1
|
Shoraka S, Hosseinian SM, Hasibi A, Ghaemi A, Mohebbi SR. The role of hepatitis B virus genome variations in HBV-related HCC: effects on host signaling pathways. Front Microbiol 2023; 14:1213145. [PMID: 37588887 PMCID: PMC10426804 DOI: 10.3389/fmicb.2023.1213145] [Citation(s) in RCA: 2] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/27/2023] [Accepted: 07/12/2023] [Indexed: 08/18/2023] Open
Abstract
Hepatocellular carcinoma (HCC) is a significant global health issue, with a high prevalence in many regions. There are variations in the etiology of HCC in different regions, but most cases are due to long-term infection with viral hepatitis. Hepatitis B virus (HBV) is responsible for more than 50% of virus-related HCC, which highlights the importance of HBV in pathogenesis of the disease. The development and progression of HBV-related HCC is a complex multistep process that can involve host, viral, and environmental factors. Several studies have suggested that some HBV genome mutations as well as HBV proteins can dysregulate cell signaling pathways involved in the development of HCC. Furthermore, it seems that the pathogenicity, progression of liver diseases, response to treatment and also viral replication are different among HBV mutants. Understanding the relationship between HBV genome variations and host signaling pathway alteration will improve our understanding of the molecular pathogenesis of HBV-related HCC. Furthermore, investigating commonly dysregulated pathways in HBV-related HCC is necessary to discover more specific therapeutic targets and develop more effective strategies for HCC treatment. The objective of this review is to address the role of HBV in the HCC progression and primarily focus on the impacts of HBV genome variations on HCC-related signaling pathways.
Collapse
Affiliation(s)
- Shahrzad Shoraka
- Basic and Molecular Epidemiology of Gastrointestinal Disorders Research Center, Research Institute for Gastroenterology and Liver Diseases, Shahid Beheshti University of Medical Sciences, Tehran, Iran
- Department of Microbiology and Microbial Biotechnology, Faculty of Life Sciences and Biotechnology, Shahid Beheshti University, Tehran, Iran
| | - Seyed Mahdi Hosseinian
- Gastroenterology and Liver Diseases Research Center, Research Institute for Gastroenterology and Liver Diseases, Shahid Beheshti University of Medical Sciences, Tehran, Iran
| | - Ayda Hasibi
- Foodborne and Waterborne Diseases Research Center, Research Institute for Gastroenterology and Liver Diseases, Shahid Beheshti University of Medical Sciences, Tehran, Iran
| | - Amir Ghaemi
- Department of Virology, Pasteur Institute of Iran, Tehran, Iran
| | - Seyed Reza Mohebbi
- Gastroenterology and Liver Diseases Research Center, Research Institute for Gastroenterology and Liver Diseases, Shahid Beheshti University of Medical Sciences, Tehran, Iran
| |
Collapse
|
2
|
Liu WC, Wu IC, Lee YC, Lin CP, Cheng JH, Lin YJ, Yen CJ, Cheng PN, Li PF, Cheng YT, Cheng PW, Sun KT, Yan SL, Lin JJ, Yang JC, Chang KC, Ho CH, Tseng VS, Chang BCH, Wu JC, Chang TT. Hepatocellular carcinoma-associated single-nucleotide variants and deletions identified by the use of genome-wide high-throughput analysis of hepatitis B virus. J Pathol 2017; 243:176-192. [PMID: 28696069 DOI: 10.1002/path.4938] [Citation(s) in RCA: 22] [Impact Index Per Article: 3.1] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/18/2016] [Revised: 05/31/2017] [Accepted: 07/04/2017] [Indexed: 12/26/2022]
Abstract
