1
|
Chen C, Wang S, Tang Y, Liu H, Tu D, Su B, Peng R, Jin S, Jiang G, Cao J, Zhang C, Bai D. Identifying epithelial-mesenchymal transition-related genes as prognostic biomarkers and therapeutic targets of hepatocellular carcinoma by integrated analysis of single-cell and bulk-RNA sequencing data. Transl Cancer Res 2024; 13:4257-4277. [PMID: 39262476 PMCID: PMC11384925 DOI: 10.21037/tcr-24-521] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/28/2024] [Accepted: 06/30/2024] [Indexed: 09/13/2024]
Abstract
Background Hepatocellular carcinoma (HCC) remains one of the most lethal cancers globally. Patients with advanced HCC tend to have poor prognoses and shortened survival. Recently, data from bulk RNA sequencing have been employed to discover prognostic markers for various cancers. However, they fall short in precisely identifying core molecular and cellular activities within tumor cells. In our present study, we combined bulk-RNA sequencing (bulk RNA-seq) data with single-cell RNA sequencing (scRNA-seq) to develop a prognostic model for HCC. The goal of our research is to uncover new biomarkers and enhance the accuracy of HCC prognosis prediction. Methods Integrating single-cell sequencing data with transcriptomics were used to identify epithelial-mesenchymal transition (EMT)-related genes (ERGs) implicated in HCC progression and their clinical significance was elucidated. Utilizing marker genes derived from core cells and ERGs, we constructed a prognostic model using univariate Cox analysis, exploring a multitude of algorithmic combinations, and further refining it through multivariate Cox analysis. Additionally, we conducted an in-depth investigation into the disparities in clinicopathological features, immune microenvironment composition, immune checkpoint expression, and chemotherapeutic drug sensitivity profiles between high- and low-risk patient cohorts. Results We developed a prognostic model predicated on the expression profiles of eight signature genes, namely HSP90AA1, CIRBP, CCR7, S100A9, ADAM17, ENG, PGF, and INPP4B, aiming at predicting overall survival (OS) outcomes. Notably, patients classified with high-risk scores exhibited a propensity towards diminished OS rates, heightened frequencies of stage III-IV disease, increased tumor mutational burden (TMB), augmented immune cell infiltration, and diminished responsiveness to immunotherapeutic interventions. Conclusions This study presented a novel prognostic model for predicting the survival of HCC patients by integrating scRNA-seq and bulk RNA-seq data. The risk score emerges as a promising independent prognostic factor, showing a correlation with the immune microenvironment and clinicopathological features. It provided new clinical tools for predicting prognosis and aided future research into the pathogenesis of HCC.
Collapse
Affiliation(s)
- Chen Chen
- Department of Hepatobiliary Surgery, Northern Jiangsu People's Hospital Affiliated to Yangzhou University, Yangzhou, China
| | - Shunyi Wang
- Department of Hepatobiliary Surgery, Northern Jiangsu People's Hospital Affiliated to Yangzhou University, Yangzhou, China
| | - Yuhong Tang
- Department of Hepatobiliary Surgery, Northern Jiangsu People's Hospital Affiliated to Yangzhou University, Yangzhou, China
| | - Huanxiang Liu
- Department of Hepatobiliary Surgery, Northern Jiangsu People's Hospital Affiliated to Yangzhou University, Yangzhou, China
| | - Daoyuan Tu
- Department of Hepatobiliary Surgery, Northern Jiangsu People's Hospital Affiliated to Yangzhou University, Yangzhou, China
| | - Bingbing Su
- Department of Hepatobiliary Surgery, Northern Jiangsu People's Hospital Affiliated to Yangzhou University, Yangzhou, China
| | - Rui Peng
- Department of Hepatobiliary Surgery, Northern Jiangsu People's Hospital Affiliated to Yangzhou University, Yangzhou, China
| | - Shengjie Jin
- Department of Hepatobiliary Surgery, Northern Jiangsu People's Hospital, Yangzhou, China
| | - Guoqing Jiang
- Department of Hepatobiliary Surgery, Northern Jiangsu People's Hospital Affiliated to Yangzhou University, Yangzhou, China
- Department of Hepatobiliary Surgery, Northern Jiangsu People's Hospital, Yangzhou, China
| | - Jun Cao
- Department of Hepatobiliary Surgery, Northern Jiangsu People's Hospital Affiliated to Yangzhou University, Yangzhou, China
