1
|
Belosludtsev KN, Ilzorkina AI, Belosludtseva NV, Sharapov VA, Penkov NV, Serov DA, Karagyaur MN, Nedopekina DA, Davletshin EV, Solovieva ME, Spivak AY, Kuzmina US, Vakhitova YV, Akatov VS, Dubinin MV. Comparative Study of Cytotoxic and Membranotropic Properties of Betulinic Acid-F16 Conjugate on Breast Adenocarcinoma Cells (MCF-7) and Primary Human Fibroblasts. Biomedicines 2022; 10:2903. [PMID: 36428470 PMCID: PMC9687851 DOI: 10.3390/biomedicines10112903] [Citation(s) in RCA: 2] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/30/2022] [Revised: 11/04/2022] [Accepted: 11/08/2022] [Indexed: 11/16/2022] Open
Abstract
The present study evaluates the cytotoxicity of a previously synthesized conjugate of betulinic acid (BA) with the penetrating cation F16 on breast adenocarcinoma (MCF-7) and human fibroblast (HF) cell lines, and also shows the mechanism underlying its membranotropic action. It was confirmed that the conjugate exhibits higher cytotoxicity compared to native BA at low doses also blocking the proliferation of both cell lines and causing cell cycle arrest in the G0/G1 phase. We show that the conjugate indeed has a high potential for accumulation in mitochondria, being visualized in these organelles, which is most pronounced in cancer cells. The effect of the conjugate was observed to be accompanied by ROS hyperproduction in both cancerous and healthy cells, despite the lower base level of ROS in the latter. Along with this, using artificial liposomes, we determined that the conjugate is able to influence the phase state of lipid membranes, make them more fluid, and induce nonspecific permeabilization contributing to the overall cytotoxicity of the tested agent. We conclude that the studied BA-F16 conjugate does not have significant selective cytotoxicity, at least against the studied breast cancer cell line MCF-7.
Collapse
Affiliation(s)
- Konstantin N. Belosludtsev
- Department of Biochemistry, Cell Biology and Microbiology, Mari State University, pl. Lenina 1, 424001 Yoshkar-Ola, Russia
- Institute of Theoretical and Experimental Biophysics, Russian Academy of Sciences, Institutskaya 3, 142290 Pushchino, Russia
| | - Anna I. Ilzorkina
- Institute of Theoretical and Experimental Biophysics, Russian Academy of Sciences, Institutskaya 3, 142290 Pushchino, Russia
| | - Natalia V. Belosludtseva
- Department of Biochemistry, Cell Biology and Microbiology, Mari State University, pl. Lenina 1, 424001 Yoshkar-Ola, Russia
- Institute of Theoretical and Experimental Biophysics, Russian Academy of Sciences, Institutskaya 3, 142290 Pushchino, Russia
| | - Vyacheslav A. Sharapov
- Department of Biochemistry, Cell Biology and Microbiology, Mari State University, pl. Lenina 1, 424001 Yoshkar-Ola, Russia
| | - Nikita V. Penkov
- Federal Research Center, Pushchino Scientific Center for Biological Research of the Russian Academy of Sciences, Institute of Cell Biophysics of the Russian Academy of Sciences, Institutskaya 3, 142290 Pushchino, Russia
| | - Dmitriy A. Serov
- Federal Research Center, Pushchino Scientific Center for Biological Research of the Russian Academy of Sciences, Institute of Cell Biophysics of the Russian Academy of Sciences, Institutskaya 3, 142290 Pushchino, Russia
- Prokhorov General Physics Institute of the Russian Academy of Sciences, Vavilov St. 38, 119991 Moscow, Russia
| | - Maxim N. Karagyaur
- Institute for Regenerative Medicine, Medical Research and Education Center, Lomonosov Moscow State University, 27/10, Lomonosovsky Ave., 119192 Moscow, Russia
