1
|
Agbale CM, Cardoso MH, Galyuon IK, Franco OL. Designing metallodrugs with nuclease and protease activity. Metallomics 2017; 8:1159-1169. [PMID: 27714031 DOI: 10.1039/c6mt00133e] [Citation(s) in RCA: 33] [Impact Index Per Article: 4.7] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/25/2022]
Abstract
The accidental discovery of cisplatin some 50 years ago generated renewed interest in metallopharmaceuticals. Beyond cisplatin, many useful metallodrugs have been synthesized for the diagnosis and treatment of various diseases, but toxicity concerns, and the propensity to induce chemoresistance and secondary cancers make it imperative to search for novel metallodrugs that address these limitations. The Amino Terminal Cu(ii) and Ni(ii) (ATCUN) binding motif has emerged as a suitable template to design catalytic metallodrugs with nuclease and protease activities. Unlike their classical counterparts, ATCUN-based metallodrugs exhibit low toxicity, employ novel mechanisms to irreversibly inactivate disease-associated genes or proteins providing in principle, a channel to circumvent the rapid emergence of chemoresistance. The ATCUN motif thus presents novel strategies for the treatment of many diseases including cancers, HIV and infections caused by drug-resistant bacteria at the genetic level. This review discusses their design, mechanisms of action and potential for further development to expand their scope of application.
Collapse
Affiliation(s)
- Caleb Mawuli Agbale
- School of Biological Sciences, College of Agriculture and Natural Sciences, University of Cape Coast, Cape Coast, Ghana and S-Inova Biotech, Programa de Pós-Graduação em Biotecnologia, Universidade Católica Dom Bosco, 79117-900 Campo Grande, MS, Brazil.
| | - Marlon Henrique Cardoso
- S-Inova Biotech, Programa de Pós-Graduação em Biotecnologia, Universidade Católica Dom Bosco, 79117-900 Campo Grande, MS, Brazil. and Centro de Análises Proteômicas e Bioquímicas, Programa de Pós-Graduação em Ciências Genômicas e Biotecnologia, Universidade Católica de Brasília, 70719-100 Brasília, DF, Brazil and Programa de Pós-Graduação em Patologia Molecular, Faculdade de Medicina, Universidade de Brasília, 70910-900 Brasília, DF, Brazil
| | - Isaac Kojo Galyuon
- School of Biological Sciences, College of Agriculture and Natural Sciences, University of Cape Coast, Cape Coast, Ghana
| | - Octávio Luiz Franco
- S-Inova Biotech, Programa de Pós-Graduação em Biotecnologia, Universidade Católica Dom Bosco, 79117-900 Campo Grande, MS, Brazil. and Centro de Análises Proteômicas e Bioquímicas, Programa de Pós-Graduação em Ciências Genômicas e Biotecnologia, Universidade Católica de Brasília, 70719-100 Brasília, DF, Brazil and Programa de Pós-Graduação em Patologia Molecular, Faculdade de Medicina, Universidade de Brasília, 70910-900 Brasília, DF, Brazil
| |
Collapse
|
2
|
Yu Z, Cowan JA. Catalytic Metallodrugs: Substrate-Selective Metal Catalysts as Therapeutics. Chemistry 2017; 23:14113-14127. [PMID: 28688119 DOI: 10.1002/chem.201701714] [Citation(s) in RCA: 50] [Impact Index Per Article: 7.1] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/17/2017] [Indexed: 12/13/2022]
Affiliation(s)
- Zhen Yu
- Department of Chemistry and Biochemistry; The Ohio State University; 100 West 18th Avenue Columbus OH 43210 USA
| | - James A. Cowan
- Department of Chemistry and Biochemistry; The Ohio State University; 100 West 18th Avenue Columbus OH 43210 USA
| |
Collapse
|
3
|
Metal assisted peptide bond hydrolysis: Chemistry, biotechnology and toxicological implications. Coord Chem Rev 2016. [DOI: 10.1016/j.ccr.2016.02.009] [Citation(s) in RCA: 37] [Impact Index Per Article: 4.6] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/20/2022]
|
4
|
Transfer hydrogenation catalysis in cells as a new approach to anticancer drug design. Nat Commun 2015; 6:6582. [PMID: 25791197 PMCID: PMC4383003 DOI: 10.1038/ncomms7582] [Citation(s) in RCA: 185] [Impact Index Per Article: 20.6] [Reference Citation Analysis] [Abstract] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/15/2014] [Accepted: 02/09/2015] [Indexed: 01/07/2023] Open
Abstract
Organometallic complexes are effective hydrogenation catalysts for organic reactions. For example, Noyori-type ruthenium complexes catalyse reduction of ketones by transfer of hydride from formate. Here we show that such catalytic reactions can be achieved in cancer cells, offering a new strategy for the design of safe metal-based anticancer drugs. The activity of ruthenium(II) sulfonamido ethyleneamine complexes towards human ovarian cancer cells is enhanced by up to 50 × in the presence of low non-toxic doses of formate. The extent of conversion of coenzyme NAD(+) to NADH in cells is dependent on formate concentration. This novel reductive stress mechanism of cell death does not involve apoptosis or perturbation of mitochondrial membrane potentials. In contrast, iridium cyclopentadienyl catalysts cause cancer cell death by oxidative stress. Organometallic complexes therefore have an extraordinary ability to modulate the redox status of cancer cells.
