1
|
Lien TS, Sun DS, Wu WS, Chang HH. Dengue Envelope Protein as a Cytotoxic Factor Inducing Hemorrhage and Endothelial Cell Death in Mice. Int J Mol Sci 2024; 25:10858. [PMID: 39409186 PMCID: PMC11476790 DOI: 10.3390/ijms251910858] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/12/2024] [Revised: 10/03/2024] [Accepted: 10/08/2024] [Indexed: 10/20/2024] Open
Abstract
Dengue virus (DENV) infection, prevalent in tropical and subtropical regions, can progress to dengue hemorrhagic fever (DHF), which increases mortality during secondary infections. DHF is characterized by endothelial damage and vascular leakage. Despite its severity, no specific antiviral treatments exist, and the viral factors responsible for endothelial damage remain unclear. This study examines the role of the DENV envelope protein domain III (EIII) in inducing endothelial apoptosis using a mouse model. Additionally, we aim to explore whether cell death-inducing pathways could serve as drug targets to ameliorate EIII-induced endothelial injury and hemorrhage. In vitro experiments using human endothelial HMEC-1 cells demonstrated that both recombinant EIII (rEIII) and DENV markedly induced caspase-3-mediated endothelial cell death, an effect that was attenuated by co-treatment with chondroitin sulfate B (CSB), N-acetyl cysteine (NAC), and the caspase-3 inhibitor z-DEVD-FMK. In vivo, sequential injections of rEIII and anti-platelet immunoglobulin in mice, designed to mimic the clinical phase of DHF with peak viremia followed by an increase in DENV-induced Ig, including autoantibodies, revealed that these dual treatments markedly triggered caspase-3-dependent apoptosis in vascular endothelial cells at hemorrhage sites. Treatments with z-DEVD-FMK effectively reduced DHF-like symptoms such as thrombocytopenia, hemorrhage, inflammation, hypercoagulation, and endothelial damage. Additionally, CSB and NAC alleviated hemorrhagic symptoms in the mice. These results suggest that targeting EIII, reactive oxygen species, and caspase-3-mediated apoptosis could offer potential therapeutic strategies for addressing EIII-induced hemorrhagic pathogenesis.
Collapse
Grants
- 104-2320-B-320 -009 -MY3, 107-2311-B-320-002-MY3, 111-2320-B320-006-MY3, 112-2320-B-320-007 National Science and Technology Council, Taiwan
- TCMMP104-06, TCMMP108-04, TCMMP 111-01, TCAS111-02, TCAS-112-02, TCAS113-04, TCRD112-033, TCRD113-041 Tzu-Chi Medical Foundation
Collapse
Affiliation(s)
- Te-Sheng Lien
- Department of Molecular Biology and Human Genetics, Tzu-Chi University, Hualien 970, Taiwan; (T.-S.L.); (D.-S.S.)
| | - Der-Shan Sun
- Department of Molecular Biology and Human Genetics, Tzu-Chi University, Hualien 970, Taiwan; (T.-S.L.); (D.-S.S.)
| | - Wen-Sheng Wu
- Division of General Surgery, Department of Surgery, Hualien Tzu Chi Hospital, Buddhist Tzu Chi Medical Foundation, Hualien 970, Taiwan;
- Department of Laboratory Medicine and Biotechnology, College of Medicine, Tzu Chi University, Hualien 970, Taiwan
| | - Hsin-Hou Chang
- Department of Molecular Biology and Human Genetics, Tzu-Chi University, Hualien 970, Taiwan; (T.-S.L.); (D.-S.S.)
