Dias N, Gurusinghe RM, Suits AG. Multichannel Radical-Radical Reaction Dynamics of NO + Propargyl Probed by Broadband Rotational Spectroscopy.
J Phys Chem A 2022;
126:5354-5362. [PMID:
35938878 DOI:
10.1021/acs.jpca.2c01629]
[Citation(s) in RCA: 1] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/30/2022]
Abstract
Chirped-pulse rotational spectroscopy in a quasi-uniform flow has been used to investigate the reaction dynamics of a multichannel radical-radical reaction of relevance to planetary atmospheres and combustion. In this work, the NO + propargyl (C3H3) reaction was found to yield six product channels containing eight detected species. These products and their branching fractions (%), are as follows: HCN (50), HCNO (18), CH2CN (12), CH3CN (7.4), HC3N (6.2), HNC (2.3), CH2CO (1.3), HCO (1.8). The results are discussed in light of previous unimolecular photodissociation studies of isoxazole and prior potential energy surface calculations of the NO + C3H3 system. The results also show that the product branching is strongly influenced by the excess energy of the reactant radicals. The implications of the title reaction to the planetary atmospheres, particularly to Titan, are discussed.
Collapse