1
|
Cheng CT, Vyas PS, McClain EJ, Hoelen TCA, Arts JJC, McLaughlin C, Altman DT, Yu AK, Cheng BC. The Osteogenic Peptide P-15 for Bone Regeneration: A Narrative Review of the Evidence for a Mechanism of Action. Bioengineering (Basel) 2024; 11:599. [PMID: 38927835 PMCID: PMC11200470 DOI: 10.3390/bioengineering11060599] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/12/2024] [Revised: 05/22/2024] [Accepted: 06/07/2024] [Indexed: 06/28/2024] Open
Abstract
Bone regeneration is a complex multicellular process involving the recruitment and attachment of osteoprogenitors and their subsequent differentiation into osteoblasts that deposit extracellular matrixes. There is a growing demand for synthetic bone graft materials that can be used to augment these processes to enhance the healing of bone defects resulting from trauma, disease or surgery. P-15 is a small synthetic peptide that is identical in sequence to the cell-binding domain of type I collagen and has been extensively demonstrated in vitro and in vivo to enhance the adhesion, differentiation and proliferation of stem cells involved in bone formation. These events can be categorized into three phases: attachment, activation and amplification. This narrative review summarizes the large body of preclinical research on P-15 in terms of these phases to describe the mechanism of action by which P-15 improves bone formation. Knowledge of this mechanism of action will help to inform the use of P-15 in clinical practice as well as the development of methods of delivering P-15 that optimize clinical outcomes.
Collapse
Affiliation(s)
- Cooper T. Cheng
- Neuroscience Institute, Allegheny General Hospital, Allegheny Health Network, Pittsburgh, PA 15212, USA; (C.T.C.); (P.S.V.); (C.M.)
| | - Praveer S. Vyas
- Neuroscience Institute, Allegheny General Hospital, Allegheny Health Network, Pittsburgh, PA 15212, USA; (C.T.C.); (P.S.V.); (C.M.)
| | - Edward James McClain
- Neuroscience Institute, Allegheny General Hospital, Allegheny Health Network, Pittsburgh, PA 15212, USA; (C.T.C.); (P.S.V.); (C.M.)
| | - Thomáy-Claire Ayala Hoelen
- Department of Orthopedic Surgery and CAPHRI Research School, Maastricht University Medical Center (MUMC+), P.O. Box 616 Maastricht, The Netherlands; (T.-C.A.H.); (J.J.C.A.)
| | - Jacobus Johannes Chris Arts
- Department of Orthopedic Surgery and CAPHRI Research School, Maastricht University Medical Center (MUMC+), P.O. Box 616 Maastricht, The Netherlands; (T.-C.A.H.); (J.J.C.A.)
| | - Colin McLaughlin
- Neuroscience Institute, Allegheny General Hospital, Allegheny Health Network, Pittsburgh, PA 15212, USA; (C.T.C.); (P.S.V.); (C.M.)
| | - Daniel T. Altman
- Department of Orthopaedic Surgery, Allegheny General Hospital, Allegheny Health Network, Pittsburgh, PA 15212, USA;
| | - Alexander K. Yu
- Department of Neurosurgery, Allegheny General Hospital, Allegheny Health Network, Pittsburgh, PA 15212, USA;
| | - Boyle C. Cheng
- Neuroscience Institute, Allegheny General Hospital, Allegheny Health Network, Pittsburgh, PA 15212, USA; (C.T.C.); (P.S.V.); (C.M.)
