1
|
Vega MF, Libonatti C, Ramos OY, Basualdo M. [Characterization of a microbial community isolated from honey bee colonies]. Rev Argent Microbiol 2024; 56:265-269. [PMID: 38762351 DOI: 10.1016/j.ram.2024.01.001] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/15/2023] [Revised: 12/01/2023] [Accepted: 01/11/2024] [Indexed: 05/20/2024] Open
Abstract
The microbial communities within honey bee colonies contribute to the defense against pathogens. The goal of this study was to isolate, identify, and lyophilize lactic acid bacteria and bifidobacteria from the gut of nurse bees and bee bread in Apis mellifera colonies. Bacterial cultures from the intestinal content were conducted, and subsequently identified, sequenced, and lyophilized. Cross-antagonism among them was also assessed. Studies based on 16 S rRNA gene Sanger sequencing revealed that the MC3 strain had 100% identity with Bifidobacterium choladohabitans, the PP2B strain showed 99.16% similarity with Enterococcus faecium, while the PP1 strain exhibited 99.49% similarity with Lacticaseibacillus sp. and the PP1B strain showed 99.32% similarity with Lacticaseibacillus sp. There was no evidence of cross-antagonism among the strains, and the lyophilization process showed good stability and conservation. This is the first report of the isolation of B. choladohabitans from honey bee gut in Argentina, and also associates the presence of E. faecium with bee bread.
Collapse
Affiliation(s)
- María Fernanda Vega
- Universidad Nacional del Centro de la Provincia de Buenos Aires- PROANVET, Facultad de Ciencias Veterinarias, Tandil, Provincia de Buenos Aires, Argentina.
| | - Carina Libonatti
- Universidad Nacional del Centro de la Provincia de Buenos Aires- PROANVET, Facultad de Ciencias Veterinarias, Tandil, Provincia de Buenos Aires, Argentina
| | - Ornela Y Ramos
- Universidad Nacional del Centro de la Provincia de Buenos Aires- PROANVET, Facultad de Ciencias Veterinarias, Tandil, Provincia de Buenos Aires, Argentina; CONICET
| | - Marina Basualdo
- Universidad Nacional del Centro de la Provincia de Buenos Aires- PROANVET, Facultad de Ciencias Veterinarias, Tandil, Provincia de Buenos Aires, Argentina
| |
Collapse
|
2
|
Coelho-Rocha ND, de Jesus LCL, Barroso FAL, da Silva TF, Ferreira E, Gonçalves JE, Dos Santos Martins F, de Oliveira Carvalho RD, Barh D, Azevedo VADC. Evaluation of Probiotic Properties of Novel Brazilian Lactiplantibacillus plantarum Strains. Probiotics Antimicrob Proteins 2023; 15:160-174. [PMID: 36028786 DOI: 10.1007/s12602-022-09978-6] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Accepted: 08/15/2022] [Indexed: 01/20/2023]
Abstract
Beneficial effects of Lactiplantibacillus plantarum strains have been widely reported. Knowing that the effects of probiotic bacteria are strain-dependent, this study aimed to characterize the probiotic properties and investigate the gastrointestinal protective effects of nine novel L. plantarum strains isolated from Bahia, Brazil. The probiotic functionality was first evaluated in vitro by characterizing bile salt and acidic tolerance, antibacterial activity, and adhesion to Caco-2 cells. Antibiotic resistance profile, mucin degradation, and hemolytic activity assays were also performed to evaluate safety features. In vivo analyses were conducted to investigate the anti-inflammatory effects of the strains on a mouse model of 5-Fluorouracil-induced mucositis. Our results suggest that the used L. plantarum strains have good tolerance to bile salts and low pH and can inhibit commonly gastrointestinal pathogens. Lp2 and Lpl1 strains also exhibited high adhesion rates to Caco-2 cells (13.64 and 9.05%, respectively). Phenotypical resistance to aminoglycosides, vancomycin, and tetracycline was observed for most strains. No strain showed hemolytic or mucolytic activity. Seven strains had a protective effect against histopathological and inflammatory damage induced by 5-FU. Gene expression analysis of inflammatory markers showed that five strains upregulated interleukin 10 (Il10), while four downregulated both interleukin 6 (Il6) and interleukin 1b (Il1b). Additionally, all strains reduced eosinophilic and neutrophilic infiltration; however, they could not prevent weight loss or reduced liquid/ food intake. Altogether, our study suggests these Brazilian L. plantarum strains present good probiotic characteristics and safety levels for future applications and can be therapeutically adjuvant alternatives to prevent/treat intestinal mucositis.