| | - Chi Zhang
- Department of Hepatobiliary Surgery, Northern Jiangsu People's Hospital Affiliated to Yangzhou University, Yangzhou, China
- Department of Hepatobiliary Surgery, Northern Jiangsu People's Hospital, Yangzhou, China
| | - Dousheng Bai
- Department of Hepatobiliary Surgery, Northern Jiangsu People's Hospital Affiliated to Yangzhou University, Yangzhou, China
- Department of Hepatobiliary Surgery, Northern Jiangsu People's Hospital, Yangzhou, China
| |
Collapse
|
2
|
Gao X, Yang C, Li H, Shao L, Wang M, Su R. EMT-related gene risk model establishment for prognosis and drug treatment efficiency prediction in hepatocellular carcinoma. Sci Rep 2023; 13:20380. [PMID: 37990105 PMCID: PMC10663558 DOI: 10.1038/s41598-023-47886-z] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/13/2023] [Accepted: 11/20/2023] [Indexed: 11/23/2023] Open
Abstract
This study was designed to evaluate the prognosis and pharmacological therapy sensitivity of epithelial mesenchymal transition-related genes (EMTRGs) that obtained from the EMTome database in hepatocellular carcinoma (HCC) using bioinformatical method. The expression status of EMTRGs were also investigated using the clinical information of HCC patients supported by TCGA database and the ICGC database to establish the TCGA cohort as the training set and the ICGC cohort as the validation set. Analyze the EMTRGs between HCC tissue and liver tissue in the TCGA cohort in the order of univariate COX regression, LASSO regression, and multivariate COX regression, and construct a risk model for EMTRGs. In addition, enrichment pathways, gene mutation status, immune infiltration, and response to drugs were also analyzed in the high-risk and low-risk groups of the TCGA cohort, and the protein expression status of EMTRGs was verified. The results showed a total of 286 differentially expressed EMTRGs in the TCGA cohort, and EZH2, S100A9, TNFRSF11B, SPINK5, and CCL21 were used for modeling. The TCGA cohort was found to have a worse outcome in the high-risk group of HCC patients, and the ICGC cohort confirmed this finding. In addition, EMTRGs risk score was shown to be an independent prognostic factor in both cohorts by univariate and multivariate COX regression. The results of GSEA analysis showed that most of the enriched pathways in the high-risk group were associated with tumor, and the pathways enriched in the low-risk group were mainly associated with metabolism. Patients in various risk groups had varying immunological conditions, and the high-risk group might benefit more from targeted treatments. To sum up, the EMTRGs risk model was developed to forecast the prognosis for HCC patients, and the model might be useful in assisting in the choice of treatment drugs for HCC patients.
Collapse
Affiliation(s)
- Xiaqing Gao
- The First Clinical Medical College, Gansu University of Chinese Medicine, Lanzhou, 730000, Gansu, People's Republic of China
| | - Chunting Yang
- The First Clinical Medical College, Gansu University of Chinese Medicine, Lanzhou, 730000, Gansu, People's Republic of China
- Department of Geriatrics, Affiliated Hospital of Gansu University of Chinese Medicine, Lanzhou, 730000, Gansu, People's Republic of China
- Key Laboratory of Traditional Chinese Herbs and Prescription Innovation and Transformation of Gansu Province and Gansu Provincial Traditional Chinese Medicine New Product Innovation Engineering Laboratory, Gansu University of Chinese Medicine, Lanzhou, 730000, Gansu, People's Republic of China
| | - Hailong Li
- The First Clinical Medical College, Gansu University of Chinese Medicine, Lanzhou, 730000, Gansu, People's Republic of China.
- Department of Geriatrics, Affiliated Hospital of Gansu University of Chinese Medicine, Lanzhou, 730000, Gansu, People's Republic of China.
- Key Laboratory of Traditional Chinese Herbs and Prescription Innovation and Transformation of Gansu Province and Gansu Provincial Traditional Chinese Medicine New Product Innovation Engineering Laboratory, Gansu University of Chinese Medicine, Lanzhou, 730000, Gansu, People's Republic of China.
- Key Laboratory of Dunhuang Medicine and Transformation, Ministry of Education, Gansu University of Chinese Medicine, Lanzhou, 730000, Gansu, People's Republic of China.