Collapse
|
5
|
Approaches to the design of catalytic metallodrugs. Curr Opin Chem Biol 2015; 25:172-83. [PMID: 25765750 DOI: 10.1016/j.cbpa.2015.01.024] [Citation(s) in RCA: 110] [Impact Index Per Article: 12.2] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/21/2015] [Accepted: 01/26/2015] [Indexed: 01/10/2023]
Abstract
Metal ions are known to act as catalytic centres in metallo-enzymes. On the other hand, low-molecular-weight metal complexes are widely used as catalysts in chemical systems. However, small catalysts do not have a large protein ligand to provide substrate selectivity and minimize catalyst poisoning. Despite the challenges that the lack of a protein ligand might pose, some success in the use of metal catalysts for biochemical transformations has been reported. Here, we present a brief overview of such reports, especially involving catalytic reactions in cells. Examples include C-C bond formation, deprotection and functional group modification, degradation of biomolecules, and redox modulation. We discuss four classes of catalytic redox modulators: photosensitizers, superoxide dismutase mimics, thiol oxidants, and transfer hydrogenation catalysts. Catalytic metallodrugs offer the prospect of low-dose therapy and a challenging new design strategy for future exploration.
Collapse
|
6
|
Lee TY, Chei WS, Ju H, Lee MS, Lee JW, Suh J. A Co(III) complex cleaving soluble oligomers of h-IAPP in the presence of polymeric aggregates of h-IAPP. Bioorg Med Chem Lett 2012; 22:5689-93. [PMID: 22832314 DOI: 10.1016/j.bmcl.2012.06.089] [Citation(s) in RCA: 11] [Impact Index Per Article: 0.9] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/27/2012] [Revised: 06/27/2012] [Accepted: 06/27/2012] [Indexed: 10/28/2022]
Abstract
Soluble oligomers of human islet amyloid polypeptide (h-IAPP) are believed to be the pathogenic species for type 2 diabetes mellitus. In search of the peptide-cleavage agent cleaving oligomers of h-IAPP with low affinity for polymeric aggregates of h-IAPP, a chemical library was constructed by using the Ugi condensation. From the library, a Co(III) complex was discovered to cleave soluble oligomers of h-IAPP in the presence of polymeric aggregates of h-IAPP without being captured by the aggregates considerably. The peptide-cleavage agent inhibited apoptosis of INS-1 cell by h-IAPP even in the presence of preformed polymeric aggregates of h-IAPP. This suggests that target-selective peptide-cleavage agents may be applied clinically not only to diabetes but also to various other amyloid diseases.