This study investigated hepatitis B virus (HBV) single-nucleotide variants (SNVs) and deletion mutations linked with hepatocellular carcinoma (HCC). Ninety-three HCC patients and 108 non-HCC patients were enrolled for HBV genome-wide next-generation sequencing (NGS) analysis. A systematic literature review and a meta-analysis were performed to validate NGS-defined HCC-associated SNVs and deletions. The experimental results identified 60 NGS-defined HCC-associated SNVs, including 41 novel SNVs, and their pathogenic frequencies. Each SNV was specific for either genotype B (n = 24) or genotype C (n = 34), except for nt53C, which was present in both genotypes. The pathogenic frequencies of these HCC-associated SNVs showed a distinct U-shaped distribution pattern. According to the meta-analysis and literature review, 167 HBV variants from 109 publications were categorized into four levels (A-D) of supporting evidence that they are associated with HCC. The proportion of NGS-defined HCC-associated SNVs among these HBV variants declined significantly from 75% of 12 HCC-associated variants by meta-analysis (Level A) to 0% of 10 HCC-unassociated variants by meta-analysis (Level D) (P < 0.0001). PreS deletions were significantly associated with HCC, in terms of deletion index, for both genotypes B (P = 0.030) and C (P = 0.049). For genotype C, preS deletions involving a specific fragment (nt2977-3013) were significantly associated with HCC (HCC versus non-HCC, 6/34 versus 0/32, P = 0.025). Meta-analysis of preS deletions showed significant association with HCC (summary odds ratio 3.0; 95% confidence interval 2.3-3.9). Transfection of Huh7 cells showed that all of the five novel NGS-defined HCC-associated SNVs in the small surface region influenced hepatocarcinogenesis pathways, including endoplasmic reticulum-stress and DNA repair systems, as shown by microarray, real-time polymerase chain reaction and western blot analysis. Their carcinogenic mechanisms are worthy of further research. Copyright © 2017 Pathological Society of Great Britain and Ireland. Published by John Wiley & Sons, Ltd.
Collapse
Affiliation(s)
- Wen-Chun Liu
- Department of Internal Medicine, National Cheng Kung University Hospital, College of Medicine, National Cheng Kung University, Tainan, Taiwan, ROC.,Infectious Disease and Signalling Research Centre, National Cheng Kung University, Tainan, Taiwan, ROC
| | - I-Chin Wu
- Department of Internal Medicine, National Cheng Kung University Hospital, College of Medicine, National Cheng Kung University, Tainan, Taiwan, ROC.,Infectious Disease and Signalling Research Centre, National Cheng Kung University, Tainan, Taiwan, ROC
| | - Yen-Chien Lee
- Department of Oncology, Tainan Hospital, Ministry of Health and Welfare, Tainan, Taiwan, ROC.,Institute of Clinical Medicine, College of Medicine, National Cheng Kung University, Tainan, Taiwan, ROC
| | | | - Ji-Hong Cheng
- Department of Computer Science and Information Engineering, National Cheng Kung University, Tainan, Taiwan, ROC
| | - Yih-Jyh Lin
- Department of Surgery, National Cheng Kung University College of Medicine and Hospital, Tainan, Taiwan, ROC
| | - Chia-Jui Yen
- Department of Internal Medicine, National Cheng Kung University Hospital, College of Medicine, National Cheng Kung University, Tainan, Taiwan, ROC.,Infectious Disease and Signalling Research Centre, National Cheng Kung University, Tainan, Taiwan, ROC
| | - Pin-Nan Cheng
- Department of Internal Medicine, National Cheng Kung University Hospital, College of Medicine, National Cheng Kung University, Tainan, Taiwan, ROC.,Infectious Disease and Signalling Research Centre, National Cheng Kung University, Tainan, Taiwan, ROC