Collapse
Affiliation(s)
- Nina Dias Coelho-Rocha
- Department of Genetics, Ecology, and Evolution, Biological Sciences Institute, Federal University of Minas Gerais, Minas Gerais, Belo Horizonte, 31270-901, Brazil
| | - Luís Cláudio Lima de Jesus
- Department of Genetics, Ecology, and Evolution, Biological Sciences Institute, Federal University of Minas Gerais, Minas Gerais, Belo Horizonte, 31270-901, Brazil
| | - Fernanda Alvarenga Lima Barroso
- Department of Genetics, Ecology, and Evolution, Biological Sciences Institute, Federal University of Minas Gerais, Minas Gerais, Belo Horizonte, 31270-901, Brazil
| | - Tales Fernando da Silva
- Department of Genetics, Ecology, and Evolution, Biological Sciences Institute, Federal University of Minas Gerais, Minas Gerais, Belo Horizonte, 31270-901, Brazil
| | - Enio Ferreira
- Department of General Pathology, Biological Sciences Institute, Federal University of Minas Gerais, Minas Gerais, Belo Horizonte, 31270-901, Brazil
| | - José Eduardo Gonçalves
- Department of Pharmaceutic Products, Pharmacy Faculty, Federal University of Minas Gerais, Minas Gerais, Belo Horizonte, 31270-901, Brazil
| | - Flaviano Dos Santos Martins
- Department of Microbiology, Biological Sciences Institute, Federal University of Minas Gerais, Minas Gerais, Belo Horizonte, 31270-901, Brazil
| | - Rodrigo Dias de Oliveira Carvalho
- Department of Biochemistry and Biophysics, Institute of Health Sciences, Federal University of Bahia, Salvador, Bahia, 40110-909, Brazil
| | - Debmalya Barh
- Institute of Integrative Omics and Applied Biotechnology (IIOAB), West Bengal, Nonakuri, Purba Medinipur, 721172, India
| | - Vasco Ariston de Carvalho Azevedo
- Department of Genetics, Ecology, and Evolution, Biological Sciences Institute, Federal University of Minas Gerais, Minas Gerais, Belo Horizonte, 31270-901, Brazil.
| |
Collapse
|
3
|
Luo X, Wan Q, Cheng L, Xu R. Mechanisms of bone remodeling and therapeutic strategies in chronic apical periodontitis. Front Cell Infect Microbiol 2022; 12:908859. [PMID: 35937695 PMCID: PMC9353524 DOI: 10.3389/fcimb.2022.908859] [Citation(s) in RCA: 38] [Impact Index Per Article: 12.7] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/31/2022] [Accepted: 06/27/2022] [Indexed: 12/19/2022] Open
Abstract
Chronic periapical periodontitis (CAP) is a typical oral disease in which periodontal inflammation caused by an odontogenic infection eventually leads to bone loss. Uncontrolled infections often lead to extensive bone loss around the root tip, which ultimately leads to tooth loss. The main clinical issue in the treatment of periapical periodontitis is the repair of jawbone defects, and infection control is the first priority. However, the oral cavity is an open environment, and the distribution of microorganisms through the mouth in jawbone defects is inevitable. The subversion of host cell metabolism by oral microorganisms initiates disease. The presence of microorganisms stimulates a series of immune responses, which in turn stimulates bone healing. Given the above background, we intended to examine the paradoxes and connections between microorganisms and jaw defect repair in anticipation of new ideas for jaw defect repair. To this end, we reviewed the microbial factors, human signaling pathways, immune cells, and cytokines involved in the development of CAP, as well as concentrated growth factor (CGF) and stem cells in bone defect repair, with the aim of understanding the impact of microbial factors on host cell metabolism to inform the etiology and clinical management of CAP.
Collapse
Affiliation(s)
| | | | - Lei Cheng
- *Correspondence: Lei Cheng, ; Ruoshi Xu,
| | - Ruoshi Xu
- *Correspondence: Lei Cheng, ; Ruoshi Xu,
| |
Collapse
|
4
|
Cheng X, Zhou X, Liu C, Xu X. Oral Osteomicrobiology: The Role of Oral Microbiota in Alveolar Bone Homeostasis. Front Cell Infect Microbiol 2021; 11:751503. [PMID: 34869060 PMCID: PMC8635720 DOI: 10.3389/fcimb.2021.751503] [Citation(s) in RCA: 16] [Impact Index Per Article: 4.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/01/2021] [Accepted: 10/29/2021] [Indexed: 02/05/2023] Open
Abstract
Osteomicrobiology is a new research field in which the aim is to explore the role of microbiota in bone homeostasis. The alveolar bone is that part of the maxilla and mandible that supports the teeth. It is now evident that naturally occurring alveolar bone loss is considerably stunted in germ-free mice compared with specific-pathogen-free mice. Recently, the roles of oral microbiota in modulating host defense systems and alveolar bone homeostasis have attracted increasing attention. Moreover, the mechanistic understanding of oral microbiota in mediating alveolar bone remodeling processes is undergoing rapid progress due to the advancement in technology. In this review, to provide insight into the role of oral microbiota in alveolar bone homeostasis, we introduced the term “oral osteomicrobiology.” We discussed regulation of alveolar bone development and bone loss by oral microbiota under physiological and pathological conditions. We also focused on the signaling pathways involved in oral osteomicrobiology and discussed the bridging role of osteoimmunity and influencing factors in this process. Finally, the critical techniques for osteomicrobiological investigations were introduced.
