Grover A, Kumar A, Tittal RK, Lal K. Dehydroacetic acid a privileged medicinal scaffold: A concise review.
Arch Pharm (Weinheim) 2024;
357:e2300512. [PMID:
37972261 DOI:
10.1002/ardp.202300512]
[Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/15/2023] [Revised: 10/21/2023] [Accepted: 10/23/2023] [Indexed: 11/19/2023]
Abstract
From the last decade, research on dehydroacetic acid (DHA) and its derivatives has increased immensely due to its significant role in various fields, including medicine, cosmetics, food industry, and so on. In the medicinal area, DHA plays an essential role in developing novel action-based drugs, which are helpful for treating various diseases. Besides its plethora of biological applications, its chelating ability offers the easiest synthetic route for synthesizing more active metal complexes. DHA derivatives along with their metal complexes show a number of biological activities and also exhibit various interactions with multiple biological targets. This article summarizes recent medicinal applications (2000-onwards) of DHA-based compounds and their analogs, along with their structure-activity relationship (SAR) analysis. Their interactions with different target enzymes are also discussed. This information derived from SAR analysis would be helpful for medicinal chemists working on the development of drugs based on heterocyclic frameworks, particularly those based on the DHA scaffold.
Collapse