| | - Pei-Fu Li
- Institute of Medical Informatics, National Cheng Kung University, Tainan, Taiwan, ROC
| | - Yi-Ting Cheng
- Institute of Medical Informatics, National Cheng Kung University, Tainan, Taiwan, ROC
| | - Pei-Wen Cheng
- Department of Information and Learning Technology, Science and Engineering College, National University of Tainan, Tainan, Taiwan, ROC
| | - Koun-Tem Sun
- Department of Information and Learning Technology, Science and Engineering College, National University of Tainan, Tainan, Taiwan, ROC
| | - Shu-Ling Yan
- Department of Internal Medicine, National Cheng Kung University Hospital, College of Medicine, National Cheng Kung University, Tainan, Taiwan, ROC
| | - Jia-Jhen Lin
- Department of Internal Medicine, National Cheng Kung University Hospital, College of Medicine, National Cheng Kung University, Tainan, Taiwan, ROC
| | - Jui-Chu Yang
- Human Biobank, Research Centre of Clinical Medicine, National Cheng Kung University Hospital, Tainan, Taiwan, ROC
| | - Kung-Chao Chang
- Human Biobank, Research Centre of Clinical Medicine, National Cheng Kung University Hospital, Tainan, Taiwan, ROC
| | - Cheng-Hsun Ho
- Department of Internal Medicine, National Cheng Kung University Hospital, College of Medicine, National Cheng Kung University, Tainan, Taiwan, ROC.,Infectious Disease and Signalling Research Centre, National Cheng Kung University, Tainan, Taiwan, ROC
| | - Vincent S Tseng
- Department of Computer Science, National Chiao Tung University, Hsinchu, Taiwan, ROC
| | | | - Jaw-Ching Wu
- Institute of Clinical Medicine, School of Medicine, National Yang-Ming University, Taipei, Taiwan, ROC.,Translational Research Division, Medical Research Department, Taipei Veterans General Hospital, Taipei, Taiwan, ROC
| | - Ting-Tsung Chang
- Department of Internal Medicine, National Cheng Kung University Hospital, College of Medicine, National Cheng Kung University, Tainan, Taiwan, ROC.,Infectious Disease and Signalling Research Centre, National Cheng Kung University, Tainan, Taiwan, ROC
| |
Collapse
|
3
|
Kim H, Lee SA, Kim BJ. X region mutations of hepatitis B virus related to clinical severity. World J Gastroenterol 2016; 22:5467-5478. [PMID: 27350725 PMCID: PMC4917607 DOI: 10.3748/wjg.v22.i24.5467] [Citation(s) in RCA: 28] [Impact Index Per Article: 3.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 03/24/2016] [Revised: 05/17/2016] [Accepted: 06/02/2016] [Indexed: 02/06/2023] Open
Abstract
Chronic hepatitis B virus (HBV) infection remains a major health problem, with more than 240 million people chronically infected worldwide and potentially 650000 deaths per year due to advanced liver diseases including liver cirrhosis and hepatocellular carcinoma (HCC). HBV-X protein (HBx) contributes to the biology and pathogenesis of HBV via stimulating virus replication or altering host gene expression related to HCC. The HBV X region contains only 465 bp encoding the 16.5 kDa HBx protein, which also contains several critical cis-elements such as enhancer II, the core promoter and the microRNA-binding region. Thus, mutations in this region may affect not only the HBx open reading frame but also the overlapped cis-elements. Recently, several types of HBx mutations significantly associated with clinical severity have been described, although the functional mechanism in most of these cases remains unsolved. This review article will mainly focus on the HBx mutations proven to be significantly related to clinical severity via epidemiological studies.