| |
Collapse
|
2
|
Rajanand MC, Ananthakrishna AB, Rajashekaraiah V. Oxidative modulations in platelets stored in SSP+, PAS-G and Tyrode's buffer: a comparative analysis. Hematol Transfus Cell Ther 2024:S2531-1379(24)00294-3. [PMID: 39179495 DOI: 10.1016/j.htct.2024.04.121] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/18/2023] [Revised: 03/20/2024] [Accepted: 04/01/2024] [Indexed: 08/26/2024] Open
Abstract
BACKGROUND Platelet additive solutions (PASs) improve the efficacy of stored platelets. Oxidative stress causes storage lesions and platelet functions deteriorate. Studies assessing the influence of oxidative stress on platelets stored in PASs are limited. This study compares variations in platelets in different storage solutions (SSP+, PAS-G and Tyrode's buffer). METHODS Platelets isolated from the blood of Wistar rats were resuspended in SSP+, PAS-G and Tyrode's buffer and stored for seven days at 22 °C. The markers of platelet metabolism, function, oxidative stress, antioxidant status and viability were analyzed on Days 1, 3, 5 and 7 of storage. MAIN RESULTS SSP+ is associated with platelet function, viability and antioxidant defenses (SOD, CAT and GSH); it decreased primary lipid peroxidation products and maintained the susceptible protein groups in reduced state. Platelet function, antioxidant defenses such as SOD and GSH improved, and lipids and thiols were protected from oxidation in PAS-G. SOD and GSH increased, and lipids and thiols were preserved in Tyrode's buffer. CONCLUSION SSP+ and PAS-G are more effective in maintaining platelet efficacy till Day 7 compared to Tyrode's buffer. Thus, PAS-G and SSP+ are better than Tyrode's buffer in terms of platelet responses to oxidative stress during storage. This is the first comparative account on the influence of PASs (SSP+, PAS-G and Tyrode's buffer) on platelets in altering oxidative stress. It provides a comprehensive view of the differential responses of platelets in PASs.
Collapse
|
3
|
Yedla P, Bhamidipati P, Syed R, Amanchy R. Working title: Molecular involvement of p53-MDM2 interactome in gastrointestinal cancers. Cell Biochem Funct 2024; 42:e4075. [PMID: 38924101 DOI: 10.1002/cbf.4075] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/16/2024] [Revised: 05/30/2024] [Accepted: 06/04/2024] [Indexed: 06/28/2024]
Abstract
The interaction between murine double minute 2 (MDM2) and p53, marked by transcriptional induction and feedback inhibition, orchestrates a functional loop dictating cellular fate. The functional loop comprising p53-MDM2 axis is made up of an interactome consisting of approximately 81 proteins, which are spatio-temporally regulated and involved in DNA repair mechanisms. Biochemical and genetic alterations of the interactome result in dysregulation of the p53-mdm2 axis that leads to gastrointestinal (GI) cancers. A large subset of interactome is well known and it consists of proteins that either stabilize p53 or MDM2 and proteins that target the p53-MDM2 complex for ubiquitin-mediated destruction. Upstream signaling events brought about by growth factors and chemical messengers invoke a wide variety of posttranslational modifications in p53-MDM2 axis. Biochemical changes in the transactivation domain of p53 impact the energy landscape, induce conformational switching, alter interaction potential and could change solubility of p53 to redefine its co-localization, translocation and activity. A diverse set of chemical compounds mimic physiological effectors and simulate biochemical modifications of the p53-MDM2 interactome. p53-MDM2 interactome plays a crucial role in DNA damage and repair process. Genetic aberrations in the interactome, have resulted in cancers of GI tract (pancreas, liver, colorectal, gastric, biliary, and esophageal). We present in this article a review of the overall changes in the p53-MDM2 interactors and the effectors that form an epicenter for the development of next-generation molecules for understanding and targeting GI cancers.
Collapse
Affiliation(s)
- Poornachandra Yedla
- Division of Applied Biology, CSIR-IICT (Indian Institute of Chemical Technology), Ministry of Science and Technology (GOI), Hyderabad, Telangana, India
- Department of Pharmacogenomics, Institute of Translational Research, Asian Healthcare Foundation, Hyderabad, Telangana, India
| | - Pranav Bhamidipati
- Division of Applied Biology, CSIR-IICT (Indian Institute of Chemical Technology), Ministry of Science and Technology (GOI), Hyderabad, Telangana, India
- Department of Life Sciences, Imperial College London, London, UK
| | - Riyaz Syed
- Division of Applied Biology, CSIR-IICT (Indian Institute of Chemical Technology), Ministry of Science and Technology (GOI), Hyderabad, Telangana, India