| |
Collapse
|
2
|
Krenzlin H, Foelger A, Mailänder V, Blase C, Brockmann M, Düber C, Ringel F, Keric N. Novel Biodegradable Composite of Calcium Phosphate Cement and the Collagen I Mimetic P-15 for Pedicle Screw Augmentation in Osteoporotic Bone. Biomedicines 2021; 9:biomedicines9101392. [PMID: 34680509 PMCID: PMC8533375 DOI: 10.3390/biomedicines9101392] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/31/2021] [Revised: 09/27/2021] [Accepted: 09/28/2021] [Indexed: 11/26/2022] Open
Abstract
Osteoporotic vertebral fractures often necessitate fusion surgery, with high rates of implant failure. We present a novel bioactive composite of calcium phosphate cement (CPC) and the collagen I mimetic P-15 for pedicle screw augmentation in osteoporotic bone. Methods involved expression analysis of osteogenesis-related genes during osteoblastic differentiation by RT-PCR and immunostaining of osteopontin and Ca2+ deposits. Untreated and decalcified sheep vertebrae were utilized for linear pullout testing of pedicle screws. Bone mineral density (BMD) was measured using dual-energy X-ray absorptiometry (DEXA). Expression of ALPI II (p < 0.0001), osteopontin (p < 0.0001), RUNX2 (p < 0.0001), and osteocalcin (p < 0.0001) was upregulated after co-culture of MSC with CPC-P-15. BMD was decreased by 28.75% ± 2.6%. Pullout loads in untreated vertebrae were 1405 ± 6 N (p < 0.001) without augmentation, 2010 ± 168 N (p < 0.0001) after augmentation with CPC-P-15, and 2112 ± 98 N (p < 0.0001) with PMMA. In decalcified vertebrae, pullout loads were 828 ± 66 N (p < 0.0001) without augmentation, 1324 ± 712 N (p = 0.04) with PMMA, and 1252 ± 131 N (p < 0.0078) with CPC-P-15. CPC-P-15 induces osteoblastic differentiation of human MES and improves pullout resistance of pedicle screws in osteoporotic and non-osteoporotic bone.
Collapse
Affiliation(s)
- Harald Krenzlin
- Department of Neurosurgery, University Medical Center Mainz, 55131 Mainz, Germany; (A.F.); (F.R.); (N.K.)
- Correspondence:
| | - Andrea Foelger
- Department of Neurosurgery, University Medical Center Mainz, 55131 Mainz, Germany; (A.F.); (F.R.); (N.K.)
| | - Volker Mailänder
- Max Planck Institute for Polymer Research, 55128 Mainz, Germany;
- Center for Translational Nanomedicine, University Medical Center Mainz, 55131 Maniz, Germany
| | - Christopher Blase
- Personalized Biomedical Engineering Lab, Frankfurt University of Applied Sciences, 60318 Frankfurt am Main, Germany;
| | - Marc Brockmann
- Department of Neuroradiology, University Medical Center Mainz, 55131 Mainz, Germany;
| | - Christoph Düber
- Department of Radiology, University Medical Center Mainz, 55131 Mainz, Germany;
| | - Florian Ringel
- Department of Neurosurgery, University Medical Center Mainz, 55131 Mainz, Germany; (A.F.); (F.R.); (N.K.)
| | - Naureen Keric
- Department of Neurosurgery, University Medical Center Mainz, 55131 Mainz, Germany; (A.F.); (F.R.); (N.K.)
| |
Collapse
|
3
|
Mohanram Y, Zhang J, Tsiridis E, Yang XB. Comparing bone tissue engineering efficacy of HDPSCs, HBMSCs on 3D biomimetic ABM-P-15 scaffolds in vitro and in vivo. Cytotechnology 2020; 72:715-730. [PMID: 32820463 PMCID: PMC7548016 DOI: 10.1007/s10616-020-00414-7] [Citation(s) in RCA: 4] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/06/2020] [Accepted: 07/19/2020] [Indexed: 02/06/2023] Open
Abstract
Human bone marrow mesenchymal stem cells (HBMSCs) has been the gold standard for bone regeneration. However, the low proliferation rate and long doubling time limited its clinical applications. This study aims to compare the bone tissue engineering efficacy of human dental pulp stem cells (HDPSCs) with HBMSCs in 2D, and 3D anorganic bone mineral (ABM) coated with a biomimetic collagen peptide (ABM-P-15) for improving bone-forming speed and efficacy in vitro and in vivo. The multipotential of both HDPSCs and HBMSCs have been compared in vitro. The bone formation of HDPSCs on ABM-P-15 was tested using in vivo model. The osteogenic potential of the cells was confirmed by alkaline phosphatase (ALP) and immunohistological staining for osteogenic markers. Enhanced ALP, collagen, lipid droplet, or glycosaminoglycans production were visible in HDPSCs and HBMSCs after osteogenic, adipogenic and chondrogenic induction. HDPSC showed stronger ALP staining compared to HBMSCs. Confocal images showed more viable HDPSCs on both ABM-P-15 and ABM scaffolds compared to HBMSCs on similar scaffolds. ABM-P-15 enhanced cell attachment/spreading/bridging formation on ABM-P-15 scaffolds and significantly increased quantitative ALP specific activities of the HDPSCs and HBMSCs. After 8 weeks in vivo implantation in diffusion chamber model, the HDPSCs on ABM-P-15 scaffolds showed extensive high organised collagenous matrix formation that was positive for COL-I and OCN compared to ABM alone. In conclusion, the HDPSCs have a higher proliferation rate and better osteogenic capacity, which indicated the potential of combining HDPSCs with ABM-P-15 scaffolds for improving bone regeneration speed and efficacy.