Collapse
|
4
|
Yang Z, Zhuang L, Lu Y, Xu Q, Tang B, Chen X. Naturally occurring basal core promoter A1762T/G1764A dual mutations increase the risk of HBV-related hepatocellular carcinoma: a meta-analysis. Oncotarget 2016; 7:12525-36. [PMID: 26848866 PMCID: PMC4914302 DOI: 10.18632/oncotarget.7123] [Citation(s) in RCA: 30] [Impact Index Per Article: 3.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/05/2015] [Accepted: 01/23/2016] [Indexed: 02/05/2023] Open
Abstract
Basal core promoter (BCP) A1762T/G1764A dual mutations in hepatocarcinogenesis remain controversial. Published studies up to June 1, 2015 investigating the frequency of A1762T/G1764A dual mutations from chronic hepatitis B virus (HBV) infection, including hepatocellular carcinoma (HCC), were systematically identified. A total of 10,240 patients with chronic HBV infection, including 3729 HCC cases, were included in 52 identified studies. HCC patients had a higher frequency of BCP A1762T/G1764A dual mutations compared with asymptomatic HBsAg carriers (ASC) and patients with chronic hepatitis B (CHB) and liver cirrhosis (LC) (OR = 5.59, P < 0.00001; OR = 2.87, P < 0.00001; OR = 1.55, P = 0.02, respectively). No statistically significant difference was observed in the frequency of A1762T/G1764A dual mutations in cirrhotic HCC versus non-cirrhotic HCC patients (OR = 2.06, P = 0.05). Chronic HBV-infected patients and HCC patients with genotype B had a significantly lower risk of A1762T/G1764A dual mutations compared with patients with genotype C (OR = 0.30, P < 0.0001 and OR = 0.34, P = 0.04, respectively). In HBV genotype C subjects, A1762T/G1764A dual mutations contributed to significantly higher risk for HCC developing compared with non-mutation ones (OR = 3.47, P < 0.00001). In conclusion, A1762T/G1764A dual mutations increase the risk of HBV-related hepatocellular carcinoma, particularly in an HBV genotype C population, even without progression to cirrhosis.
Collapse
Affiliation(s)
- Zongguo Yang
- 1 Shanghai Public Health Clinical Center, Fudan University, Shanghai, China
| | - Liping Zhuang
- 2 Fudan University Shanghai Cancer Center, Shanghai, China
- 3 Shanghai Medical College, Fudan University, Shanghai, China
| | - Yunfei Lu
- 1 Shanghai Public Health Clinical Center, Fudan University, Shanghai, China
| | - Qingnian Xu
- 1 Shanghai Public Health Clinical Center, Fudan University, Shanghai, China
| | - Bozong Tang
- 1 Shanghai Public Health Clinical Center, Fudan University, Shanghai, China
| | - Xiaorong Chen
- 1 Shanghai Public Health Clinical Center, Fudan University, Shanghai, China
| |
Collapse
|
5
|
ARTARINI ANITA, GEBY JESSICA HANARY, RINI KARTIKASARI RADEN, RIANI CATUR, SOEFIE RETNONINGRUM DEBBIE. Detection of Hepatitis B Virus X Gene Mutation from Local Clinical Samples. MICROBIOLOGY INDONESIA 2016. [DOI: 10.5454/mi.10.1.2] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.1] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/05/2023] Open
|
6
|
Park YM. Clinical utility of complex mutations in the core promoter and proximal precore regions of the hepatitis B virus genome. World J Hepatol 2015; 7:113-120. [PMID: 25625002 PMCID: PMC4295188 DOI: 10.4254/wjh.v7.i1.113] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 08/28/2014] [Revised: 10/12/2014] [Accepted: 10/29/2014] [Indexed: 02/06/2023] Open
Abstract
The core promoter and proximal precore regions are the most complex portions of the hepatitis B virus (HBV) genome. These regions cooperatively regulate viral replication and differentially regulate the synthesis of the viral proteins E, core, and X. Multiple mutations in these regions are associated with the persistency of viral infection and the development of cirrhosis and hepatocellular carcinoma (HCC). In South Korea, nearly all HBVs are classified as HBV genotype C2; the majority of these viruses have the basal core promoter double mutation, a precore stop mutation, or both. These mutations may play a role in the alteration of viral and clinical features, and abundant and complex mutations are particularly prevalent in the core promoter and proximal precore regions. We previously demonstrated that the accumulation of ≥ 6 mutations at eight key nucleotides located in these regions (G1613A, C1653T, T1753V, A1762T, G1764A, A1846T, G1896A, and G1899A) is a useful marker to predict the development of HCC regardless of advanced liver disease. In addition, certain mutation combinations were predominant in cases with ≥ 4 mutations. In cases with ≤ 5 mutations, a low Hepatitis B e antigen titer (< 35 signal to noise ratio) was indicative of HCC risk. Viral mutation data of the single HBV genotype C2 suggest that the combined effect of the number and pattern of mutations in the core promoter and proximal precore regions is helpful in predicting HCC risk.