| | - Ramars Amanchy
- Division of Applied Biology, CSIR-IICT (Indian Institute of Chemical Technology), Ministry of Science and Technology (GOI), Hyderabad, Telangana, India
| |
Collapse
|
4
|
Han L, Li L, Linghu H, Zheng L, Gou D. Cardiopulmonary bypass in a rat model may shorten the lifespan of stored red blood cells by activating caspase-3. PLoS One 2023; 18:e0290295. [PMID: 37729139 PMCID: PMC10511131 DOI: 10.1371/journal.pone.0290295] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/13/2023] [Accepted: 08/04/2023] [Indexed: 09/22/2023] Open
Abstract
BACKGROUND Red blood cell transfusion is required for many types of surgery against cardiovascular disease, and the function of transfused cells appears to decline over time. The present study examined whether transfusion also reduces red blood cell lifespan in a rat model. MATERIAL AND METHODS Bypass in rats were established by connecting a roll pump to the femoral artery and vein. Then FITC-labeled stored red blood cells from rats were transfused in the animals, and the cells in circulation were counted after transfusion. In separate experiments, stored red blood cells were incubated with bypass plasma in vitro, and the effects of incubation were assessed on cell morphology, redox activity, ATP level, caspase-3 activity, and phosphatidylserine exposure on the cell surface. These in vivo and in vitro experiments were also performed after pretreating the stored red blood cells with the caspase-3 inhibitor Z-DEVD-FMK. RESULTS Bypass significantly decreased the number of circulating FITC-labeled stored red blood cells and increased the proportions of monocytes, neutrophils and splenic macrophages that had phagocytosed the red blood cells. In vitro, bypass plasma altered the morphology of red blood cells and increased oxidative stress, caspase-3 activity and phosphatidylserine exposure, while decreasing ATP level. Pretreating stored red blood cells with Z-DEVD-FMK attenuated the effects of bypass on caspase-3 activity, but not oxidative stress, in stored red blood cells. DISCUSSION Bypass appears to shorten the lifespan of stored red blood cells, at least in part by activating caspase-3 in the cells.
Collapse
Affiliation(s)
- Lu Han
- Department of Anesthesiology, Affiliated Hospital of Zunyi Medical University, Zunyi, Guizhou, China
- Department of Anesthesiology, KweiChow Moutai Hospital, Renhuai, Guizhou, China
| | - Lianlian Li
- Department of Anesthesiology, Hospital of Banan District, Chongqing, China
| | - Hangya Linghu
- Department of Anesthesiology, Bishan Maternity and Child Hospital of Chongqing, Chongqing, China
| | - Lei Zheng
- Department of Anesthesiology, Affiliated Hospital of Guizhou Medical University, Guiyang, Guizhou, China
| | - Daming Gou
- Department of Anesthesiology, KweiChow Moutai Hospital, Renhuai, Guizhou, China
| |
Collapse
|
5
|
Abstract
There is a crucial need for platelet transfusion during an emergency-surgery and treatment of platelet disorders. The unavailability of donors has furthermore increased the demand for platelet storage. Platelets have limited shelf life due to bacterial contamination and storage lesions. Temperature, materials, oxygen availability, media, platelet processing and manufacturing methods influence the platelet quality and viability during storage. The conception of various platelet additive solutions along with the advent of plastic storage during the 1980s led to enormous developments in platelet storage strategies. Cold storage of platelets gained attention despite its inability to contribute to platelet survival post-transfusion as it offers faster haemostasis. Several developments in platelet storage strategies over the years have improved the quality and shelf-life of stored platelets. Despite the progress, the efficacy of platelets during storage beyond a week has not been achieved. Antioxidants as additives have been explored in platelet storage and have proven to enhance the efficacy of platelets during prolonged storage. However, the molecular interactions of antioxidants in platelets can provide a better understanding of their mechanism of action. Optimization of dosage concentrations of antioxidants is also a critical parameter to be considered as they tend to exhibit toxicity at certain levels. This review provides comprehensive insights into the critical factors affecting platelet storage and the evolution of platelet storage. It also emphasizes the role of antioxidants as additives in platelet storage solutions and their future prospects towards better platelet banking.
Collapse
Affiliation(s)
- Vani Rajashekaraiah
- Department of Biotechnology, School of Sciences, JAIN (Deemed-to-be University), #34, 1st Cross, JC Road, Bengaluru, 560027, India.
