1
|
Kambhampati NSV, Kar S, Pinnepalli SSK, Chelli J, Doble M. Microbial cyclic β-(1→3),(1→6)-glucans as potential drug carriers: Interaction studies between cyclic β-glucans isolated from Bradyrhizobium japonicum and betulinic acid. SPECTROCHIMICA ACTA. PART A, MOLECULAR AND BIOMOLECULAR SPECTROSCOPY 2018; 203:494-500. [PMID: 29898432 DOI: 10.1016/j.saa.2018.05.106] [Citation(s) in RCA: 6] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 10/15/2017] [Revised: 05/24/2018] [Accepted: 05/27/2018] [Indexed: 05/20/2023]
Abstract
Betulinic acid (BA), a pentacyclic triterpenoid, is a very promising therapeutic drug with varied medicinal properties but it has low water solubility and consequentially low bioavailability. Cyclic β-(1→3),(1→6)-glucans (CBG), microbial cyclooligosaccharides produced by Bradyrhizobium japonicum ATCC 10324 having a cavity structure and good solubility in water have been tested for their ability to encapsulate betulinic acid and drug-binding interactions of CBG and BA were studied. First, in silico approach was employed to study the scope of any interaction between the CBG and BA. Then, the cyclic glucan-betulinic acid complexes were prepared in three compositions of 1:1, 1:2 and 1:3 CBG:BA. The complexes were analysed using UV-VIS spectroscopy, IR spectroscopy, powder XRD, differential scanning calorimetry (DSC) and thermogravimetric analysis (TGA) to confirm the computational results and consequently the encapsulation efficiency was found to be 9.53%.
Collapse
Affiliation(s)
| | - Swayamsiddha Kar
- Department of Chemistry, Sri Sathya Sai Institute of Higher Learning, Prasanthi Nilayam 515134, Andhra Pradesh, India.
| | - Sai Siva Kumar Pinnepalli
- Department of Chemistry, Sri Sathya Sai Institute of Higher Learning, Prasanthi Nilayam 515134, Andhra Pradesh, India
| | - Janardhana Chelli
- Department of Chemistry, Sri Sathya Sai Institute of Higher Learning, Prasanthi Nilayam 515134, Andhra Pradesh, India.
| | - Mukesh Doble
- Department of Biotechnology, Bhupat and Jyoti Mehta School of Biosciences, Indian Institute of Technology Madras, Chennai 600036, Tamil Nadu, India.
| |
Collapse
|
2
|
Visweswar KNS, Sunil A, Sri Harsha A, Janardhana C. Interaction studies of lead(II) ion with cyclic β‐(1→3),(1→6) glucans extracted fromBradyrhizobium japonicumbased on ‘chelation enhanced fluorescence’ (CHEF) effect. LUMINESCENCE 2018; 33:1202-1208. [DOI: 10.1002/bio.3536] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/26/2017] [Revised: 05/18/2018] [Accepted: 06/25/2018] [Indexed: 02/02/2023]
Affiliation(s)
- K. N. S. Visweswar
- Department of ChemistrySri Sathya Sai Institute of Higher Learning (Deemed to be University) Prasanthi Nilayam, Puttaparthi‐ Anantapur Andhra Pradesh India
| | - A. Sunil
- Department of ChemistrySri Sathya Sai Institute of Higher Learning (Deemed to be University) Prasanthi Nilayam, Puttaparthi‐ Anantapur Andhra Pradesh India
| | - A. Sri Harsha
- Department of ChemistrySri Sathya Sai Institute of Higher Learning (Deemed to be University) Prasanthi Nilayam, Puttaparthi‐ Anantapur Andhra Pradesh India
| | - Ch. Janardhana
- Department of ChemistrySri Sathya Sai Institute of Higher Learning (Deemed to be University) Prasanthi Nilayam, Puttaparthi‐ Anantapur Andhra Pradesh India
| |
Collapse
|
3
|
Salgado A, Chankvetadze B. Applications of nuclear magnetic resonance spectroscopy for the understanding of enantiomer separation mechanisms in capillary electrophoresis. J Chromatogr A 2016; 1467:95-144. [PMID: 27604161 DOI: 10.1016/j.chroma.2016.08.060] [Citation(s) in RCA: 35] [Impact Index Per Article: 4.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/18/2016] [Revised: 08/23/2016] [Accepted: 08/25/2016] [Indexed: 10/21/2022]
Abstract
This review deals with the applications of nuclear magnetic resonance (NMR) spectroscopy to understand the mechanisms of chiral separation in capillary electrophoresis (CE). It is accepted that changes observed in the separation process, including the reversal of enantiomer migration order (EMO), can be caused by subtle modifications in the molecular recognition mechanisms between enantiomer and chiral selector. These modifications may imply minor structural differences in those selector-selectand complexes that arise from the above mentioned interactions. Therefore, it is mandatory to understand the fine intermolecular interactions between analytes and chiral selectors. In other words, it is necessary