Collapse
|
7
|
Su YH, Lin SY, Song W, Jain S. DNA markers in molecular diagnostics for hepatocellular carcinoma. Expert Rev Mol Diagn 2014; 14:803-17. [PMID: 25098554 DOI: 10.1586/14737159.2014.946908] [Citation(s) in RCA: 17] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/14/2022]
Abstract
Hepatocellular carcinoma (HCC) is the one of the leading causes of cancer mortality in the world, mainly due to the difficulty of early detection and limited therapeutic options. The implementation of HCC surveillance programs in well-defined, high-risk populations were only able to detect about 40-50% of HCC at curative stages (Barcelona Clinic Liver Cancer stages 0 & 1) due to the low sensitivities of the current screening methods. The advance of sequencing technologies has identified numerous modifications as potential candidate DNA markers for diagnosis/surveillance. Here we aim to provide an overview of the DNA alterations that result in activation of cancer pathways known to potentially drive HCC carcinogenesis and to summarize performance characteristics of each DNA marker in the periphery (blood or urine) for HCC screening.
Collapse
Affiliation(s)
- Ying-Hsiu Su
- Department of Microbiology and Immunology, Drexel University College of Medicine, 3805 Old Easton Road, Philadelphia, PA 18902, USA
| | | | | | | |
Collapse
|
8
|
Xie Y, Liu S, Zhao Y, Guo Z, Xu J. X protein mutations in hepatitis B virus DNA predict postoperative survival in hepatocellular carcinoma. Tumour Biol 2014; 35:10325-31. [PMID: 25034530 DOI: 10.1007/s13277-014-2331-0] [Citation(s) in RCA: 19] [Impact Index Per Article: 1.9] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/21/2014] [Accepted: 07/08/2014] [Indexed: 12/13/2022] Open
Abstract
Hepatitis B virus (HBV) DNA is prone to mutations because of the proofreading deficiencies of HBV polymerase. The postoperative prognostic value of HBV mutations in HBV X protein (HBx) gene was assessed in HBV associated hepatocellular carcinoma (HCC) patients. The HBx gene was amplified and sequenced, the HBV mutations was identified according to NCBI database ( http://www.ncbi.nlm.nih.gov/genome/5536 ). The relationship between the HBV mutations and HCC survival was compared. Survival curves were generated using the Kaplan-Meier method, and comparisons between the curves were made using the log-rank test. Multivariate survival analysis was performed using a Cox proportional hazards model. After adjusting for clinical characteristics, the following eight mutational sites were identified as statistically significant independent predictors of HCC survival: 1383, 1461, 1485, 1544, 1613, 1653, 1719, and 1753. In addition, the following four mutational sites were identified for their association with survival at a border-line significance level: 1527, 1637, 1674, and 1762/1764. A total of 12 mutations in HBx gene region were identified as independent predictors of postoperative survival in HCC patients. The analysis of HBV DNA mutations may help identify patient subgroups with poor prognosis and may help refine therapeutic decisions regarding HCC patients.
