1
|
Schulz R, Schlüter KD. Importance of Mitochondria in Cardiac Pathologies: Focus on Uncoupling Proteins and Monoamine Oxidases. Int J Mol Sci 2023; 24:ijms24076459. [PMID: 37047436 PMCID: PMC10095304 DOI: 10.3390/ijms24076459] [Citation(s) in RCA: 5] [Impact Index Per Article: 2.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/18/2023] [Revised: 03/22/2023] [Accepted: 03/28/2023] [Indexed: 04/03/2023] Open
Abstract
On the one hand, reactive oxygen species (ROS) are involved in the onset and progression of a wide array of diseases. On the other hand, these are a part of signaling pathways related to cell metabolism, growth and survival. While ROS are produced at various cellular sites, in cardiomyocytes the largest amount of ROS is generated by mitochondria. Apart from the electron transport chain and various other proteins, uncoupling protein (UCP) and monoamine oxidases (MAO) have been proposed to modify mitochondrial ROS formation. Here, we review the recent information on UCP and MAO in cardiac injuries induced by ischemia-reperfusion (I/R) as well as protection from I/R and heart failure secondary to I/R injury or pressure overload. The current data in the literature suggest that I/R will preferentially upregulate UCP2 in cardiac tissue but not UCP3. Studies addressing the consequences of such induction are currently inconclusive because the precise function of UCP2 in cardiac tissue is not well understood, and tissue- and species-specific aspects complicate the situation. In general, UCP2 may reduce oxidative stress by mild uncoupling and both UCP2 and UCP3 affect substrate utilization in cardiac tissue, thereby modifying post-ischemic remodeling. MAOs are important for the physiological regulation of substrate concentrations. Upon increased expression and or activity of MAOs, however, the increased production of ROS and reactive aldehydes contribute to cardiac alterations such as hypertrophy, inflammation, irreversible cardiomyocyte injury, and failure.
Collapse
|
2
|
Panisello Rosello A, Teixeira da Silva R, Castro C, G. Bardallo R, Calvo M, Folch-Puy E, Carbonell T, Palmeira C, Roselló Catafau J, Adam R. Polyethylene Glycol 35 as a Perfusate Additive for Mitochondrial and Glycocalyx Protection in HOPE Liver Preservation. Int J Mol Sci 2020; 21:E5703. [PMID: 32784882 PMCID: PMC7461048 DOI: 10.3390/ijms21165703] [Citation(s) in RCA: 22] [Impact Index Per Article: 4.4] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/06/2020] [Revised: 08/03/2020] [Accepted: 08/04/2020] [Indexed: 02/08/2023] Open
Abstract
Organ transplantation is a multifactorial process in which proper graft preservation is a mandatory step for the success of the transplantation. Hypothermic preservation of abdominal organs is mostly based on the use of several commercial solutions, including UW, Celsior, HTK and IGL-1. The presence of the oncotic agents HES (in UW) and PEG35 (in IGL-1) characterize both solution compositions, while HTK and Celsior do not contain any type of oncotic agent. Polyethylene glycols (PEGs) are non-immunogenic, non-toxic and water-soluble polymers, which present a combination of properties of particular interest in the clinical context of ischemia-reperfusion injury (IRI): they limit edema and nitric oxide induction and modulate immunogenicity. Besides static cold storage (SCS), there are other strategies to preserve the organ, such as the use of machine perfusion (MP) in dynamic preservation strategies, which increase graft function and survival as compared to the conventional static hypothermic preservation. Here we report some considerations about using PEG35 as a component of perfusates for MP strategies (such as hypothermic oxygenated perfusion, HOPE) and its benefits for liver graft preservation. Improved liver preservation is closely related to mitochondria integrity, making this organelle a good target to increase graft viability, especially in marginal organs (e.g., steatotic livers). The final goal is to increase the pool of suitable organs, and thereby shorten patient waiting lists, a crucial problem in liver transplantation.
Collapse
Affiliation(s)
- Arnau Panisello Rosello
- Experimental Hepatic Ischemia-Reperfusion Unit, Institut d’Investigacions Biomèdiques de Barcelona (IIBB), Spanish National Research Council (CSIC)-IDIBAPS, CIBEREHD, 08036 Barcelona, Catalonia, Spain; (A.P.R.); (R.T.d.S.); (E.F.-P.)