- Faculty of Medicine, Lomonosov Moscow State University, 27/1, Lomonosovsky Ave., 119192 Moscow, Russia
| | - Darya A. Nedopekina
- Institute of Petrochemistry and Catalysis, Ufa Federal Research Center, Russian Academy of Sciences, Prospekt Oktyabrya 141, 450075 Ufa, Russia
| | - Eldar V. Davletshin
- Institute of Petrochemistry and Catalysis, Ufa Federal Research Center, Russian Academy of Sciences, Prospekt Oktyabrya 141, 450075 Ufa, Russia
| | - Marina E. Solovieva
- Institute of Theoretical and Experimental Biophysics, Russian Academy of Sciences, Institutskaya 3, 142290 Pushchino, Russia
| | - Anna Yu Spivak
- Institute of Petrochemistry and Catalysis, Ufa Federal Research Center, Russian Academy of Sciences, Prospekt Oktyabrya 141, 450075 Ufa, Russia
| | - Ulyana Sh. Kuzmina
- Institute of Biochemistry and Genetics, Ufa Federal Research Center, Russian Academy of Sciences, Prospekt Oktyabrya 71, 450054 Ufa, Russia
| | - Yulia V. Vakhitova
- Institute of Biochemistry and Genetics, Ufa Federal Research Center, Russian Academy of Sciences, Prospekt Oktyabrya 71, 450054 Ufa, Russia
| | - Vladimir S. Akatov
- Institute of Theoretical and Experimental Biophysics, Russian Academy of Sciences, Institutskaya 3, 142290 Pushchino, Russia
| | - Mikhail V. Dubinin
- Department of Biochemistry, Cell Biology and Microbiology, Mari State University, pl. Lenina 1, 424001 Yoshkar-Ola, Russia
| |
Collapse
|
2
|
Dubinin MV, Semenova AA, Ilzorkina AI, Penkov NV, Nedopekina DA, Sharapov VA, Khoroshavina EI, Davletshin EV, Belosludtseva NV, Spivak AY, Belosludtsev KN. Mitochondria-targeted prooxidant effects of betulinic acid conjugated with delocalized lipophilic cation F16. Free Radic Biol Med 2021; 168:55-69. [PMID: 33812008 DOI: 10.1016/j.freeradbiomed.2021.03.036] [Citation(s) in RCA: 21] [Impact Index Per Article: 7.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 01/28/2021] [Revised: 03/15/2021] [Accepted: 03/26/2021] [Indexed: 02/06/2023]
Abstract
The paper examines the molecular mechanisms of the cytotoxicity of conjugates of betulinic acid with the penetrating cation F16. The in vitro experiments on rat thymocytes revealed that all the obtained F16-betulinic acid derivatives showed more than 10-fold higher cytotoxicity as compared to betulinic acid and F16. In this case, 0.5-1 μM of all conjugates showed mitochondria-targeted action, inducing superoxide overproduction and reducing the mitochondrial potential of cells. Experiments on isolated rat liver mitochondria revealed the ability of conjugates to dose-dependently reduce the membrane potential of organelles, as well as the intensity of respiration and oxidative phosphorylation, which is also accompanied by an increase in the production of hydrogen peroxide by mitochondria. It was shown that these actions of derivatives may be due to several effects: the reversion of ATP synthase, changes in the activity of complexes of the respiratory chain and permeabilization of the inner mitochondrial membrane. All compounds also demonstrated the ability to induce aggregation of isolated rat liver mitochondria. Using the model of lecithin liposomes, we found that the F6 conjugate (2 μM) induces the permeability of vesicle membranes for the fluorescent probe sulforhodamine B. High concentrations (25 μM) of the F6 derivative have been found to induce dynamic processes in the liposome membrane leading to aggregation and/or fusion of vesicle membranes. The paper discusses the relationship between the mitochondria-targeted effects of F16-betulinic acid conjugates and their cytotoxicity.