Collapse
Affiliation(s)
- Ying Xie
- Hebei Key Lab of Laboratory Animal Science, Hebei Medical University, Shijiazhuang, People's Republic of China
| | | | | | | | | |
Collapse
|
9
|
Park YM, Jang JW, Yoo SH, Kim SH, Oh IM, Park SJ, Jang YS, Lee SJ. Combinations of eight key mutations in the X/preC region and genomic activity of hepatitis B virus are associated with hepatocellular carcinoma. J Viral Hepat 2014; 21:171-7. [PMID: 24344773 DOI: 10.1111/jvh.12134] [Citation(s) in RCA: 35] [Impact Index Per Article: 3.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 04/10/2013] [Accepted: 06/09/2013] [Indexed: 12/16/2022]
Abstract
Accumulation of eight key mutations located in the X/preC regions of the hepatitis B virus (HBV) genome (G1613A, C1653T, T1753V, A1762T, G1764A, A1846T, G1896A and G1899A) is a risk marker for the development of hepatocellular carcinoma (HCC). In this study, we analysed the 8 key mutations in 442 serum samples collected from 310 non-HCC and 132 HCC patients to identify the combinations linked to HCC. After the patients were stratified according to the age groups and mutation combinations, clinical parameters were compared between the HCC and the non-HCC groups. Analyses were focused on patient ≥40 years of age infected by HBV genotype C with A1762T and G1764A mutations in the basal core promoter region (BCP double mutation). In patients with ≥6 mutations, the combination of [G1613A + C1653T + A1846T + G1896A] mutations was closely linked to HCC, whereas no specific single or double mutation combination was associated with HCC. In patients with ≤5 mutations, HBeAg and HBV DNA serum titres were lower in the HCC group than those in the non-HCC group. Unlike the number of mutations, no specific combination correlated with advanced clinical stage in HCC. Of the BCP double mutation-based HBV mutant types, combinations of ≥6 mutations that include G1613A + C1653T + A1846T + G1896A, and combinations of ≤5 mutations with reduced HBeAg production, may be more specific indicators of HCC risk than only the number of mutations or any specific combination(s).
Collapse
Affiliation(s)
- Y M Park
- Hepatology Center, Bundang Jesaeng General Hospital, Seongnam-si, Korea; DMC Biomedical Research Center of Daejin Medical Center, Bundang Jesaeng General Hospital, Seongnam-si, Korea
| | | | | | | | | | | | | | | |
Collapse
|
10
|
Mese S, Arikan M, Cakiris A, Abaci N, Gumus E, Kursun O, Onel D, Ustek D, Kaymakoglu S, Badur S, Yenen OS, Bozkaya E. Role of the line probe assay INNO-LiPA HBV DR and ultradeep pyrosequencing in detecting resistance mutations to nucleoside/nucleotide analogues in viral samples isolated from chronic hepatitis B patients. J Gen Virol 2013; 94:2729-2738. [PMID: 24045109 DOI: 10.1099/vir.0.053041-0] [Citation(s) in RCA: 9] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/06/2023] Open
Abstract
Despite the effectiveness of nucleoside/nucleotide analogues in the treatment of chronic hepatitis B (CHB), their long-term administration is associated with the emergence of resistant hepatitis B virus (HBV) mutants. In this study, mutations resulting in antiviral resistance in HBV DNA samples isolated from 23 CHB patients (nine treatment naïve and 14 treated previously) were studied using a line probe assay (INNO-LiPA HBV DR; Innogenetics) and ultradeep pyrosequencing (UDPS) methods. Whilst the INNO-LiPA HBV DR showed no resistance mutations in HBV DNA samples from treatment-naive patients, mutations mediating lamivudine resistance were detected in three samples by UDPS. Among patients who were treated previously, 19 mutations were detected in eight samples using the INNO-LiPA HBV DR and 29 mutations were detected in 12 samples using UDPS. All mutations detected by the INNO-LiPA HBV DR were also detected by UDPS. There were no mutations that could be detected by INNO-LiPA HBV DR but not by UDPS. A total of ten mutations were detected by UDPS but not by INNO-LiPA HBV DR, and the mean frequency of these mutations was 14.7 %. It was concluded that, although INNO-LiPA HBV DR is a sensitive and practical method commonly used for the detection of resistance mutations in HBV infection, UDPS may significantly increase the detection rate of genotypic resistance in HBV at an early stage.