- Centre Hépato-Biliaire, AP-PH, Hôpital Paul Brousse, 94800 Villejuif, France; (C.C.); (R.A.)
| | - Rui Teixeira da Silva
- Experimental Hepatic Ischemia-Reperfusion Unit, Institut d’Investigacions Biomèdiques de Barcelona (IIBB), Spanish National Research Council (CSIC)-IDIBAPS, CIBEREHD, 08036 Barcelona, Catalonia, Spain; (A.P.R.); (R.T.d.S.); (E.F.-P.)
- Center for Neuroscience and Cell Biology, Universidade Coimbra, 3000-370 Coimbra, Portugal;
| | - Carlos Castro
- Centre Hépato-Biliaire, AP-PH, Hôpital Paul Brousse, 94800 Villejuif, France; (C.C.); (R.A.)
| | - Raquel G. Bardallo
- Department of Cell Biology, Physiology and Immunology, Universitat de Barcelona, 08028 Barcelona, Catalonia, Spain; (R.G.B.); (T.C.)
| | - Maria Calvo
- Serveis Cientifico Tècnics, 08036-Campus Hospital Clínic, Universitat de Barcelona, 08919 Barcelona, Catalonia, Spain;
| | - Emma Folch-Puy
- Experimental Hepatic Ischemia-Reperfusion Unit, Institut d’Investigacions Biomèdiques de Barcelona (IIBB), Spanish National Research Council (CSIC)-IDIBAPS, CIBEREHD, 08036 Barcelona, Catalonia, Spain; (A.P.R.); (R.T.d.S.); (E.F.-P.)
| | - Teresa Carbonell
- Department of Cell Biology, Physiology and Immunology, Universitat de Barcelona, 08028 Barcelona, Catalonia, Spain; (R.G.B.); (T.C.)
| | - Carlos Palmeira
- Center for Neuroscience and Cell Biology, Universidade Coimbra, 3000-370 Coimbra, Portugal;
| | - Joan Roselló Catafau
- Experimental Hepatic Ischemia-Reperfusion Unit, Institut d’Investigacions Biomèdiques de Barcelona (IIBB), Spanish National Research Council (CSIC)-IDIBAPS, CIBEREHD, 08036 Barcelona, Catalonia, Spain; (A.P.R.); (R.T.d.S.); (E.F.-P.)
| | - René Adam
- Centre Hépato-Biliaire, AP-PH, Hôpital Paul Brousse, 94800 Villejuif, France; (C.C.); (R.A.)
| |
Collapse
|
3
|
Boteon YL, Laing RW, Schlegel A, Wallace L, Smith A, Attard J, Bhogal RH, Reynolds G, PR Perera MT, Muiesan P, Mirza DF, Mergental H, Afford SC. The impact on the bioenergetic status and oxidative-mediated tissue injury of a combined protocol of hypothermic and normothermic machine perfusion using an acellular haemoglobin-based oxygen carrier: The cold-to-warm machine perfusion of the liver. PLoS One 2019; 14:e0224066. [PMID: 31644544 PMCID: PMC6808429 DOI: 10.1371/journal.pone.0224066] [Citation(s) in RCA: 24] [Impact Index Per Article: 4.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/11/2019] [Accepted: 10/04/2019] [Indexed: 01/12/2023] Open
Abstract
Introduction The combination of hypothermic and normothermic machine perfusion (HMP+NMP) of the liver provides individual benefits of both techniques, improving the rescue of marginal organs. The aim of this study was to investigate the effect on the bioenergetic status and the oxidative-mediated tissue injury of an uninterrupted combined protocol of HMP+NMP using a single haemoglobin-based oxygen carrier (HBOC)-based perfusate. Methods Ten discarded human donor livers had either 2 hours of dual hypothermic oxygenated perfusion (D-HOPE) with sequential controlled rewarming (COR) and then NMP using the HBOC-based perfusate uninterruptedly (cold-to-warm group); or 2 hours of hypothermic oxygenated perfusion (HOPE) with an oxygen carrier-free perfusate, followed by perfusate exchange and then NMP with an HBOC-based perfusate. Markers of liver function, tissue adenosine triphosphate (ATP) levels and tissue injury were systematically assessed. Results The hypothermic phase downregulated mitochondrial respiration and increased ATP levels in both groups. The cold-to-warm group presented higher arterial vascular resistance during rewarming/NMP (p = 0.03) with a trend of lower arterial flow (p = 0.09). At the end of NMP tissue expression of markers of reactive oxygen species production, oxidative injury and inflammation were comparable between the groups. Conclusion The uninterrupted combined protocol of HMP+NMP using an HBOC-based perfusate—cold-to-warm MP—mitigated the oxidative-mediated tissue injury and enhanced hepatic energy stores, similarly to an interrupted combined protocol; however, it simplified the logistics of this combination and may favour its clinical applicability.