Collapse
Affiliation(s)
- Xingqun Cheng
- State Key Laboratory of Oral Diseases, National Clinical Research Center for Oral Diseases, West China Hospital of Stomatology, Sichuan University, Chengdu, China
| | - Xuedong Zhou
- State Key Laboratory of Oral Diseases, National Clinical Research Center for Oral Diseases, West China Hospital of Stomatology, Sichuan University, Chengdu, China
| | - Chengcheng Liu
- State Key Laboratory of Oral Diseases, National Clinical Research Center for Oral Diseases, West China Hospital of Stomatology, Sichuan University, Chengdu, China
| | - Xin Xu
- State Key Laboratory of Oral Diseases, National Clinical Research Center for Oral Diseases, West China Hospital of Stomatology, Sichuan University, Chengdu, China
| |
Collapse
|
5
|
Kumar G, Tewari S, Tagg J, Chikindas ML, Popov IV, Tiwari SK. Can Probiotics Emerge as Effective Therapeutic Agents in Apical Periodontitis? A Review. Probiotics Antimicrob Proteins 2021; 13:299-314. [PMID: 33580864 DOI: 10.1007/s12602-021-09750-2] [Citation(s) in RCA: 6] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Accepted: 01/29/2021] [Indexed: 01/09/2023]
Abstract
Apical periodontitis (AP) is a biofilm-associated disease initiated by the invasion of dental pulp by microorganisms from the oral cavity. Eradication of intracanal microbial infection is an important goal of endodontic treatment, and this is typically accomplished by mechanical instrumentation and application of sodium hypochlorite and chlorhexidine. However, these agents are tissue-irritating at higher concentrations and cytotoxic. Certain probiotics have been found effective in controlling marginal periodontitis, as evidenced by reduction of pathogenic bacterial loads, gains in clinical attachment levels, and reduced bleeding on probing. In vitro studies have shown inhibitory activity of some probiotics against endodontic pathogens. Similarly, in vivo studies in rats have demonstrated a positive immuno-modulatory role of probiotics in AP, as manifested by decreased levels of proinflammatory markers and increased levels of anti-inflammatory markers. A role for probiotics in effecting a reduction of bone resorption has also been reported. This review provides an outline of current research into the probiotic management of AP, with a focus on understanding the mechanisms of their direct antagonistic activity against target pathogens and of their beneficial modulation of the immune system.
Collapse
Affiliation(s)
- Gaurav Kumar
- Department of Conservative Dentistry and Endodontics, Post Graduate Institute of Dental Sciences, Rohtak, India
| | - Sanjay Tewari
- Department of Conservative Dentistry and Endodontics, Post Graduate Institute of Dental Sciences, Rohtak, India
| | - John Tagg
- BLIS Technologies Ltd, Dunedin, New Zealand
| | - Michael Leonidas Chikindas
- Health Promoting Naturals Laboratory, School of Environmental and Biological Sciences, Rutgers State University, 65 Dudley Road, New Brunswick, NJ, 08901, USA.,Center for Agrobiotechnology, Don State Technical University, Gagarin Square 1, Rostov-on-Don, 344002, Russia.,I.M. Sechenov First Moscow State Medical University, Bol'shaya Pirogovskaya Str., 19c1, Moscow, 119146, Russia
| | - Igor V Popov
- Center for Agrobiotechnology, Don State Technical University, Gagarin Square 1, Rostov-on-Don, 344002, Russia
| | | |
Collapse
|
6
|
Kalaycı Yüksek F, Gümüş D, Gündoğan Gİ, Anğ Küçüker M. Cell-Free Lactobacillus sp Supernatants Modulate Staphylococcus aureus Growth, Adhesion and Invasion to Human Osteoblast (HOB) Cells. Curr Microbiol 2020; 78:125-132. [PMID: 33108492 DOI: 10.1007/s00284-020-02247-1] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/30/2020] [Accepted: 10/09/2020] [Indexed: 11/24/2022]
Abstract