Collapse
Affiliation(s)
- Sevim Mese
- Department of Virology and Fundamental Immunology, Istanbul Medical Faculty, Istanbul University, Istanbul, Turkey
| | - Muzaffer Arikan
- Department of Genetics, Institute for Experimental Medicine, Istanbul University, Istanbul, Turkey
| | - Aris Cakiris
- Department of Genetics, Institute for Experimental Medicine, Istanbul University, Istanbul, Turkey
| | - Neslihan Abaci
- Department of Genetics, Institute for Experimental Medicine, Istanbul University, Istanbul, Turkey
| | - Ergun Gumus
- Department of Computer Engineering, Istanbul University, Istanbul, Turkey
| | - Olcay Kursun
- Department of Computer Engineering, Istanbul University, Istanbul, Turkey
| | - Derya Onel
- Department of Virology and Fundamental Immunology, Istanbul Medical Faculty, Istanbul University, Istanbul, Turkey
| | - Duran Ustek
- Department of Genetics, Institute for Experimental Medicine, Istanbul University, Istanbul, Turkey
| | - Sabahattin Kaymakoglu
- Department of Gastroenterology, Istanbul Medical Faculty, Istanbul University, Istanbul, Turkey
| | - Selim Badur
- Department of Virology and Fundamental Immunology, Istanbul Medical Faculty, Istanbul University, Istanbul, Turkey
| | - Osman Sadi Yenen
- Department of Virology and Fundamental Immunology, Istanbul Medical Faculty, Istanbul University, Istanbul, Turkey
| | - Emel Bozkaya
- Department of Virology and Fundamental Immunology, Istanbul Medical Faculty, Istanbul University, Istanbul, Turkey
| |
Collapse
|
11
|
Shi HP, Zhang J, Shang XC, Xie XY. Hepatitis B Virus Gene C1653T Polymorphism Mutation and Hepatocellular Carcinoma Risk: an Updated Meta-analysis. Asian Pac J Cancer Prev 2013; 14:1043-7. [DOI: 10.7314/apjcp.2013.14.2.1043] [Citation(s) in RCA: 5] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/10/2022] Open
|
12
|
Abstract
Hepatitis B may cause a varying spectrum of diseases ranging from an asymptomatic or mild anicteric acute illness, to severe or fulminant hepatitis. Similarly, the outcome of chronic hepatitis B is variable. Viral factors associated with outcome of chronic hepatitis B virus (HBV) infection include hepatitis B e antigen status, HBV DNA, genotype, and HBV variants. HBV genotypes and subgenotypes have been associated with differences in clinical and virological characteristics, indicating that they may play a role in the virus-host relationship. A total of ten hepatitis B virus genotypes have been defined with a distinct geographical distribution. Hitherto, genotypes A, B, C and D have been studied most extensively. The HBV genotype appears to influence not only the natural history of HBV related liver disease but also the response to HBV treatment. HBV genotypes are also linked with both core promoter and BCP mutations. Progression to chronic infection appears to occur more frequently following acute infection with genotypes A and D than with the other studied genotypes. Genotypes A and B appear to have higher rates of spontaneous HBeAg seroconversion. More advanced liver disease and progression to HCC is more often seen in chronic infection with genotypes C and D in contrast to genotypes A and B. More specifically, genotypes A1, C, B2-B5 and H appear to be associated with more serious complications than genotypes A2, B1 and B6. These observations suggest important pathogenic differences between HBV genotypes. Genotypes A and B have higher response rates to interferon based therapy than genotypes C and D. Knowledge of HBV genotype enables clinicians to identify those patients at increased risk of disease progression whilst aiding the selection of appropriate antiviral therapy. Genotyping and monoclonal subtyping can provide useful information for epidemiological studies. In conclusion, genotyping of chronic HBV infections can help practicing physicians identify those at risk of disease progression and determine optimal anti-viral therapy.
Collapse
Affiliation(s)
- Sudeep Tanwar
- Centre for Hepatology, University College London Royal Free Campus, Rowland Hill Street Hampstead, London, NW3 2PF, UK.
| | | |
Collapse
|