1
|
Shanbhag S, Al-Sharabi N, Kampleitner C, Mohamed-Ahmed S, Kristoffersen EK, Tangl S, Mustafa K, Gruber R, Sanz M. The use of mesenchymal stromal cell secretome to enhance guided bone regeneration in comparison with leukocyte and platelet-rich fibrin. Clin Oral Implants Res 2024; 35:141-154. [PMID: 37964421 DOI: 10.1111/clr.14205] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/02/2023] [Revised: 09/25/2023] [Accepted: 11/01/2023] [Indexed: 11/16/2023]
Abstract
OBJECTIVES Secretomes of mesenchymal stromal cells (MSC) represent a novel strategy for growth-factor delivery for tissue regeneration. The objective of this study was to compare the efficacy of adjunctive use of conditioned media of bone-marrow MSC (MSC-CM) with collagen barrier membranes vs. adjunctive use of conditioned media of leukocyte- and platelet-rich fibrin (PRF-CM), a current growth-factor therapy, for guided bone regeneration (GBR). METHODS MSC-CM and PRF-CM prepared from healthy human donors were subjected to proteomic analysis using mass spectrometry and multiplex immunoassay. Collagen membranes functionalized with MSC-CM or PRF-CM were applied on critical-size rat calvaria defects and new bone formation was assessed via three-dimensional (3D) micro-CT analysis of total defect volume (2 and 4 weeks) and 2D histomorphometric analysis of central defect regions (4 weeks). RESULTS While both MSC-CM and PRF-CM revealed several bone-related proteins, differentially expressed proteins, especially extracellular matrix components, were increased in MSC-CM. In rat calvaria defects, micro-CT revealed greater total bone coverage in the MSC-CM group after 2 and 4 weeks. Histologically, both groups showed a combination of regular new bone and 'hybrid' new bone, which was formed within the membrane compartment and characterized by incorporation of mineralized collagen fibers. Histomorphometry in central defect sections revealed greater hybrid bone area in the MSC-CM group, while the total new bone area was similar between groups. CONCLUSION Based on the in vitro and in vivo investigations herein, functionalization of membranes with MSC-CM represents a promising strategy to enhance GBR.
Collapse
Affiliation(s)
- Siddharth Shanbhag
- Department of Immunology and Transfusion Medicine, Haukeland University Hospital, Bergen, Norway
- Center for Translational Oral Research (TOR), Department of Clinical Dentistry, Faculty of Medicine, University of Bergen, Bergen, Norway
| | - Niyaz Al-Sharabi
- Center for Translational Oral Research (TOR), Department of Clinical Dentistry, Faculty of Medicine, University of Bergen, Bergen, Norway
| | - Carina Kampleitner
- Karl Donath Laboratory for Hard Tissue and Biomaterial Research, Division of Oral Surgery, University Clinic of Dentistry, Medical University of Vienna, Vienna, Austria
- Ludwig Boltzmann Institute for Experimental and Clinical Traumatology, The Research Center in Cooperation with AUVA, Vienna, Austria
- Austrian Cluster for Tissue Regeneration, Vienna, Austria
| | - Samih Mohamed-Ahmed
- Center for Translational Oral Research (TOR), Department of Clinical Dentistry, Faculty of Medicine, University of Bergen, Bergen, Norway
| | - Einar K Kristoffersen
- Department of Immunology and Transfusion Medicine, Haukeland University Hospital, Bergen, Norway
| | - Stefan Tangl
- Karl Donath Laboratory for Hard Tissue and Biomaterial Research, Division of Oral Surgery, University Clinic of Dentistry, Medical University of Vienna, Vienna, Austria
- Austrian Cluster for Tissue Regeneration, Vienna, Austria
| | - Kamal Mustafa
- Center for Translational Oral Research (TOR), Department of Clinical Dentistry, Faculty of Medicine, University of Bergen, Bergen, Norway
| | - Reinhard Gruber
- Austrian Cluster for Tissue Regeneration, Vienna, Austria
- Department of Oral Biology, University Clinic of Dentistry, Medical University of Vienna, Vienna, Austria
- Department of Periodontology, School of Dental Medicine, University of Bern, Bern, Switzerland
| | - Mariano Sanz
- ETEP Research Group, Faculty of Odontology, University Complutense of Madrid, Madrid, Spain
| |
Collapse
|
2
|
