1
|
Mao J, Akhtar J, Zhang X, Sun L, Guan S, Li X, Chen G, Liu J, Jeon HN, Kim MS, No KT, Wang G. Comprehensive strategies of machine-learning-based quantitative structure-activity relationship models. iScience 2021; 24:103052. [PMID: 34553136 PMCID: PMC8441174 DOI: 10.1016/j.isci.2021.103052] [Citation(s) in RCA: 38] [Impact Index Per Article: 12.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/21/2022] Open
Abstract
Early quantitative structure-activity relationship (QSAR) technologies have unsatisfactory versatility and accuracy in fields such as drug discovery because they are based on traditional machine learning and interpretive expert features. The development of Big Data and deep learning technologies significantly improve the processing of unstructured data and unleash the great potential of QSAR. Here we discuss the integration of wet experiments (which provide experimental data and reliable verification), molecular dynamics simulation (which provides mechanistic interpretation at the atomic/molecular levels), and machine learning (including deep learning) techniques to improve QSAR models. We first review the history of traditional QSAR and point out its problems. We then propose a better QSAR model characterized by a new iterative framework to integrate machine learning with disparate data input. Finally, we discuss the application of QSAR and machine learning to many practical research fields, including drug development and clinical trials.
Collapse
Affiliation(s)
- Jiashun Mao
- The Interdisciplinary Graduate Program in Integrative Biotechnology and Translational Medicine, Yonsei University, Incheon 21983, Republic of Korea
- Department of Biology, School of Life Sciences, Southern University of Science and Technology, 1088 Xueyuan Avenue, Shenzhen, Guangdong 518055, China
- Guangdong Provincial Key Laboratory of Computational Science and Material Design, Shenzhen, Guangdong 518055 China
| | - Javed Akhtar
- Department of Biology, School of Life Sciences, Southern University of Science and Technology, 1088 Xueyuan Avenue, Shenzhen, Guangdong 518055, China
- Guangdong Provincial Key Laboratory of Cell Microenvironment and Disease Research, Shenzhen, Guangdong 518055, China
| | - Xiao Zhang
- Shanghai Rural Commercial Bank Co., Ltd, Shanghai 200002, China
| | - Liang Sun
- Department of Physics, City University of Hong Kong, 83 Tat Chee Avenue, Kowloon, Hong Kong, China
| | - Shenghui Guan
- Department of Biology, School of Life Sciences, Southern University of Science and Technology, 1088 Xueyuan Avenue, Shenzhen, Guangdong 518055, China
- Guangdong Provincial Key Laboratory of Computational Science and Material Design, Shenzhen, Guangdong 518055 China
| | - Xinyu Li
- School of Life and Health Sciences and Warshel Institute for Computational Biology, The Chinese University of Hong Kong, Shenzhen 518172, China
| | - Guangming Chen
- Department of Biology, School of Life Sciences, Southern University of Science and Technology, 1088 Xueyuan Avenue, Shenzhen, Guangdong 518055, China
- Guangdong Provincial Key Laboratory of Cell Microenvironment and Disease Research, Shenzhen, Guangdong 518055, China
| | - Jiaxin Liu
- Biotechnology, College of Life Science and Biotechnology, Yonsei University, Seoul 03722, Republic of Korea
| | - Hyeon-Nae Jeon
- Biotechnology, College of Life Science and Biotechnology, Yonsei University, Seoul 03722, Republic of Korea
| | - Min Sung Kim
- Biotechnology, College of Life Science and Biotechnology, Yonsei University, Seoul 03722, Republic of Korea
| | - Kyoung Tai No
- The Interdisciplinary Graduate Program in Integrative Biotechnology and Translational Medicine, Yonsei University, Incheon 21983, Republic of Korea
| | - Guanyu Wang
- Department of Biology, School of Life Sciences, Southern University of Science and Technology, 1088 Xueyuan Avenue, Shenzhen, Guangdong 518055, China
- Guangdong Provincial Key Laboratory of Computational Science and Material Design, Shenzhen, Guangdong 518055 China
- Guangdong Provincial Key Laboratory of Cell Microenvironment and Disease Research, Shenzhen, Guangdong 518055, China
| |
Collapse
|