to know in detail the structures of the complexes formed by the enantiomer (selectand) and the selector. Any differences in the structures of these complexes arising from either enantiomer should be detected, so that enantiomeric bias in the separation process could be explained. As to the nature of these interactions, those have been extensively reviewed, and it is not intended to be discussed here. These interactions contemplate ionic, ion-dipole and dipole-dipole interactions, hydrogen bonding, van der Waals forces, π-π stacking, steric and hydrophobic interactions. The main subject of this review is to describe how NMR spectroscopy helps to gain insight into the non-covalent intermolecular interactions between selector and selectand that lead to enantiomer separation by CE. Examples in which diastereomeric species are created by covalent (irreversible) derivatization will not be considered here. This review is structured upon the different structural classes of chiral selectors employed in CE, in which NMR spectroscopy has made substantial contributions to rationalize the observed enantioseparations. Cases in which other techniques complement NMR spectroscopic data are also mentioned.
Collapse
Affiliation(s)
- Antonio Salgado
- Centro de Espectroscopía de RMN (CERMN), Faculty of Pharmacy, University of Alcalá, University Campus, 28805 Alcalá de Henares, Madrid, Spain.
| | - Bezhan Chankvetadze
- Institute of Physical and Analytical Chemistry, School of Exact and Natural Sciences, Tbilisi State University, Chavchavadze Ave 3, 0179 Tbilisi, Georgia
| |
Collapse
|
4
|
Cho E, Jeong D, Choi Y, Jung S. Properties and current applications of bacterial cyclic β-glucans and their derivatives. J INCL PHENOM MACRO 2016. [DOI: 10.1007/s10847-016-0630-3] [Citation(s) in RCA: 8] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/28/2022]
|
5
|
Wang XF, Sun YK, Sun K, Ding YZ, Yuan RJ. Review: Separation and Pharmacology of Chiral Compounds in Traditional Chinese Medicine. ANAL LETT 2016. [DOI: 10.1080/00032719.2016.1169540] [Citation(s) in RCA: 10] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/30/2023]
|
6
|
Nguyen PH, Zhao BT, Lee JH, Kim YH, Min BS, Woo MH. Antithrombotic Phenolics from the Stems of Parthenocissus tricuspidata Possess Anti-inflammatory Effect. B KOREAN CHEM SOC 2014. [DOI: 10.5012/bkcs.2014.35.6.1763] [Citation(s) in RCA: 7] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/20/2022]
|
7
|
Harvey DJ. Analysis of carbohydrates and glycoconjugates by matrix-assisted laser desorption/ionization mass spectrometry: an update for 2007-2008. MASS SPECTROMETRY REVIEWS 2012; 31:183-311. [PMID: 21850673 DOI: 10.1002/mas.20333] [Citation(s) in RCA: 54] [Impact Index Per Article: 4.5] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 07/22/2010] [Revised: 01/04/2011] [Accepted: 01/04/2011] [Indexed: 05/31/2023]
Abstract
This review is the fifth update of the original review, published in 1999, on the application of MALDI mass spectrometry to the analysis of carbohydrates and glycoconjugates and brings coverage of the literature to the end of 2008. The first section of the review covers fundamental studies, fragmentation of carbohydrate ions, use of derivatives and new software developments for analysis of carbohydrate spectra. Among newer areas of method development are glycan arrays, MALDI imaging and the use of ion mobility spectrometry. The second section of the review discusses applications of MALDI MS to the analysis of different types of carbohydrate. Specific compound classes that are covered include carbohydrate polymers from plants, N- and O-linked glycans from glycoproteins, biopharmaceuticals, glycated proteins, glycolipids, glycosides and various other natural products. There is a short section on the use of MALDI mass spectrometry for the study of enzymes involved in glycan processing and a section on the use of MALDI MS to monitor products of the chemical synthesis of carbohydrates with emphasis on carbohydrate-protein complexes and glycodendrimers. Corresponding analyses by electrospray ionization now appear to outnumber those performed by MALDI and the amount of literature makes a comprehensive review on this technique impractical. However, most of the work relating to sample preparation and glycan synthesis is equally relevant to electrospray and, consequently, those proposing analyses by electrospray should also find material in this review of interest.