Collapse
Affiliation(s)
- Tae Yeon Lee
- Department of Chemistry, Seoul National University, Seoul 151-742, Republic of Korea
| | | | | | | | | | | |
Collapse
|
7
|
Chei W, Ju H, Suh J. Peptide-cleaving agents for human islet amyloid polypeptide containing substrate recognition site based on quinoxaline: Cleavage efficiency enhanced by lowering substrate concentration. Bioorg Med Chem Lett 2012; 22:1533-7. [DOI: 10.1016/j.bmcl.2012.01.008] [Citation(s) in RCA: 8] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/26/2011] [Revised: 01/02/2012] [Accepted: 01/04/2012] [Indexed: 10/14/2022]
|
8
|
Kim MG, Kim HM, Suh JH. Artificial Metalloprotease Based on Co(III)oxacyclen-Aldehyde Conjugate. B KOREAN CHEM SOC 2011. [DOI: 10.5012/bkcs.2011.32.8.3113] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/20/2022]
|
9
|
Chei WS, Ju H, Suh J. New chelating ligands for Co(III)-based peptide-cleaving catalysts selective for pathogenic proteins of amyloidoses. J Biol Inorg Chem 2010; 16:511-9. [DOI: 10.1007/s00775-010-0750-y] [Citation(s) in RCA: 40] [Impact Index Per Article: 2.9] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/30/2010] [Accepted: 12/07/2010] [Indexed: 11/25/2022]
|
10
|
Chei WS, Lee JW, Kim JB, Suh J. Cell-penetration by Co(III)cyclen-based peptide-cleaving catalysts selective for pathogenic proteins of amyloidoses. Bioorg Med Chem 2010; 18:5248-53. [DOI: 10.1016/j.bmc.2010.05.047] [Citation(s) in RCA: 8] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/09/2010] [Revised: 05/17/2010] [Accepted: 05/18/2010] [Indexed: 11/28/2022]
|
11
|
Jeong KH, Suh JH, Chung WY, Kye YS, Kim DW, Lee TY. New Methodology for Estimation of the Prion Protein 106-126 Amyloid Aggregation. B KOREAN CHEM SOC 2010. [DOI: 10.5012/bkcs.2010.31.04.1029] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.2] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/20/2022]
|
12
|
Abstract
A new paradigm for drug activity is presented, which includes both recognition and subsequent irreversible inactivation of therapeutic targets. Application to both RNA and protein biomolecules has been demonstrated. In contrast to RNA targets that are subject to strand scission chemistry mediated by ribose H-atom abstraction, proteins appear to be inactivated either through oxidative damage to amino acid side chains around the enzyme active site, or by backbone hydrolysis.
Collapse
Affiliation(s)
- Lalintip Hocharoen
- Evans Laboratory of Chemistry, Ohio State University, 100 West 18th Avenue, Columbus, OH 43210, USA
| | | |
Collapse
|
13
|
Lee TY, Suh J. Target-selective peptide-cleaving catalysts as a new paradigm in drug design. Chem Soc Rev 2009; 38:1949-57. [PMID: 19551175 DOI: 10.1039/b710345j] [Citation(s) in RCA: 51] [Impact Index Per Article: 3.4] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/09/2023]
Abstract
This tutorial review describes the evolution of peptide-hydrolyzing metal catalysts towards artificial metalloproteases cleaving target proteins selectively. The catalytic cleavage of the backbone of a protein related to a disease may effect a cure. In particular, a new therapeutic option for amyloid diseases such as Alzheimer's disease, diabetes and Parkinson's disease has been presented. The new paradigm of drug design based on artificial metalloproteases should be of interest to researchers in the areas of biomimetic chemistry, as well as medicinal chemistry.
Collapse
Affiliation(s)
- Tae Yeon Lee
- Department of Chemistry, Seoul National University, Seoul 151-747, Korea
| | | |
Collapse
|
14
|
Proteolytic activity of Co(III) complex of 1-oxa-4,7,10-triazacyclododecane: a new catalytic center for peptide-cleavage agents. J Biol Inorg Chem 2008; 14:151-7. [PMID: 18836752 DOI: 10.1007/s00775-008-0434-z] [Citation(s) in RCA: 24] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/13/2008] [Accepted: 09/25/2008] [Indexed: 10/21/2022]
Abstract
Catalytic drugs based on target-selective artificial proteases have been proposed as a new paradigm in drug design. Peptide-cleavage agents selective for pathogenic proteins of Alzheimer's disease, type 2 diabetes mellitus or Parkinson's disease have been prepared using the Co(III) aqua complex (Co(III)cyclen) of 1,4,7,10-tetraazacyclododecane as the catalytic center. In the present study, the Co(III) aqua complex (Co(III)oxacyclen) of 1-oxa-4,7,10-triazacyclododecane was examined in search of an improved catalytic center for peptide-cleavage agents. An X-ray crystallographic study of [Co(oxacyclen)(CO(3))](ClO(4)), titration of Co(III)oxacyclen, and kinetic studies on the cleavage of albumin, gamma-globulin, lysozyme, and myoglobin by Co(III)oxacyclen were carried out. Considerably higher proteolytic activity was observed for Co(III)oxacyclen in comparison with Co(III)cyclen, indicating that better target-selective artificial metalloproteases would be obtained using Co(III)oxacyclen as the catalytic center. The improved proteolytic activity was attributed to either steric effects or the increased Lewis acidity of the Co(III) center. The kinetic data also predicted that side effects due to the cleavage of nontarget proteins by a catalytic drug based on Co(III)oxacyclen would be insignificant.
Collapse
|