| | - Magdaline Christina Rajanand
- Department of Biotechnology, School of Sciences, JAIN (Deemed-to-be University), #34, 1st Cross, JC Road, Bengaluru, 560027, India
| |
Collapse
|
6
|
Divalent magnesium restores cytoskeletal storage lesions in cold-stored platelet concentrates. Sci Rep 2022; 12:6229. [PMID: 35422472 PMCID: PMC9010418 DOI: 10.1038/s41598-022-10231-x] [Citation(s) in RCA: 2] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/30/2021] [Accepted: 04/04/2022] [Indexed: 01/20/2023] Open
Abstract
Cold storage of platelet concentrates (PC) has become attractive due to the reduced risk of bacterial proliferation, but in vivo circulation time of cold-stored platelets is reduced. Ca2+ release from storage organelles and higher activity of Ca2+ pumps at temperatures < 15 °C triggers cytoskeleton changes. This is suppressed by Mg2+ addition, avoiding a shift in Ca2+ hemostasis and cytoskeletal alterations. We report on the impact of 2–10 mM Mg2+ on cytoskeleton alterations of platelets from PC stored at room temperature (RT) or 4 °C in additive solution (PAS), 30% plasma. Deformation of platelets was assessed by real-time deformability cytometry (RT-DC), a method for biomechanical cell characterization. Deformation was strongly affected by storage at 4 °C and preserved by Mg2+ addition ≥ 4 mM Mg2+ (mean ± SD of median deformation 4 °C vs. 4 °C + 10 mM Mg2+ 0.073 ± 0.021 vs. 0.118 ± 0.023, p < 0.01; n = 6, day 7). These results were confirmed by immunofluorescence microscopy, showing that Mg2+ ≥ 4 mM prevents 4 °C storage induced cytoskeletal structure lesion. Standard in vitro platelet function tests showed minor differences between RT and cold-stored platelets. Hypotonic shock response was not significantly different between RT stored (56.38 ± 29.36%) and cold-stored platelets with (55.22 ± 11.16%) or without magnesium (45.65 ± 11.59%; p = 0.042, all n = 6, day 1). CD62P expression and platelet aggregation response were similar between RT and 4 °C stored platelets, with minor changes in the presence of higher Mg2+ concentrations. In conclusion, increasing Mg2+ up to 10 mM in PAS counteracts 4 °C storage lesions in platelets, maintains platelet cytoskeletal integrity and biomechanical properties comparable to RT stored platelets.
Collapse
|
7
|
Hung SC, Ke LC, Lien TS, Huang HS, Sun DS, Cheng CL, Chang HH. Nanodiamond-Induced Thrombocytopenia in Mice Involve P-Selectin-Dependent Nlrp3 Inflammasome-Mediated Platelet Aggregation, Pyroptosis and Apoptosis. Front Immunol 2022; 13:806686. [PMID: 35444640 PMCID: PMC9013758 DOI: 10.3389/fimmu.2022.806686] [Citation(s) in RCA: 6] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/01/2021] [Accepted: 03/09/2022] [Indexed: 02/04/2023] Open
Abstract
Nanodiamond (ND) has been developed as a carrier to conduct various in vivo diagnostic and therapeutic uses. Safety is one of the major considerations, while the hemocompatibility of ND is not clearly addressed. Here we found that, compared to the other sizes of ND with relatively inert properties, treatments of 50 nm ND induced stronger platelet aggregation, platelet pyroptosis, apoptosis and thrombocytopenia in mice. Blockage treatments of soluble P-selectin, reactive oxygen species (ROS), and Nlrp3 inflammasome inhibitors markedly suppressed such adverse effects, suggesting ND-induced platelet activation and pyroptosis involves surface P-selectin-mediated enhancement of mitochondrial superoxide levels and Nlrp3 inflammasome activation. In addition, challenges of NDs induced less platelet pyroptosis and displayed less thrombocytopenia in P-selectin (Selp-/-), Nlrp3 (Nlrp3-/-) and caspase-1 (Casp1-/-) mutants, as compared to the wild type mice. Blockers of P-selectin, ROS, and Nlrp3 inflammasome pathways could be considered as antidotes for ND induced platelet activation and thrombocytopenia.