| | - Lihua Shao
- The First Clinical Medical College, Gansu University of Chinese Medicine, Lanzhou, 730000, Gansu, People's Republic of China
- Department of Geriatrics, Affiliated Hospital of Gansu University of Chinese Medicine, Lanzhou, 730000, Gansu, People's Republic of China
- Key Laboratory of Dunhuang Medicine and Transformation, Ministry of Education, Gansu University of Chinese Medicine, Lanzhou, 730000, Gansu, People's Republic of China
| | - Meng Wang
- The First Clinical Medical College, Gansu University of Chinese Medicine, Lanzhou, 730000, Gansu, People's Republic of China
- Department of Geriatrics, Affiliated Hospital of Gansu University of Chinese Medicine, Lanzhou, 730000, Gansu, People's Republic of China
- Key Laboratory of Traditional Chinese Herbs and Prescription Innovation and Transformation of Gansu Province and Gansu Provincial Traditional Chinese Medicine New Product Innovation Engineering Laboratory, Gansu University of Chinese Medicine, Lanzhou, 730000, Gansu, People's Republic of China
| | - Rong Su
- The First Clinical Medical College, Gansu University of Chinese Medicine, Lanzhou, 730000, Gansu, People's Republic of China
| |
Collapse
|
3
|
Single-cell transcriptomic analysis reveals the critical molecular pattern of UV-induced cutaneous squamous cell carcinoma. Cell Death Dis 2021; 13:23. [PMID: 34934042 PMCID: PMC8692455 DOI: 10.1038/s41419-021-04477-y] [Citation(s) in RCA: 18] [Impact Index Per Article: 6.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/14/2021] [Revised: 12/01/2021] [Accepted: 12/14/2021] [Indexed: 12/12/2022]
Abstract
Cutaneous squamous cell carcinoma (cSCC) is the second most common nonmelanoma skin cancer characterized by high invasiveness, heterogeneity, and mainly occurs in the ultraviolet (UV)-exposed regions of the skin, but its pathogenesis is still unclear. Here, we generated single-cell transcriptome profiles for 350 cells from six primary UV-induced cSCCs, together with matched adjacent skin samples, and three healthy control skin tissues by single-cell RNA-sequencing technology based on Smart-seq2 strategy. A series of bioinformatics analyses and in vitro experiments were used to decipher and validate the critical molecular pattern of cSCC. Results showed that cSCC cells and normal keratinocytes were significantly distinct in gene expression and chromosomal copy number variation. Furthermore, cSCC cells exhibited 18 hallmark pathways of cancer by gene set enrichment analysis. Differential expression analysis demonstrated that many members belonging to S100 gene family, SPRR gene family, and FABP5 were significantly upregulated in cSCC cells. Further experiments confirmed their upregulation and showed that S100A9 or FABP5 knockdown in cSCC cells inhibited their proliferation and migration through NF-κB pathway. Taken together, our data provide a valuable resource for deciphering the molecular pattern in UV-induced cSCC at a single-cell level and suggest that S100A9 and FABP5 may provide novel targets for therapeutic intervention of cSCC in the future.
Collapse
|
4
|
Wysong A, Newman JG, Covington KR, Kurley SJ, Ibrahim SF, Farberg AS, Bar A, Cleaver NJ, Somani AK, Panther D, Brodland DG, Zitelli J, Toyohara J, Maher IA, Xia Y, Bibee K, Griego R, Rigel DS, Meldi Plasseraud K, Estrada S, Sholl LM, Johnson C, Cook RW, Schmults CD, Arron ST. Validation of a 40-gene expression profile test to predict metastatic risk in localized high-risk cutaneous squamous cell carcinoma. J Am Acad Dermatol 2020; 84:361-369. [PMID: 32344066 DOI: 10.1016/j.jaad.2020.04.088] [Citation(s) in RCA: 53] [Impact Index Per Article: 13.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/20/2020] [Revised: 03/22/2020] [Accepted: 04/15/2020] [Indexed: 12/30/2022]
Abstract
BACKGROUND Current staging systems for cutaneous squamous cell carcinoma (cSCC) have limited positive predictive value for identifying patients who will experience metastasis. OBJECTIVE To develop and validate a gene expression profile (GEP) test for predicting risk for metastasis in localized, high-risk cSCC with the goal of improving risk-directed patient management. METHODS Archival formalin-fixed paraffin-embedded primary cSCC tissue and clinicopathologic data (n = 586) were collected from 23 independent centers in a prospectively designed study. A GEP signature was developed using a discovery cohort (n = 202) and validated in a separate, nonoverlapping, independent cohort (n = 324). RESULTS A prognostic 40-GEP test was developed and validated, stratifying patients with high-risk cSCC into classes based on metastasis risk: class 1 (low risk), class 2A (high risk), and class 2B (highest risk). For the validation cohort, 3-year metastasis-free survival rates were 91.4%, 80.6%, and 44.0%, respectively. A positive predictive value of 60% was achieved for the highest-risk group (class 2B), an improvement over staging systems, and negative predictive value, sensitivity, and specificity were comparable to staging systems. LIMITATIONS Potential understaging of cases could affect metastasis rate accuracy. CONCLUSION The 40-GEP test is an independent predictor of metastatic risk that can complement current staging systems for patients with high-risk cSCC.