Shanbhag S, Kampleitner C, Al-Sharabi N, Mohamed-Ahmed S, Apaza Alccayhuaman KA, Heimel P, Tangl S, Beinlich A, Rana N, Sanz M, Kristoffersen EK, Mustafa K, Gruber R. Functionalizing Collagen Membranes with MSC-Conditioned Media Promotes Guided Bone Regeneration in Rat Calvarial Defects. Cells 2023; 12:cells12050767. [PMID: 36899904 PMCID: PMC10001262 DOI: 10.3390/cells12050767] [Citation(s) in RCA: 4] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/08/2023] [Revised: 02/21/2023] [Accepted: 02/24/2023] [Indexed: 03/04/2023] Open
Abstract
Functionalizing biomaterials with conditioned media (CM) from mesenchymal stromal cells (MSC) is a promising strategy for enhancing the outcomes of guided bone regeneration (GBR). This study aimed to evaluate the bone regenerative potential of collagen membranes (MEM) functionalized with CM from human bone marrow MSC (MEM-CM) in critical size rat calvarial defects. MEM-CM prepared via soaking (CM-SOAK) or soaking followed by lyophilization (CM-LYO) were applied to critical size rat calvarial defects. Control treatments included native MEM, MEM with rat MSC (CEL) and no treatment. New bone formation was analyzed via micro-CT (2 and 4 weeks) and histology (4 weeks). Greater radiographic new bone formation occurred at 2 weeks in the CM-LYO group vs. all other groups. After 4 weeks, only the CM-LYO group was superior to the untreated control group, whereas the CM-SOAK, CEL and native MEM groups were similar. Histologically, the regenerated tissues showed a combination of regular new bone and hybrid new bone, which formed within the membrane compartment and was characterized by the incorporation of mineralized MEM fibers. Areas of new bone formation and MEM mineralization were greatest in the CM-LYO group. Proteomic analysis of lyophilized CM revealed the enrichment of several proteins and biological processes related to bone formation. In summary, lyophilized MEM-CM enhanced new bone formation in rat calvarial defects, thus representing a novel 'off-the-shelf' strategy for GBR.
Collapse
Affiliation(s)
- Siddharth Shanbhag
- Department of Immunology and Transfusion Medicine, Haukeland University Hospital, 5021 Bergen, Norway
- Center for Translational Oral Research (TOR), Department of Clinical Dentistry, Faculty of Medicine, University of Bergen, 5009 Bergen, Norway
- Correspondence: (S.S.); (R.G.); Tel.: +47-55586059 (S.S.); +43-(0)69910718472 (R.G.)
| | - Carina Kampleitner
- Karl Donath Laboratory for Hard Tissue and Biomaterial Research, University Clinic of Dentistry, Medical University of Vienna, 1090 Vienna, Austria
- Ludwig Boltzmann Institute for Traumatology, The Research Center in Cooperation with AUVA, 1200 Vienna, Austria
- Austrian Cluster for Tissue Regeneration, 1200 Vienna, Austria
| | - Niyaz Al-Sharabi
- Center for Translational Oral Research (TOR), Department of Clinical Dentistry, Faculty of Medicine, University of Bergen, 5009 Bergen, Norway
| | - Samih Mohamed-Ahmed
- Center for Translational Oral Research (TOR), Department of Clinical Dentistry, Faculty of Medicine, University of Bergen, 5009 Bergen, Norway
| | | | - Patrick Heimel
- Karl Donath Laboratory for Hard Tissue and Biomaterial Research, University Clinic of Dentistry, Medical University of Vienna, 1090 Vienna, Austria
- Ludwig Boltzmann Institute for Traumatology, The Research Center in Cooperation with AUVA, 1200 Vienna, Austria
- Austrian Cluster for Tissue Regeneration, 1200 Vienna, Austria
| | - Stefan Tangl
- Karl Donath Laboratory for Hard Tissue and Biomaterial Research, University Clinic of Dentistry, Medical University of Vienna, 1090 Vienna, Austria
- Austrian Cluster for Tissue Regeneration, 1200 Vienna, Austria
| | - Andreas Beinlich
- Department of Earth Science, Faculty of Mathematics and Natural Sciences, University of Bergen, 5009 Bergen, Norway
| | - Neha Rana
- Center for Translational Oral Research (TOR), Department of Clinical Dentistry, Faculty of Medicine, University of Bergen, 5009 Bergen, Norway
| | - Mariano Sanz
- ETEP Research Group, Faculty of Odontology, University Complutense of Madrid, 28040 Madrid, Spain
| | - Einar K. Kristoffersen
- Department of Immunology and Transfusion Medicine, Haukeland University Hospital, 5021 Bergen, Norway
| | - Kamal Mustafa