Collapse
Affiliation(s)
- Yamuna Mohanram
- Biomaterials & Tissue Engineering Group, Department of Oral Biology, School of Dentistry, University of Leeds, Level 7, Wellcome Trust Brenner Building, St. James's University Hospital, Leeds, LS9 7TF, UK
| | - Jingying Zhang
- Biomaterials & Tissue Engineering Group, Department of Oral Biology, School of Dentistry, University of Leeds, Level 7, Wellcome Trust Brenner Building, St. James's University Hospital, Leeds, LS9 7TF, UK.,The Second Clinical Medical College, Guangdong Medical University, Dongguan, 523808, Guangdong, China
| | - Eleftherios Tsiridis
- Academic Orthopaedic Department, Aristotle University Medical School, 54124, Thessaloniki, Greece
| | - Xuebin B Yang
- Biomaterials & Tissue Engineering Group, Department of Oral Biology, School of Dentistry, University of Leeds, Level 7, Wellcome Trust Brenner Building, St. James's University Hospital, Leeds, LS9 7TF, UK.
| |
Collapse
|
4
|
TETTAMANTI L, BASSI MANDREASI, TRAPELLA G, CANDOTTO V, TAGLIABUE A. Applications of biomaterials for bone augmentation of jaws: clinical outcomes and in vitro studies. ORAL & IMPLANTOLOGY 2017; 10:37-44. [PMID: 28757934 PMCID: PMC5516426 DOI: 10.11138/orl/2017.10.1.037] [Citation(s) in RCA: 19] [Impact Index Per Article: 2.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 01/16/2023]
Abstract
Partially or totally edentulous jaws frequently undergoes from moderate to severe bone atrophy with problems of prosthetic rehabilitation. The inability to make a prosthetic rehabilitation on implants may led to the use of a partial or total removable denture with difficulties in eating and speech, ulcerations of the oral mucosa and loss of facial vertical dimension. These problems may be solved performing bone augmentation procedures. Bone grafts and distraction osteogenesis brought implant dentistry from an experimental practice to become a consolidate dental procedure. Bone grafts, in particular, are currently a valuable treatment modality for the prosthetic rehabilitation. Numerous biomaterials have been developed for the rehabilitation of partially or totally edentulous jaws with fixed or removable dentures. The aim of this paper is to describe biomaterials for bone augmentation. Biomaterials are gradually resorbed by the osteoclasts and replaced by new bone formed through osteoblastic activity. Many biomaterials have been studied, but the most common are as follows: Allogro®, Algipore®, Osteobiol®, Peptide-15, Engipore®, Medpore®, Osteoplant®, Calcium sulfate, Perioglass®, Bio-Oss®, Calcium phosphate.