Collapse
Affiliation(s)
- Yuri L. Boteon
- Liver Unit, Queen Elizabeth Hospital, University Hospitals Birmingham NHS Foundation Trust, Birmingham, United Kingdom
- Centre for Liver and Gastrointestinal Research, Institute of Immunology and Immunotherapy, College of Medical and Dental Sciences, University of Birmingham, Birmingham, United Kingdom
- National Institute for Health Research (NIHR) Birmingham Biomedical Research Centre, University of Birmingham and University Hospitals Birmingham NHS Foundation Trust, Birmingham, United Kingdom
| | - Richard W. Laing
- Centre for Liver and Gastrointestinal Research, Institute of Immunology and Immunotherapy, College of Medical and Dental Sciences, University of Birmingham, Birmingham, United Kingdom
- National Institute for Health Research (NIHR) Birmingham Biomedical Research Centre, University of Birmingham and University Hospitals Birmingham NHS Foundation Trust, Birmingham, United Kingdom
| | - Andrea Schlegel
- Liver Unit, Queen Elizabeth Hospital, University Hospitals Birmingham NHS Foundation Trust, Birmingham, United Kingdom
| | - Lorraine Wallace
- Centre for Liver and Gastrointestinal Research, Institute of Immunology and Immunotherapy, College of Medical and Dental Sciences, University of Birmingham, Birmingham, United Kingdom
- National Institute for Health Research (NIHR) Birmingham Biomedical Research Centre, University of Birmingham and University Hospitals Birmingham NHS Foundation Trust, Birmingham, United Kingdom
| | - Amanda Smith
- Liver Unit, Queen Elizabeth Hospital, University Hospitals Birmingham NHS Foundation Trust, Birmingham, United Kingdom
| | - Joseph Attard
- Liver Unit, Queen Elizabeth Hospital, University Hospitals Birmingham NHS Foundation Trust, Birmingham, United Kingdom
- Centre for Liver and Gastrointestinal Research, Institute of Immunology and Immunotherapy, College of Medical and Dental Sciences, University of Birmingham, Birmingham, United Kingdom
- National Institute for Health Research (NIHR) Birmingham Biomedical Research Centre, University of Birmingham and University Hospitals Birmingham NHS Foundation Trust, Birmingham, United Kingdom
| | - Ricky H. Bhogal
- Centre for Liver and Gastrointestinal Research, Institute of Immunology and Immunotherapy, College of Medical and Dental Sciences, University of Birmingham, Birmingham, United Kingdom
- National Institute for Health Research (NIHR) Birmingham Biomedical Research Centre, University of Birmingham and University Hospitals Birmingham NHS Foundation Trust, Birmingham, United Kingdom
| | - Gary Reynolds
- Centre for Liver and Gastrointestinal Research, Institute of Immunology and Immunotherapy, College of Medical and Dental Sciences, University of Birmingham, Birmingham, United Kingdom
- National Institute for Health Research (NIHR) Birmingham Biomedical Research Centre, University of Birmingham and University Hospitals Birmingham NHS Foundation Trust, Birmingham, United Kingdom
| | - M. Thamara PR Perera
- Liver Unit, Queen Elizabeth Hospital, University Hospitals Birmingham NHS Foundation Trust, Birmingham, United Kingdom
| | - Paolo Muiesan
- Liver Unit, Queen Elizabeth Hospital, University Hospitals Birmingham NHS Foundation Trust, Birmingham, United Kingdom
| | - Darius F. Mirza
- Liver Unit, Queen Elizabeth Hospital, University Hospitals Birmingham NHS Foundation Trust, Birmingham, United Kingdom
- Centre for Liver and Gastrointestinal Research, Institute of Immunology and Immunotherapy, College of Medical and Dental Sciences, University of Birmingham, Birmingham, United Kingdom
- National Institute for Health Research (NIHR) Birmingham Biomedical Research Centre, University of Birmingham and University Hospitals Birmingham NHS Foundation Trust, Birmingham, United Kingdom
| | - Hynek Mergental
- Liver Unit, Queen Elizabeth Hospital, University Hospitals Birmingham NHS Foundation Trust, Birmingham, United Kingdom