- Center for Translational Oral Research (TOR), Department of Clinical Dentistry, Faculty of Medicine, University of Bergen, 5009 Bergen, Norway
| | - Reinhard Gruber
- Austrian Cluster for Tissue Regeneration, 1200 Vienna, Austria
- Department of Oral Biology, University Clinic of Dentistry, Medical University of Vienna, 1090 Vienna, Austria
- Department of Periodontology, School of Dental Medicine, University of Bern, 3010 Bern, Switzerland
- Correspondence: (S.S.); (R.G.); Tel.: +47-55586059 (S.S.); +43-(0)69910718472 (R.G.)
| |
Collapse
|
3
|
Stran-Lo Giudice AF, Ortiz AM, Sánchez-Labrador L, Cortés-Bretón Brinkmann J, Cobo-Vázquez CM, Meniz-García C. Current status of split-mouth controlled clinical trials comparing cyanoacrylate vs. conventional suture after lower third molar surgeries: a systematic literature review. Acta Odontol Scand 2022:1-9. [DOI: 10.1080/00016357.2022.2155238] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/24/2022]
Affiliation(s)
| | - Azahara María Ortiz
- Department of Dental Clinical Specialties, Faculty of Dentistry, Complutense University of Madrid, Madrid, Spain
| | - Luis Sánchez-Labrador
- Department of Dental Clinical Specialties, Faculty of Dentistry, Complutense University of Madrid, Madrid, Spain
| | - Jorge Cortés-Bretón Brinkmann
- Department of Dental Clinical Specialties, Faculty of Dentistry, Complutense University of Madrid, Madrid, Spain
- Surgical and Implant Therapies in the Oral Cavity Research Group, University Complutense, Madrid, Spain
| | - Carlos Manuel Cobo-Vázquez
- Department of Dental Clinical Specialties, Faculty of Dentistry, Complutense University of Madrid, Madrid, Spain
| | - Cristina Meniz-García
- Department of Dental Clinical Specialties, Faculty of Dentistry, Complutense University of Madrid, Madrid, Spain
- Surgical and Implant Therapies in the Oral Cavity Research Group, University Complutense, Madrid, Spain
| |
Collapse
|
4
|
Kačarević ŽP, Rider P, Elad A, Tadic D, Rothamel D, Sauer G, Bornert F, Windisch P, Hangyási DB, Molnar B, Kämmerer T, Hesse B, Bortel E, Bartosch M, Witte F. Biodegradable magnesium fixation screw for barrier membranes used in guided bone regeneration. Bioact Mater 2022; 14:15-30. [PMID: 35310352 PMCID: PMC8892133 DOI: 10.1016/j.bioactmat.2021.10.036] [Citation(s) in RCA: 14] [Impact Index Per Article: 4.7] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/16/2021] [Revised: 10/25/2021] [Accepted: 10/25/2021] [Indexed: 12/29/2022] Open
Abstract
An ideal fixation system for guided bone (GBR) regeneration in oral surgery must fulfil several criteria that includes the provision of adequate mechanical fixation, complete resorption when no longer needed, complete replacement by bone, as well as be biocompatible and have a good clinical manageability. For the first time, a biodegradable magnesium fixation screw made of the magnesium alloy WZM211 with a MgF2 coating has been designed and tested to fulfill these criteria. Adequate mechanical fixation was shown for the magnesium fixation screw in several benchtop tests that directly compared the magnesium fixation screw with an equivalent polymeric resorbable device. Results demonstrated slightly superior mechanical properties of the magnesium device in comparison to the polymeric device even after 4 weeks of degradation. Biocompatibility of the magnesium fixation screw was demonstrated in several in vitro and in vivo tests. Degradation of the magnesium screw was investigated in in vitro and in vivo tests, where it was found that the screw is resorbed slowly and completely after 52 weeks, providing adequate fixation in the early critical healing phase. Overall, the magnesium fixation screw demonstrates all of the key properties required for an ideal fixation screw of membranes used in guided bone regeneration (GBR) surgeries. The first comprehensive report on experimental data for a biodegradable metallic fixation pin for use in oral surgery is presented. Results demonstrated superior mechanical properties of the Mg fixation pin in comparison to the polymeric pin even after 4 weeks of degradation. The MgF2 coated Mg pin made of alloy WZM211 has a slow corrosion rate with a service time of 4 weeks and is fully resorped at 52 weeks after implantation.