Collapse
Affiliation(s)
- Mikhail V Dubinin
- Mari State University, Pl. Lenina 1, Yoshkar-Ola, Mari El, 424001, Russia.
| | - Alena A Semenova
- Mari State University, Pl. Lenina 1, Yoshkar-Ola, Mari El, 424001, Russia
| | - Anna I Ilzorkina
- Institute of Theoretical and Experimental Biophysics, Russian Academy of Sciences, Institutskaya 3, Pushchino, Moscow Region, 142290, Russia
| | - Nikita V Penkov
- Institute of Cell Biophysics, Russian Academy of Sciences, PSCBR RAS, Institutskaya 3, Pushchino, Moscow Region, 142290, Russia
| | - Darya A Nedopekina
- Institute of Petrochemistry and Catalysis, Russian Academy of Sciences, Prospekt Oktyabrya 141, Ufa, Republic of Bashkortostan, 450075, Russia
| | | | | | - Eldar V Davletshin
- Institute of Petrochemistry and Catalysis, Russian Academy of Sciences, Prospekt Oktyabrya 141, Ufa, Republic of Bashkortostan, 450075, Russia
| | - Natalia V Belosludtseva
- Institute of Theoretical and Experimental Biophysics, Russian Academy of Sciences, Institutskaya 3, Pushchino, Moscow Region, 142290, Russia
| | - Anna Yu Spivak
- Institute of Petrochemistry and Catalysis, Russian Academy of Sciences, Prospekt Oktyabrya 141, Ufa, Republic of Bashkortostan, 450075, Russia
| | - Konstantin N Belosludtsev
- Mari State University, Pl. Lenina 1, Yoshkar-Ola, Mari El, 424001, Russia; Institute of Theoretical and Experimental Biophysics, Russian Academy of Sciences, Institutskaya 3, Pushchino, Moscow Region, 142290, Russia; Prokhorov General Physics Institute of the Russian Academy of Sciences, Vavilova 38, Moscow, 119991, Russia
| |
Collapse
|
3
|
Spivak AY, Nedopekina DA, Gubaidullin RR, Davletshin EV, Tukhbatullin AA, D’yakonov VA, Yunusbaeva MM, Dzhemileva LU, Dzhemilev UM. Pentacyclic triterpene acid conjugated with mitochondria-targeting cation F16: Synthesis and evaluation of cytotoxic activities. Med Chem Res 2021. [DOI: 10.1007/s00044-021-02702-z] [Citation(s) in RCA: 17] [Impact Index Per Article: 5.7] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/23/2023]
|
6
|
Jia H, Lv Y, Wang S, Sun D, Wang L. Synthesis, crystal structures, and spectral properties of double N-alkylated dimethine cyanine dyes and their interactions with biomolecules and living cells. RSC Adv 2015. [DOI: 10.1039/c4ra10741a] [Citation(s) in RCA: 7] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/21/2022] Open
Abstract
A series of new doubleN-alkylated dimethine cyanine dyes were synthesized, and their crystal structures and spectral properties, as well as their interaction with biomolecules and living cells, were investigated.
Collapse
Affiliation(s)
- Hongliang Jia
- Key Laboratory of Synthetic and Natural Functional Molecule Chemistry
- Ministry of Education
- College of Chemistry and Materials Science
- Northwest University
- Xi'an 710069
| | - Ying Lv
- Key Laboratory of Synthetic and Natural Functional Molecule Chemistry
- Ministry of Education
- College of Chemistry and Materials Science
- Northwest University
- Xi'an 710069
| | - Shu Wang
- Key Laboratory of Synthetic and Natural Functional Molecule Chemistry
- Ministry of Education
- College of Chemistry and Materials Science
- Northwest University
- Xi'an 710069
| | - Dan Sun
- Institute of Photonics & Photon-Technology
- Northwest University
- Xi'an 710069
- P. R. China
| | - Lanying Wang
- Key Laboratory of Synthetic and Natural Functional Molecule Chemistry
- Ministry of Education
- College of Chemistry and Materials Science
- Northwest University
- Xi'an 710069
| |
Collapse
|