1
|
Heravi MM, Feiz A, Bazgir A. Recent Advances in the Chemistry and Synthesis of Thienopyrazine, Pyrrolopyrazine and Furopyrazine Derivatives. CURR ORG CHEM 2020. [DOI: 10.2174/1385272823666191106101954] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.4] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/22/2022]
Abstract
Bicyclic compounds derived from pyrazine and aromatic five-membered heterocycles including thiophene, furan and pyrrole show various biological and pharmacological proBicyclic compounds derived from pyrazine and aromatic five-membered heterocycles including thiophene, furan and pyrrole show various biological and pharmacological properties, such as anti-inflammatory, antiviral, antitumor, antioxidant, antimycobacterial, and cytostatic activities. In many cases, it has been demonstrated that there are more potent cytostatic and cytotoxic agents against human tumor cell lines, leukemia, colon cancer, central nervous system cancer, melanoma, ovarian cancer, prostate cancer and breast cancer. They are also useful precursors for the large scale preparation of inorganicorganic hybrid solar cells, suitable acceptors for the synthesis of low-band gap polymers. They use ligands for serotoninergic 5-HT7 receptor and are effective in neurogical and psychiatric diseases, antimalarial, neuroleptic and cardiovascular. The absence of any useful review concerning the chemistry and synthesis of the above-mentioned heterocyles encouraged us to underscore the recent advances in chemistry and synthetic approaches leading to the preparation of thienopyrazines, pyrrolopyrazines and furopyrazines since 1990.perties such as anti-inflammatory, antiviral, antitumor, antioxidant, antimycobacterial, and cytostatic activities. In many cases, it has been demonstrated that they are much more potent cytostatic and cytotoxic agents against human tumor cell lines, leukemia, colon cancer, central nervous system cancer, melanoma, ovarian cancer, prostate cancer and breast cancer. They also are useful precursors for the large scale preparation of inorganic-organic hybrid solar cells, suitable acceptors for the synthesis of low-band gap polymers. They use as ligands for serotoninergic 5-HT7 receptor and being effective in neurogical and psychiatric diseases, antimalarial, neuroleptic and cardiovascular. Due to the absence of any useful review concerning the chemistry and synthesis of the above-mentioned heterocyles encouraged us to underscore the recent advances in the chemistry and synthetic approaches leading to preparation of thienopyrazines, pyrrolopyrazines and furopyrazines from 1990 up to date.
Collapse
Affiliation(s)
- Majid M. Heravi
- Department of Chemistry, School of Science, Alzahra University, Tehran, Iran
| | - Afsaneh Feiz
- Department of Chemistry, School of Science, Alzahra University, Tehran, Iran
| | - Ayoob Bazgir
- Department of Chemistry, Shahid Beheshti University, Tehran, Iran
| |
Collapse
|
2
|
Rasmussen SC, Schwiderski RL, Mulholland ME. Thieno[3,4-b]pyrazines and their applications to low band gap organic materials. Chem Commun (Camb) 2011; 47:11394-410. [PMID: 21785759 DOI: 10.1039/c1cc12754c] [Citation(s) in RCA: 85] [Impact Index Per Article: 6.1] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/21/2022]
Abstract
The application of fused-ring thieno[3,4-b]pyrazines in conjugated organic polymers has been found to be a powerful approach to the production of low band gap materials. While thieno[3,4-b]pyrazine-based materials date back to the early 1990s, significant advances in the preparation and scope of thieno[3,4-b]pyrazine-based materials have been reported in recent years, primarily in response to the increasing demand for reduced band gap materials in photovoltaic devices. In this review, we provide an overview of thieno[3,4-b]pyrazines and their application to conjugated materials, highlighting in particular the recent advances in the breadth of thieno[3,4-b]pyrazine building blocks and the promise of tuning materials to achieve optimal properties for specific applications.
Collapse
Affiliation(s)
- Seth C Rasmussen
- Department of Chemistry and Biochemistry, North Dakota State University, NDSU Dept. 2735, P.O. Box 6050, Fargo, ND 58108-6050, USA.
| | | | | |
Collapse
|
3
|
Hwang ML, Li JC, Seo EO, Lee SH, Lee YS. Synthesis and Characterization of Phenylene-Thiophene-Thieno[3,4-b]pyrazine Oligomer. KOREAN CHEMICAL ENGINEERING RESEARCH 2011. [DOI: 10.9713/kcer.2011.49.1.095] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/23/2022]
|
4
|
Li JC, Beak MJ, Kwon JT, Lee EW, Lee SH, Lee YS. Synthesis of poly(3-hexylthiophene-alt-2,3-bis(4-fluorophenyl)thieno[3,4-b]pyrazine) for polymer photovoltaic applications. Macromol Res 2010. [DOI: 10.1007/s13233-010-1211-8] [Citation(s) in RCA: 6] [Impact Index Per Article: 0.4] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/28/2022]
|