Collapse
Affiliation(s)
- Željka Perić Kačarević
- Department of Anatomy Histology, Embryology, Pathology Anatomy and Pathology Histology, Faculty of Dental Medicine and Health, University of Osijek, Osijek, 31000, Croatia
- Department of Prosthodontics, Geriatric Dentistry and Craniomandibular Disorders, Charité – Universitätsmedizin Berlin, Aßmannshauser Straße 4–6, 14197, Berlin, Germany
- Botiss Biomaterials AG, Ullsteinstrasse 108, 12109, Berlin, Germany
| | - Patrick Rider
- Department of Prosthodontics, Geriatric Dentistry and Craniomandibular Disorders, Charité – Universitätsmedizin Berlin, Aßmannshauser Straße 4–6, 14197, Berlin, Germany
- Botiss Biomaterials AG, Ullsteinstrasse 108, 12109, Berlin, Germany
| | - Akiva Elad
- Botiss Biomaterials AG, Ullsteinstrasse 108, 12109, Berlin, Germany
| | - Drazen Tadic
- Botiss Biomaterials AG, Ullsteinstrasse 108, 12109, Berlin, Germany
| | - Daniel Rothamel
- CMF Surgery, Johannes BLA Hospital, Mönchengladbach, Germany
| | - Gerrit Sauer
- CMF Surgery, Johannes BLA Hospital, Mönchengladbach, Germany
| | | | - Peter Windisch
- Department of Periodontology, Semmelweis University, Budapest, Hungary
| | | | - Balint Molnar
- Department of Periodontology, Semmelweis University, Budapest, Hungary
| | - Till Kämmerer
- University Hospital Munich, Department of Dermatology and Allergy, Frauenlobstr. 9-11, 80337, Munich, Germany
| | | | - Emely Bortel
- Xploraytion GmbH, Bismarkstrasse 11, Berlin, Germany
| | - Marco Bartosch
- Biotrics Bioimplants AG, Ullsteinstrasse 108, 12109, Berlin, Germany
| | - Frank Witte
- Department of Prosthodontics, Geriatric Dentistry and Craniomandibular Disorders, Charité – Universitätsmedizin Berlin, Aßmannshauser Straße 4–6, 14197, Berlin, Germany
- Biotrics Bioimplants AG, Ullsteinstrasse 108, 12109, Berlin, Germany
- Corresponding author. Department of Prosthodontics, Geriatric Dentistry and Craniomandibular Disorders, Charité – Universitätsmedizin Berlin, Assmannshauser Straße 4–6, 14197, Berlin, Germany.