Collapse
Affiliation(s)
- L. TETTAMANTI
- Department of Medicine and Surgery, University of Insubria, Varese, Italy
| | | | - G. TRAPELLA
- Department of Morphology, Surgery and Experimental Medicine, University of Ferrara, Ferrara, Italy
| | - V. CANDOTTO
- Department of Morphology, Surgery and Experimental Medicine, University of Ferrara, Ferrara, Italy
| | - A. TAGLIABUE
- Department of Medicine and Surgery, University of Insubria, Varese, Italy
| |
Collapse
|
5
|
|
6
|
The effect of laminin-1-doped nanoroughened implant surfaces: gene expression and morphological evaluation. Int J Biomater 2012; 2012:305638. [PMID: 23304151 PMCID: PMC3530800 DOI: 10.1155/2012/305638] [Citation(s) in RCA: 9] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/17/2012] [Accepted: 10/13/2012] [Indexed: 11/17/2022] Open
Abstract
Aim. This study aimed to observe the morphological and molecular effect of laminin-1 doping to nanostructured implant surfaces in a rabbit model. Materials and Methods. Nanostructured implants were coated with laminin-1 (test; dilution, 100 μg/mL) and inserted into the rabbit tibiae. Noncoated implants were used as controls. After 2 weeks of healing, the implants were removed and subjected to morphological analysis using scanning electron microscopy (SEM) and gene expression analysis using the real-time reverse transcriptase-polymerase chain reaction (RT-PCR). Results. SEM revealed bony tissue attachment for both control and test implants. Real-time RT-PCR analysis showed that the expression of osteoblast markers RUNX-2, osteocalcin, alkaline phosphatase, and collagen I was higher (1.62-fold, 1.53-fold, 1.97-fold, and 1.04-fold, resp.) for the implants modified by laminin-1 relative to the control. All osteoclast markers investigated in the study presented higher expression on the test implants than controls as follows: tartrate-resistant acid phosphatase (1.67-fold), calcitonin receptor (1.35-fold), and ATPase (1.25-fold). The test implants demonstrated higher expression of inflammatory markers interleukin-10 (1.53-fold) and tumour necrosis factor-α (1.61-fold) relative to controls. Conclusion. The protein-doped surface showed higher gene expression of typical genes involved in the osseointegration cascade than the control surface.
Collapse
|
7
|
Jimbo R, Ivarsson M, Koskela A, Sul YT, Johansson CB. Protein adsorption to surface chemistry and crystal structure modification of titanium surfaces. EJOURNAL OF ORAL MAXILLOFACIAL RESEARCH 2010; 1:e3. [PMID: 24421973 PMCID: PMC3886052 DOI: 10.5037/jomr.2010.1303] [Citation(s) in RCA: 37] [Impact Index Per Article: 2.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 03/16/2010] [Accepted: 05/18/2010] [Indexed: 11/22/2022]
Abstract
Objectives To observe the early adsorption of extracellular matrix and blood plasma
proteins to magnesium-incorporated titanium oxide surfaces, which has shown
superior bone response in animal models. Material and Methods Commercially pure titanium discs were blasted with titanium dioxide
(TiO2) particles (control), and for the test group,
TiO2 blasted discs were further processed with a micro-arc
oxidation method (test). Surface morphology was investigated by scanning
electron microscopy, surface topography by optic interferometry,
characterization by X-ray photoelectron spectroscopy (XPS), and by X-ray
diffraction (XRD) analysis. The adsorption of 3 different proteins
(fibronectin, albumin, and collagen type I) was investigated by an
immunoblotting technique. Results The test surface showed a porous structure, whereas the control surface
showed a typical TiO2 blasted structure. XPS data revealed
magnesium-incorporation to the anodic oxide film of the surface. There was
no difference in surface roughness between the control and test surfaces.
For the protein adsorption test, the amount of albumin was significantly
higher on the control surface whereas the amount of fibronectin was
significantly higher on the test surface. Although there was no significant
difference, the test surface had a tendency to adsorb more collagen type
I. Conclusions The magnesium-incorporated anodized surface showed significantly higher
fibronectin adsorption and lower albumin adsorption than the blasted
surface. These results may be one of the reasons for the excellent bone
response previously observed in animal studies.
Collapse
Affiliation(s)
- Ryo Jimbo
- Department of Prosthodontics, Faculty of Odontology, Malmö University Malmö Sweden. ; Department of Biomaterials, Institute of Clinical Sciences, Sahlgrenska Academy, Göteborg University Göteborg Sweden
| | - Mikael Ivarsson
- Clinical Research Center, Örebro University Hosptial Örebro Sweden
| | - Anita Koskela
- Clinical Research Center, Örebro University Hosptial Örebro Sweden
| | - Young-Taeg Sul
- Department of Biomaterials, Institute of Clinical Sciences, Sahlgrenska Academy, Göteborg University Göteborg Sweden. ; Institute for Clinical Dental Research, Korea University Seoul South Korea
| | - Carina B Johansson
- Department of Clinical Medicine, School of Health and Medical Sciences, Örebro University Örebro Sweden
| |
Collapse
|