- Centre for Liver and Gastrointestinal Research, Institute of Immunology and Immunotherapy, College of Medical and Dental Sciences, University of Birmingham, Birmingham, United Kingdom
- National Institute for Health Research (NIHR) Birmingham Biomedical Research Centre, University of Birmingham and University Hospitals Birmingham NHS Foundation Trust, Birmingham, United Kingdom
| | - Simon C. Afford
- Centre for Liver and Gastrointestinal Research, Institute of Immunology and Immunotherapy, College of Medical and Dental Sciences, University of Birmingham, Birmingham, United Kingdom
- National Institute for Health Research (NIHR) Birmingham Biomedical Research Centre, University of Birmingham and University Hospitals Birmingham NHS Foundation Trust, Birmingham, United Kingdom
- * E-mail:
| |
Collapse
|
4
|
Zhou Y, Cai T, Xu J, Jiang L, Wu J, Sun Q, Zen K, Yang J. UCP2 attenuates apoptosis of tubular epithelial cells in renal ischemia-reperfusion injury. Am J Physiol Renal Physiol 2017; 313:F926-F937. [PMID: 28424210 DOI: 10.1152/ajprenal.00118.2017] [Citation(s) in RCA: 45] [Impact Index Per Article: 5.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/10/2017] [Revised: 04/10/2017] [Accepted: 04/10/2017] [Indexed: 12/30/2022] Open
Abstract
Uncoupling protein-2 (UCP2) plays critical roles in energy metabolism and cell survival. Previous investigations showed that UCP2 regulated the production of extracellular matrix and renal fibrosis. However, little is known about UCP2 in acute kidney injury (AKI). Here, we used Ucp2 knockout mice to investigate the role of UCP2 in an AKI model generated by renal ischemia-reperfusion (I/R) injury. The Ucp2 global knockout mice were born and grew normally without kidney histological abnormality or renal dysfunction. Compared with littermates, deletion of Ucp2 exacerbated I/R-induced AKI whereas increase of UCP2 by conjugated linoleic acid (CLA) attenuated I/R injury. Tubular cell apoptosis and autophagy were induced by I/R. After injury, more tubular cell apoptosis and less autophagy were identified in the kidneys of knockout mice compared with their littermates, and less apoptosis and more autophagy were observed in mice fed with CLA. In vitro rotenone, an inhibitor of electron transport chain complex I, was applied to induce energy depletion in cultured tubular epithelial cells. As expected, rotenone-recovery (R/R) treatment induced tubular cell apoptosis and autophagy. UCP2 plasmid transfection reduced cell apoptosis and facilitated autophagy after R/R treatment, whereas UCP2 small interfering RNA (siRNA) transfection sensitized cell apoptosis but reduced autophagy induced by R/R treatment. Interference of autophagy by treatment with autophagy inhibitor 3-methyladenine or autophagy initiation protein Beclin-1 siRNA transfection resulted in tubular cell apoptosis. Thus UCP2 attenuates I/R-induced AKI, probably by reducing cell apoptosis through protection of autophagy.
Collapse
Affiliation(s)
- Yang Zhou
- Center of Kidney Disease, Second Affiliated Hospital, Nanjing Medical University, Nanjing, China; and
| | - Ting Cai
- Center of Kidney Disease, Second Affiliated Hospital, Nanjing Medical University, Nanjing, China; and
| | - Jing Xu
- Center of Kidney Disease, Second Affiliated Hospital, Nanjing Medical University, Nanjing, China; and
| | - Lei Jiang
- Center of Kidney Disease, Second Affiliated Hospital, Nanjing Medical University, Nanjing, China; and
| | - Jining Wu
- Center of Kidney Disease, Second Affiliated Hospital, Nanjing Medical University, Nanjing, China; and
| | - Qi Sun
- Center of Kidney Disease, Second Affiliated Hospital, Nanjing Medical University, Nanjing, China; and
| | - Ke Zen
- State Key Laboratory of Pharmaceutical Biotechnology, Nanjing University Advanced Institute of Life Sciences, Nanjing, China
| | - Junwei Yang
- Center of Kidney Disease, Second Affiliated Hospital, Nanjing Medical University, Nanjing, China; and
| |
Collapse
|