| |
Collapse
|
5
|
Amelotin Promotes Mineralization and Adhesion in Collagen-Based Systems. Cell Mol Bioeng 2022; 15:245-254. [PMID: 35611164 PMCID: PMC9124263 DOI: 10.1007/s12195-022-00722-2] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/17/2021] [Accepted: 03/09/2022] [Indexed: 01/10/2023] Open
Abstract
Introduction Periodontitis is characterized by the destruction of tooth-supporting tissues including the alveolar bone. Barrier membranes are used in dentistry for tissue regenerative therapy. Nevertheless, conventional membranes have issues related to membrane stability and direct induction of bone mineralization. Amelotin (AMTN), an enamel matrix protein, regulates hydroxyapatite crystal nucleation and growth. To apply an AMTN membrane in clinical practice, we investigated the mineralizing and adhesive effects of recombinant human (rh) AMTN in vitro using a collagen-based system. Methods Collagen hydrogel incorporated with rhAMTN (AMTN gel) and rhAMTN-coated dentin slices were prepared. AMTN gel was then applied on a commercial membrane (AMTN membrane). Samples were incubated for up to 24 h in mineralization buffer, and the structures were observed. The peak adhesive tensile strength between the dentin and AMTN membrane was measured. Using an enzyme-linked immunosorbent assay, the release kinetics of rhAMTN from the membrane were investigated. Results The AMTN gel resulted in the formation of hydroxyapatite deposits both onto and within the collagen matrix. Furthermore, coating the dentin surface with rhAMTN promoted the precipitation of mineral deposits on the surface. Interestingly, site-specific mineralization was observed in the AMTN membrane. Only 1% of rhAMTN was released from the membrane. Hence, the AMTN membrane adhered to the dentin surface with more than twofold greater tensile strength than that detected for a rhAMTN-free barrier membrane. Conclusions RhAMTN can accelerate mineralization and adhesion in collagen-based systems. Furthermore, the AMTN membrane could inform the optimal design of calcified tissue regenerative materials. Supplementary Information The online version contains supplementary material available at 10.1007/s12195-022-00722-2.
Collapse
|
6
|
Which substances loaded onto collagen scaffolds influence oral tissue regeneration?-an overview of the last 15 years. Clin Oral Investig 2020; 24:3363-3394. [PMID: 32827278 DOI: 10.1007/s00784-020-03520-0] [Citation(s) in RCA: 7] [Impact Index Per Article: 1.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/18/2020] [Accepted: 08/10/2020] [Indexed: 12/16/2022]
Abstract
BACKGROUND Collagen scaffolds are widely used for guided bone or tissue regeneration. Aiming to enhance their regenerative properties, studies have loaded various substances onto these scaffolds. This review aims to provide an overview of existing literature which conducted in vitro, in vivo, and clinical testing of drug-loaded collagen scaffolds and analyze their outcome of promoting oral regeneration. MATERIALS AND METHODS PubMed, Scopus, and Ovid Medline® were systematically searched for publications from 2005 to 2019. Journal articles assessing the effect of substances on oral hard or soft tissue regeneration, while using collagen carriers, were screened and qualitatively analyzed. Studies were grouped according to their used substance type-biological medical products, pharmaceuticals, and tissue-, cell-, and matrix-derived products. RESULTS A total of 77 publications, applying 36 different substances, were included. Collagen scaffolds were demonstrating favorable adsorption behavior and release kinetics which could even be modified. BMP-2 was investigated most frequently, showing positive effects on oral tissue regeneration. BMP-9 showed comparable results at lower concentrations. Also, FGF2 enhanced bone and periodontal healing. Antibiotics improved the scaffold's anti-microbial activity and reduced the penetrability for bacteria. CONCLUSION Growth factors showed promising results for oral tissue regeneration, while other substances were investigated less frequently. Found effects of investigated substances as well as adsorption and release properties of collagen scaffolds should be considered for further investigation. CLINICAL RELEVANCE Collagen scaffolds are reliable carriers for any of the applied substances. BMP-2, BMP-9, and FGF2 showed enhanced bone and periodontal healing. Antibiotics improved anti-microbial properties of the scaffolds.
