1
|
Demissie H, Lu S, Jiao R, Liu L, Xiang Y, Ritigala T, Ajibade FO, Mihiranga HKM, An G, Wang D. Advances in micro interfacial phenomena of adsorptive micellar flocculation: Principles and application for water treatment. WATER RESEARCH 2021; 202:117414. [PMID: 34303165 DOI: 10.1016/j.watres.2021.117414] [Citation(s) in RCA: 12] [Impact Index Per Article: 4.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 04/30/2021] [Revised: 07/01/2021] [Accepted: 07/02/2021] [Indexed: 06/13/2023]
Abstract
Among various aqua remediation technologies, separation aims at cleaning pollutants by isolating them despite their destruction; solutes can also be recovered after the process. Adsorptive micellar flocculation (AMF) has been known as an important surfactant-based technique to separate poorly water-soluble hazardous pollutants from aqua media as an efficient and energy-intensive replacement for other surfactant-based techniques, as such AMF should be known. AMF is based on the partitioning of solutes gradient from bulk solution into the nanosized smart anionic surfactant micelle followed by flocculation. However, unlike coagulation/flocculation or adsorption, AMF is not viable for the production of drinking water in water utilities due to the loss of surfactant monomers. Unfortunately, it can be used as a reservoir or for the recycling/recovery of organic pollutants (intermediates) (ions, organics/bioactive, dyes, etc.), even at high concentrations. The performance of AMF depends on various parameters, and this review briefly summarizes the existing researches on different pollutants removal by AMF and material recovery/recycling. This includes operating condition factors (surfactants, flocculants, surfactant-flocculant or surfactant-pollutant concentration ratio, and water conditions chemistry). Because varieties of micro interfacial phenomena other than physical interactions occur in a versatile micellar environment in the AMF process, emphases are given to adsorptive oxidation, micellar catalysis, selectivity. Furthermore, for the first time, this review gives an overview of understanding the state-of-the-art multifunctional nano amphiphile-based AMF that behaves mimetic to aquatic organisms in the process of pollutant removal. The efficiency of AMF, including recycling concentrated solution without noticeable deterioration, as an auxiliary resource/income for the next cycle, signifies economic viability, versatility, and manifold applications in aqua remediation. Significance, ways to achieve enhanced process efficiency, as well as challenges and future opportunities in wastewater treatment, are also highlighted.
Collapse
Affiliation(s)
- Hailu Demissie
- State Key Laboratory of Environmental Aquatic Chemistry, Research Center for Eco- Environmental Science, Chinese Academy of Sciences, Beijing 100085, China; University of Chinese Academy of Science, Beijing 100049, China; Department of Chemistry, Arba Minch University 1000, Ethiopia
| | - Sen Lu
- School of Civil and Environmental Engineering, Harbin Institute of Technology, Shenzhen 518055, China
| | - Ruyuan Jiao
- State Key Laboratory of Environmental Aquatic Chemistry, Research Center for Eco- Environmental Science, Chinese Academy of Sciences, Beijing 100085, China
| | - Libing Liu
- College of Chemistry and Environmental Engineering, Shenzhen University, Shenzhen 518060, PR China
| | - Yu Xiang
- University of Chinese Academy of Science, Beijing 100049, China
| | | | | | - H K M Mihiranga
- University of Chinese Academy of Science, Beijing 100049, China
| | - Guangyu An
- State Key Laboratory of Environmental Aquatic Chemistry, Research Center for Eco- Environmental Science, Chinese Academy of Sciences, Beijing 100085, China.
| | - Dongsheng Wang
- State Key Laboratory of Environmental Aquatic Chemistry, Research Center for Eco- Environmental Science, Chinese Academy of Sciences, Beijing 100085, China; University of Chinese Academy of Science, Beijing 100049, China.
| |
Collapse
|
5
|
Malik S, Saha B. Combination of Best Promoter and Micellar Catalyst for Chromic Acid Oxidation of D-Arabinose in Aqueous Media at Room Temperature. TENSIDE SURFACT DET 2015. [DOI: 10.3139/113.110403] [Citation(s) in RCA: 6] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/20/2022]
Abstract
AbstractThe present paper describes the kinetics and mechanism for oxidation of D-arabinose by Cr(VI) in the presence of a micellar media. The anionic surfactant sodium dodecyl sulphate (SDS) and nonionic surfactant Triton-X-100 (TX-100) accelerate the process while the cationic surfactant N-cetylpyridinium chloride (CPC) retards the reaction. A suitable mechanism has been proposed. The reaction constants involved in different steps of the mechanism have been calculated. Formic acid and erythronic acid were reported as the products of oxidation of the sugar.