Collapse
Affiliation(s)
- Ashley Wysong
- University of Nebraska Medical Center, Omaha, Nebraska
| | | | | | | | | | - Aaron S Farberg
- Icahn School of Medicine at Mount Sinai, New York, New York; Arkansas Dermatology Skin Cancer Center, Little Rock, Arkansas
| | - Anna Bar
- Oregon Health & Science University, Portland, Oregon
| | | | | | - David Panther
- Zitelli and Brodland, P.C. Skin Cancer Center, Pittsburgh, Pennsylvania
| | - David G Brodland
- Zitelli and Brodland, P.C. Skin Cancer Center, Pittsburgh, Pennsylvania
| | - John Zitelli
- Zitelli and Brodland, P.C. Skin Cancer Center, Pittsburgh, Pennsylvania
| | | | - Ian A Maher
- University of Minnesota, Minneapolis, Minnesota
| | - Yang Xia
- Brooke Army Medical Center, San Antonio, Texas
| | - Kristin Bibee
- University of Pittsburgh Medical Center, Pittsburgh, Pennsylvania
| | | | | | | | - Sarah Estrada
- Castle Biosciences, Inc, Phoenix, Arizona; Affiliated Dermatology, Scottsdale, Arizona
| | | | | | | | | | - Sarah T Arron
- University of California San Francisco, San Francisco, California.
| |
Collapse
|
5
|
Heizmann CW. S100 proteins: Diagnostic and prognostic biomarkers in laboratory medicine. BIOCHIMICA ET BIOPHYSICA ACTA-MOLECULAR CELL RESEARCH 2019; 1866:1197-1206. [DOI: 10.1016/j.bbamcr.2018.10.015] [Citation(s) in RCA: 12] [Impact Index Per Article: 2.4] [Reference Citation Analysis] [Track Full Text] [Subscribe] [Scholar Register] [Received: 09/03/2018] [Accepted: 10/12/2018] [Indexed: 01/04/2023]
|
6
|
Heizmann CW. Ca 2+-Binding Proteins of the EF-Hand Superfamily: Diagnostic and Prognostic Biomarkers and Novel Therapeutic Targets. Methods Mol Biol 2019; 1929:157-186. [PMID: 30710273 DOI: 10.1007/978-1-4939-9030-6_11] [Citation(s) in RCA: 21] [Impact Index Per Article: 4.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/15/2022]
Abstract
A multitude of Ca2+-sensor proteins containing the specific Ca2+-binding motif (helix-loop-helix, called EF-hand) are of major clinical relevance in a many human diseases. Measurements of troponin, the first intracellular Ca-sensor protein to be discovered, is nowadays the "gold standard" in the diagnosis of patients with acute coronary syndrome (ACS). Mutations have been identified in calmodulin and linked to inherited ventricular tachycardia and in patients affected by severe cardiac arrhythmias. Parvalbumin, when introduced into the diseased heart by gene therapy to increase contraction and relaxation speed, is considered to be a novel therapeutic strategy to combat heart failure. S100 proteins, the largest subgroup with the EF-hand protein family, are closely associated with cardiovascular diseases, various types of cancer, inflammation, and autoimmune pathologies. The intention of this review is to summarize the clinical importance of this protein family and their use as biomarkers and potential drug targets, which could help to improve the diagnosis of human diseases and identification of more selective therapeutic interventions.
Collapse
Affiliation(s)
- Claus W Heizmann
- Department of Pediatrics, Division of Clinical Chemistry and Biochemistry, University of Zürich, Zürich, Switzerland.
| |
Collapse
|
7
|
Kim SY, Lee JH, Sohn KC, Im M, Lee Y, Seo YJ, Lee JH, Kim CD. β-Catenin Regulates the Expression of cAMP Response Element-Binding Protein 1 in Squamous Cell Carcinoma Cells. Ann Dermatol 2017; 30:119-122. [PMID: 29386853 PMCID: PMC5762468 DOI: 10.5021/ad.2018.30.1.119] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/21/2016] [Revised: 01/31/2017] [Accepted: 02/08/2017] [Indexed: 12/21/2022] Open
Affiliation(s)
- Soo-Yeon Kim
- Department of Dermatology, Chungnam National University School of Medicine, Daejeon, Korea
| | - Jin-Hyup Lee
- Department of Dermatology, Chungnam National University School of Medicine, Daejeon, Korea
| | - Kyung-Cheol Sohn
- Department of Dermatology, Chungnam National University School of Medicine, Daejeon, Korea
| | - Myung Im
- Department of Dermatology, Chungnam National University School of Medicine, Daejeon, Korea
| | - Young Lee
- Department of Dermatology, Chungnam National University School of Medicine, Daejeon, Korea
| | - Young-Joon Seo
- Department of Dermatology, Chungnam National University School of Medicine, Daejeon, Korea
| | - Jeung-Hoon Lee
- Department of Dermatology, Chungnam National University School of Medicine, Daejeon, Korea
| | - Chang-Deok Kim
- Department of Dermatology, Chungnam National University School of Medicine, Daejeon, Korea
| |
Collapse
|