Collapse
|
7
|
Andreotti Damante C, Cardoso MV, Hage Karam PSB, Haiter AC, Sant'ana ACP, Greghi SLA, Zangrando MSR, De Rezende MLR, Oliveira RC. Evaluation of Regular Market Ethyl Cyanoacrylate Cytotoxicity for Human Gingival Fibroblasts and Osteoblasts. Surg Infect (Larchmt) 2019; 21:29-34. [PMID: 31397637 DOI: 10.1089/sur.2019.141] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/26/2022] Open
Abstract
Background: The aim of this study was to evaluate the cytotoxicity of cyanoacrylate adhesives in an indirect contact assay in human gingival fibroblast (FGH) and oral osteoblasts (GO) lineages. Methods: Cover glasses were glued with adhesives following the ISO 10993-2012 protocol. The groups were: C (control with cells and regular Dulbecco Modified Eagle Medium; LC (liquid ethyl-cyanoacrylate); GC (ethyl-cyanoacrylate gel); EGC (easy gel [ethyl-cyanoacrylate]); and D (Dermabond [octyl-cyanoacrylate]). Each cell linage was plated in the sixth passage using 104 cells. Cell viability was measured by the MTT test at 24, 48, 72, and 96 hours. Data were analyzed by two-way analysis of variance complemented by the Tukey test, with p < 0.05 being significant. Results: Dermabond stimulated osteoblast viability at 72 h (p < 0.05). All other groups were similar to the control cells (p > 0.05). For the fibroblasts, there was no difference in the groups, including the control except that EGC was cytotoxic for these cells (p < 0.05). Conclusions: Ethyl-cyanoacrylate gel and liquid forms available on the general chemical market were not cytotoxic for oral osteoblasts and fibroblasts in most cases. However, the easy gel form was cytotoxic for fibroblasts.
Collapse
Affiliation(s)
- Carla Andreotti Damante
- Department of Periodontology, Bauru School of Dentistry, University of São Paulo, Bauru, Brazil
| | - Matheus Völz Cardoso
- Department of Periodontology, Bauru School of Dentistry, University of São Paulo, Bauru, Brazil
| | | | - Ana Carolina Haiter
- Department of Periodontology, Bauru School of Dentistry, University of São Paulo, Bauru, Brazil
| | | | | | | | | | | |
Collapse
|
8
|
Oral Applications of Cyanoacrylate Adhesives: A Literature Review. BIOMED RESEARCH INTERNATIONAL 2019; 2019:8217602. [PMID: 31008113 PMCID: PMC6441539 DOI: 10.1155/2019/8217602] [Citation(s) in RCA: 31] [Impact Index Per Article: 5.2] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 01/03/2019] [Accepted: 03/03/2019] [Indexed: 02/08/2023]
Abstract
Cyanoacrylate adhesives have been used in medicine and dentistry with some controversial opinions. The aim of this review was to summarize the relevant literature regarding the use of cyanoacrylate adhesives for oral wounds during dental and surgical procedures, with focus on the applications, indications, advantages, and disadvantages. In conclusion, in vivo and clinical studies have demonstrated in the last few years convincing results regarding the safety, efficacy, ease of application, and feasibility of all types of cyanoacrylate adhesives used in intra- and extraoral procedures.
Collapse
|
9
|
Song WK, Kang JH, Cha JK, Lee JS, Paik JW, Jung UW, Kim BH, Choi SH. Biomimetic characteristics of mussel adhesive protein-loaded collagen membrane in guided bone regeneration of rabbit calvarial defects. J Periodontal Implant Sci 2018; 48:305-316. [PMID: 30405938 PMCID: PMC6207793 DOI: 10.5051/jpis.2018.48.5.305] [Citation(s) in RCA: 6] [Impact Index Per Article: 0.9] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/23/2018] [Accepted: 10/11/2018] [Indexed: 11/08/2022] Open
Abstract
Purpose The aim of the present study was to evaluate the biocompatibility and barrier function of mussel adhesive protein (MAP)-loaded collagen membranes in guided bone regeneration (GBR). Methods Eight male New Zealand white rabbits were used. Four circular defects (diameter: 8 mm) were created in the calvarium of each animal. The defects were randomly assigned to 1) a negative control group, 2) a cyanoacrylate (CA)-loaded collagen membrane group (the CA group), 3) a MAP-loaded collagen membrane group (the MAP group), and 4) a group that received a polycaprolactone block with MAP-loaded collagen membrane (the MAP-PCL group). Specimens were harvested at 2 weeks (n=4) and 8 weeks (n=4) postoperatively for observational histology and histometric analysis. Results In the histologic analysis, MAP was completely absorbed without any byproducts. In contrast, some of the CA adhesive remained, showing an inflammatory reaction, at 8 weeks. In the MAP-PCL group, the MAP-loaded collagen membranes served as a barrier membrane despite their fast degradation in GBR. No significant difference was found in the amount of new bone between the MAP-PCL and MAP groups (1.82±0.86 mm2 and 2.60±0.65 mm2, respectively). Conclusions The MAP-loaded collagen membrane functioned efficiently in this rabbit calvarial GBR model, with excellent biocompatibility. Further research is needed to assess clinical applications in defect types that are more challenging for GBR than those used in the current model.