Collapse
Affiliation(s)
- David J Harvey
- Oxford Glycobiology Institute, Department of Biochemistry, University of Oxford, Oxford OX1 3QU, UK.
| |
Collapse
|
8
|
Kwon CH, Jeong DH, Jung SH. Chiral Separation of Catechin by Capillary Electrophoresis with α-Cyclosophorooctadecaose Isolated from Rhodobacter sphaeroides as Chiral Selectors. B KOREAN CHEM SOC 2011. [DOI: 10.5012/bkcs.2011.32.4.1361] [Citation(s) in RCA: 5] [Impact Index Per Article: 0.4] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/20/2022]
|
9
|
Abstract
Periplasmic glucans (PGs) are general constituents in the periplasmic space of Proteobacteria. PGs from bacterial strains are found in larger amounts during growth on medium with low osmolarity and thus are often been specified as osmoregulated periplasmic glucans (OPGs). Furthermore, they appear to play crucial roles in pathogenesis and symbiosis. PGs have been classified into four families based on the structural features of their backbones, and they can be modified by a variety of non-sugar substituents. It has also recently been confirmed that novel PGs with various degrees of polymerization (DPs) and/or different substituents are produced under different growth conditions among Proteobacteria. In addition to their biological functions as regulators of low osmolarity, PGs have a variety of physico-chemical properties due to their inherent three-dimensional structures, hydrogen-bonding and complex-forming abilities. Thus, much attention has recently been focused on their physico-chemical applications. In this review, we provide an updated classification of PGs, as well as a description of the occurrences of novel PGs with substituents under various bacterial growth environments, the genes involved in PG biosynthesis and the various physico-chemical properties of PGs.
Collapse
Affiliation(s)
- Sanghoo Lee
- Department of Bioscience and Biotechnology, Bio/Molecular Informatics Center, Konkuk University, Seoul 143-701, Korea
| | | | | |
Collapse
|
10
|
Kim H, Choi Y, Lim J, Paik SR, Jung S. Chiral separation of catechin by capillary electrophoresis using mono-, di-, tri-succinyl-β-cyclodextrin as chiral selectors. Chirality 2009; 21:937-42. [DOI: 10.1002/chir.20696] [Citation(s) in RCA: 20] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/10/2022]
|
11
|
Molecular Modeling Studies on the Chiral Separation of (±)-Catechins by Mono-succinyl-β-cyclodextrin. B KOREAN CHEM SOC 2009. [DOI: 10.5012/bkcs.2009.30.6.1373] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.2] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/20/2022]
|
12
|
Analysis of Broad-Range DNA Fragments with Yttrium Oxide or Ytterbium Oxide Nanoparticle/Polymer Sieving Matrix Using High-Performance Capillary Electrophoresis. B KOREAN CHEM SOC 2009. [DOI: 10.5012/bkcs.2009.30.2.297] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.1] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/20/2022]
|
13
|
Preinerstorfer B, Lämmerhofer M, Lindner W. Advances in enantioselective separations using electromigration capillary techniques. Electrophoresis 2009; 30:100-32. [DOI: 10.1002/elps.200800607] [Citation(s) in RCA: 140] [Impact Index Per Article: 9.3] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/06/2022]
|