew J Waskiewicz
- Women & Children's Health Research Institute, University of Alberta, Edmonton, Canada.,Department of Biological Sciences, University of Alberta, Edmonton, Canada.,Neuroscience and Mental Health Research Institute, University of Alberta, Edmonton, Canada
| |
Collapse
|
12
|
Daliri K, Ljubimov AV, Hekmatimoghaddam S. Glaucoma, Stem Cells, and Gene Therapy: Where Are We Now? Int J Stem Cells 2017; 10:119-128. [PMID: 28844129 PMCID: PMC5741193 DOI: 10.15283/ijsc17029] [Citation(s) in RCA: 22] [Impact Index Per Article: 2.8] [Reference Citation Analysis] [Abstract] [Key Words] [Download PDF] [Journal Information] [Subscribe] [Scholar Register] [Accepted: 05/20/2017] [Indexed: 12/17/2022] Open
Abstract
Glaucoma is the second most common cause of blindness, affecting 70∼80 million people around the world. The death of retinal ganglion cells (RGCs) is the main cause of blindness related to this disease. Current therapies do not provide enough protection and regeneration of RGCs. A novel opportunity for treatment of glaucoma is application of technologies related to stem cell and gene therapy. In this perspective we will thus focus on emerging approaches to glaucoma treatment including stem cells and gene therapy.
Collapse
Affiliation(s)
- Karim Daliri
- Neurogenetic Ward, Comprehensive Child Developmental Center, Shiraz University of Medical Sciences, Shiraz, Iran.,Visiting Scientist at Department of Neurology and Epileptology, Hertie Institute for Clinical Brain Research, University of Tübingen, Germany
| | - Alexander V Ljubimov
- Regenerative Medicine Institute, Department of Biomedical Sciences, Cedars-Sinai Medical Center, Los Angeles, CA, USA.,Department of Medicine, David Geffen School of Medicine at UCLA, Los Angeles, CA, USA
| | - Seyedhossein Hekmatimoghaddam
- Stem Cell Biology Research Center, Yazd Reproductive Sciences Institute, Shahid Sadoughi University of Medical Sciences, Yazd, Iran.,Department of Laboratory Sciences, School of Paramedicine, Shahid Sadoughi University of Medical Sciences, Yazd, Iran
| |
Collapse
|
13
|
Xiu C, Hua Z, Xiao BS, Tang WJ, Zhou HP, Liu XH. Novel benzopyran derivatives and their therapeutic applications: a patent review (2009-2016). Expert Opin Ther Pat 2017. [PMID: 28627270 DOI: 10.1080/13543776.2017.1338687] [Citation(s) in RCA: 19] [Impact Index Per Article: 2.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/07/2023]
Abstract
INTRODUCTION The benzopyran derivatives present a wide variety of biological activity and behaviour. At the same time the benzopyran derivatives support their use as therapeutic agents for multiple diseases. Their structural characteristics correlated to physicochemical properties seem to define the extent of the biological activity. Areas covered: This review summarizes new patents published on new benzopyran derivatives from 2009 to 2016. Expert opinion: Many benzopyran derivatives have vivo/vitro biological responses. Their clinical evaluation will be critical to assess therapeutic utility. The compounds containing benzopyran moiety is well defined as lead compounds for design of new more promising molecules.
Collapse
Affiliation(s)
- Cheng Xiu
- a School of Material Science Chemical Engineering , ChuZhou University , ChuZhou , P. R. China.,b School of Pharmacy , BengBu Medical College , BengBu , P. R. China
| | - Zhou Hua
- a School of Material Science Chemical Engineering , ChuZhou University , ChuZhou , P. R. China
| | - Bao Sheng Xiao
- a School of Material Science Chemical Engineering , ChuZhou University , ChuZhou , P. R. China
| | - Wen Jian Tang
- a School of Material Science Chemical Engineering , ChuZhou University , ChuZhou , P. R. China
| | - Hai Pin Zhou
- c School of Pharmacy , Anhui Medical University , Hefei , P. R. China
| | - Xin Hua Liu
- a School of Material Science Chemical Engineering , ChuZhou University , ChuZhou , P. R. China.,c School of Pharmacy , Anhui Medical University , Hefei , P. R. China
| |
Collapse
|