Collapse
Affiliation(s)
- Woong-Kyu Song
- Department of Periodontology, Research Institute for Periodontal Regeneration, Yonsei University College of Dentistry, Seoul, Korea
| | - Joo-Hyun Kang
- Department of Periodontology, Research Institute for Periodontal Regeneration, Yonsei University College of Dentistry, Seoul, Korea
| | - Jae-Kook Cha
- Department of Periodontology, Research Institute for Periodontal Regeneration, Yonsei University College of Dentistry, Seoul, Korea
| | - Jung-Seok Lee
- Department of Periodontology, Research Institute for Periodontal Regeneration, Yonsei University College of Dentistry, Seoul, Korea
| | - Jeong-Won Paik
- Department of Periodontology, Research Institute for Periodontal Regeneration, Yonsei University College of Dentistry, Seoul, Korea
| | - Ui-Won Jung
- Department of Periodontology, Research Institute for Periodontal Regeneration, Yonsei University College of Dentistry, Seoul, Korea
| | - Byung-Hoon Kim
- Department of Dental Materials, Chosun University School of Dentistry, Gwangju, Korea
| | - Seong-Ho Choi
- Department of Periodontology, Research Institute for Periodontal Regeneration, Yonsei University College of Dentistry, Seoul, Korea
| |
Collapse
|
10
|
Golob Deeb J, McCormack D, Laskin DM, Deeb GR. Use of Transalveolar Sutures for Anchorage of a Resorbable Membrane During Horizontal Ridge Augmentation. Clin Adv Periodontics 2018. [DOI: 10.1002/cap.10032] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/06/2022]
Affiliation(s)
- Janina Golob Deeb
- Department of Periodontics; School of Dentistry; Virginia Commonwealth University; Richmond VA
| | | | - Daniel M. Laskin
- Department of Oral and Maxillofacial Surgery; School of Dentistry; Virginia Commonwealth University
| | - George R. Deeb
- Department of Oral and Maxillofacial Surgery; School of Dentistry; Virginia Commonwealth University
| |
Collapse
|
11
|
Beitlitum I, Sebaoun A, Nemcovsky CE, Slutzkey S. Lateral bone augmentation in narrow posterior mandibles, description of a novel approach, and analysis of results. Clin Implant Dent Relat Res 2018; 20:96-101. [DOI: 10.1111/cid.12580] [Citation(s) in RCA: 8] [Impact Index Per Article: 1.1] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/29/2017] [Accepted: 12/19/2017] [Indexed: 11/30/2022]
Affiliation(s)
- Ilan Beitlitum
- Department of Periodontology and Oral Implantology, The Maurice and Gabriela Goldschleger School of Dental Medicine; Tel-Aviv University; Tel-Aviv Israel
| | - Alon Sebaoun
- Department of Periodontology and Oral Implantology, The Maurice and Gabriela Goldschleger School of Dental Medicine; Tel-Aviv University; Tel-Aviv Israel
| | - Carlos E. Nemcovsky
- Department of Periodontology and Oral Implantology, The Maurice and Gabriela Goldschleger School of Dental Medicine; Tel-Aviv University; Tel-Aviv Israel
| | - Shimshon Slutzkey
- Department of Periodontology and Oral Implantology, The Maurice and Gabriela Goldschleger School of Dental Medicine; Tel-Aviv University; Tel-Aviv Israel
| |
Collapse
|