The increase of antibiotic resistance has become a problem. Probiotic bacteria play an important role in preventive/supportive medicine. Therefore, we examined the inhibitory effects of four different Lactobacillus species' (L. acidophilus-La, L. plantarum-Lp, L. fermentum-Lf and L. rhamnosus-Lr) cell-free supernatants (CFSs) on growth, adhesion, invasion, and biofilm formation of Staphylococcus aureus and effects of S. aureus, CFSs, and S. aureus-CFSs co-existence on human osteoblast (HOB) cell viability. Growth alterations were measured spectrophotometrically. Adhesive/invasive bacterial counts were detected by colony counting. Biofilm was evaluated using microtiter plate assay. The MTT assay was used for detection of HOB cell viability. The growth of MSSA significantly (P < 0.01) decreased in the presence of two CFSs (Lf and Lr) (P < 0.01); the growth of MRSA significantly (P < 0.05) reduced in the presence of La CFSs. All tested CFSs were found to reduce adhesion and invasion of MSSA (P < 0.0001). The adhesion of MRSA was enhanced (P < 0.0001) in the presence of all CFSs except La and the invasion of MRSA was decreased (P < 0.01) in the presence of Lr and Lf CFSs. All tested CFSs were shown to inhibit biofilm formation significantly (P < 0.0001). The reduction of S. aureus infected HOB cell viability and exposed to all CFSs except Lr that was found to be significant (P < 0.0001). The viability of HOB cell during co-incubation with MSSA and CFSs was shown to be decreased significantly. However co-existence of MRSA and CFSs did not alter HOB cell viability. These results suggested that lactobacilli as probiotics have low protective effects on MRSA-infected host cells.
Collapse
Affiliation(s)
- Fatma Kalaycı Yüksek
- Department of Medical Microbiology, Medical Faculty, Istanbul Yeni Yüzyıl University, Istanbul, Turkey.
| | - Defne Gümüş
- Department of Medical Microbiology, Medical Faculty, Istanbul Yeni Yüzyıl University, Istanbul, Turkey
| | - Gül İpek Gündoğan
- Department of Histology and Embryology, Medical Faculty, Istanbul Yeni Yüzyıl University, Istanbul, Turkey
| | - Mine Anğ Küçüker
- Department of Medical Microbiology, Medical Faculty, Istanbul Yeni Yüzyıl University, Istanbul, Turkey
| |
Collapse
|
7
|
Ponce JB, Midena RZ, Pinke KH, Weckwerth PH, Andrade FBD, Lara VS. In vitro treatment of Enterococcus faecalis with calcium hydroxide impairs phagocytosis by human macrophages. Acta Odontol Scand 2019; 77:158-163. [PMID: 30618320 DOI: 10.1080/00016357.2018.1533142] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/12/2023]
Abstract
OBJECTIVE Monocyte-derived macrophages (MDMs) ability to phagocytize and produce nitric oxide (NO) was tested against root-canal strains of Enterococcus faecalis submitted to alkaline stress. Root-canal strains were also compared with urine Enterococci. MATERIALS AND METHODS Enterococcus faecalis were stressed with alkaline-BHI broth and incubated in vitro at a cell/bacteria ratio of 1:5. Phagocytosis was analyzed by fluorescence microscopy using acridine orange stain, and NO concentration was measured in supernatants. RESULTS AND CONCLUSIONS Alkaline-stress significantly impaired MDMs phagocytosis of E. faecalis strains analyzed, except in ATCC4083 isolated from a pulpless tooth, but NO production was unchanged. Comparison of different strains showed the urine isolate had higher NO levels than root canal strains. Alterations in the bacterial cell wall structures after alkaline-stress possibly made bacteria less recognizable and phagocytized by MDMs but did not affect their ability to activate NO production. Furthermore, root canal strains elicited different responses by immune cells compared with strains from urine. Clinically, impaired phagocytosis of E. faecalis could contribute to their persistence in root canal systems previously treated with calcium hydroxide.
Collapse
Affiliation(s)
- José Burgos Ponce
- Department of Surgery, Stomatology, Pathology and Radiology, Bauru School of Dentistry, University of São Paulo, Bauru, Brazil
| | - Raquel Zanin Midena
- Department of Operative Dentistry, Endodontics and Dental Materials, Bauru School of Dentistry, University of São Paulo, Bauru, Brazil
| | - Karen Henriette Pinke
- Department of Surgery, Stomatology, Pathology and Radiology, Bauru School of Dentistry, University of São Paulo, Bauru, Brazil
| | | | - Flaviana Bombarda de Andrade
- Department of Operative Dentistry, Endodontics and Dental Materials, Bauru School of Dentistry, University of São Paulo, Bauru, Brazil
| | - Vanessa Soares Lara
- Department of Surgery, Stomatology, Pathology and Radiology, Bauru School of Dentistry, University of São Paulo, Bauru, Brazil
| |
Collapse
|