Collapse
|
6
|
Ghosh A, Saha R, Mukherjee K, Sar P, Ghosh SK, Malik S, Bhattacharyya SS, Saha B. Rate enhancement via micelle encapsulation for room temperature metal catalyzed Ce(IV) oxidation of p-chlorobenzaldehyde to p-chlorobenzoic acid in aqueous medium at atmospheric pressure. J Mol Liq 2014. [DOI: 10.1016/j.molliq.2013.10.029] [Citation(s) in RCA: 24] [Impact Index Per Article: 2.4] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/24/2022]
|
7
|
Ghosh A, Saha R, Saha B. Suitable combination of promoter and micellar catalyst for kilo fold rate acceleration on propanol to propionaldehyde conversion in aqueous media. J IND ENG CHEM 2014. [DOI: 10.1016/j.jiec.2013.03.028] [Citation(s) in RCA: 39] [Impact Index Per Article: 3.9] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/27/2022]
|
8
|
Mukherjee K, Saha B. Rate Enhancement by Micelle Encapsulation for Oxidation of L-Glutamic Acid in Aqueous Media at Room Temperature. JOURNAL OF THE KOREAN CHEMICAL SOCIETY-DAEHAN HWAHAK HOE JEE 2013. [DOI: 10.5012/jkcs.2013.57.4.425] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.1] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/20/2022]
|
9
|
Ghosh A, Saha R, Ghosh SK, Mukherjee K, Saha B. Suitable combination of promoter and micellar catalyst for kilo fold rate acceleration on benzaldehyde to benzoic acid conversion in aqueous media at room temperature: a kinetic approach. SPECTROCHIMICA ACTA. PART A, MOLECULAR AND BIOMOLECULAR SPECTROSCOPY 2013; 109:55-67. [PMID: 23501718 DOI: 10.1016/j.saa.2013.02.019] [Citation(s) in RCA: 20] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 10/16/2012] [Revised: 02/05/2013] [Accepted: 02/06/2013] [Indexed: 06/01/2023]
Abstract
The kinetics of oxidation of benzaldehyde by chromic acid in aqueous and aqueous surfactant (sodium dodecyl sulfate, SDS, alkyl phenyl polyethylene glycol, Triton X-100 and N-cetylpyridinium chloride, CPC) media have been investigated in the presence of promoter at 303 K. The pseudo-first-order rate constants (kobs) were determined from a logarithmic plot of absorbance as a function time. The rate constants were found to increase with introduction of heteroaromatic nitrogen base promoters such as Picolinic acid (PA), 2,2'-bipyridine (bipy) and 1,10-phenanthroline (phen). The product benzoic acid has been characterized by conventional melting point experiment, NMR, HRMS and FTIR spectral analysis. The mechanism of both unpromoted and promoted reaction path has been proposed for the reaction. In presence of the anionic surfactant SDS, cationic surfactant CPC and neutral surfactant TX-100 the reaction can undergo simultaneously in both aqueous and micellar phase with an enhanced rate of oxidation in the micellar phase. Both SDS and TX-100 produce normal micellar effect whereas CPC produce reverse micellar effect in the presence of benzaldehyde. The observed net enhancement of rate effects has been explained by considering the hydrophobic and electrostatic interaction between the surfactants and reactants. SDS and bipy combination is the suitable one for benzaldehyde oxidation.
Collapse
Affiliation(s)
- Aniruddha Ghosh
- Homogeneous Catalysis Laboratory, Department of Chemistry, The University of Burdwan, Golapbag, Burdwan, 713 104 WB, India
| | | | | | | | | |
Collapse
|