Collapse
Affiliation(s)
- Shih-Che Hung
- Institute of Medical Sciences, Tzu-Chi University, Hualien, Taiwan
| | - Lu-Chu Ke
- Department of Molecular Biology and Human Genetics, Tzu-Chi University, Hualien, Taiwan
| | - Te-Sheng Lien
- Department of Molecular Biology and Human Genetics, Tzu-Chi University, Hualien, Taiwan
| | - Hsuan-Shun Huang
- Center for Prevention and Therapy of Gynecological Cancers, Department of Research, Buddhist Tzu Chi General Hospital, Hualien, Taiwan
| | - Der-Shan Sun
- Institute of Medical Sciences, Tzu-Chi University, Hualien, Taiwan
- Department of Molecular Biology and Human Genetics, Tzu-Chi University, Hualien, Taiwan
| | - Chia-Liang Cheng
- Department of Physics, National Dong Hwa University, Hualien, Taiwan
| | - Hsin-Hou Chang
- Institute of Medical Sciences, Tzu-Chi University, Hualien, Taiwan
- Department of Molecular Biology and Human Genetics, Tzu-Chi University, Hualien, Taiwan
- *Correspondence: Hsin-Hou Chang, ;
| |
Collapse
|
8
|
Spinal Cord Injury: Pathophysiology, Multimolecular Interactions, and Underlying Recovery Mechanisms. Int J Mol Sci 2020; 21:ijms21207533. [PMID: 33066029 PMCID: PMC7589539 DOI: 10.3390/ijms21207533] [Citation(s) in RCA: 509] [Impact Index Per Article: 127.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/17/2020] [Revised: 09/17/2020] [Accepted: 09/24/2020] [Indexed: 12/30/2022] Open
Abstract
Spinal cord injury (SCI) is a destructive neurological and pathological state that causes major motor, sensory and autonomic dysfunctions. Its pathophysiology comprises acute and chronic phases and incorporates a cascade of destructive events such as ischemia, oxidative stress, inflammatory events, apoptotic pathways and locomotor dysfunctions. Many therapeutic strategies have been proposed to overcome neurodegenerative events and reduce secondary neuronal damage. Efforts have also been devoted in developing neuroprotective and neuro-regenerative therapies that promote neuronal recovery and outcome. Although varying degrees of success have been achieved, curative accomplishment is still elusive probably due to the complex healing and protective mechanisms involved. Thus, current understanding in this area must be assessed to formulate appropriate treatment modalities to improve SCI recovery. This review aims to promote the understanding of SCI pathophysiology, interrelated or interlinked multimolecular interactions and various methods of neuronal recovery i.e., neuroprotective, immunomodulatory and neuro-regenerative pathways and relevant approaches.
Collapse
|
9
|
Baghdadi V, Yari F, Nikougoftar M, Rafiee MH. Platelets Apoptosis and Clearance in The Presence of Sodium Octanoate during Storage of Platelet Concentrate at 4˚C. CELL JOURNAL 2019; 22:212-217. [PMID: 31721536 PMCID: PMC6874783 DOI: 10.22074/cellj.2020.6697] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.4] [Reference Citation Analysis] [Abstract] [Key Words] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 01/02/2019] [Accepted: 03/09/2019] [Indexed: 12/19/2022]
Abstract
Objective Platelet (PLT) storage at 4˚C has several benefits, however, it is accompanied by increased clearance of
PLTs after transfusion. In this study, we evaluated the potential of sodium octanoate (SO) for reducing apoptosis and
clearance rate of PLTs after long-term storage in cold.
Materials and Methods In this experimental study, PLT concentrates (PCs) were stored for 5 days under the following
three conditions: 20-24˚C, 4˚C, and 4˚C in the presence of SO. To measure the viability of PLTs, the water-soluble
tetrazolium salt (WST-1) assay was performed. Phosphatidylserine (PS) exposure was determined on PLTs using
flow cytometry technique. The amount of human active caspase-3 was determined in PLTs using an enzyme-linked
immunosorbent assay. Additionally, the amount of PLT ingestion or clearance was determined by using HepG2 cell line.
Results The viability was higher in the SO-treated PLTs compared to the other groups. The level of PS exposure
on PLTs was lower in the SO-treated PLTs compared to the other groups. The amount of active caspase-3 increased
in all groups during 5-day storage. The highest increase in the amount of caspase-3 levels was observed at cold
temperature. However, PLTs kept at 4˚C in the presence of SO had a lower amount of active caspase-3 compared to
PLTs kept at 4˚C. The amount of PLTs removal by HepG2 cells was increased for 4˚C-kept PLTs but it was lower for
PLTs kept at 4˚C in the presence of SO but, the differences were not significant (P>0.05).
Conclusion SO could partially moderate the effects of cold temperature on apoptosis and viability of platelets. It also
decreases the ingestion rate of long-time refrigerated PLTs in vitro. Further studies using higher numbers of samples
are required to demonstrate the effect of SO on reducing the clearance rate of PLTs.
Collapse
Affiliation(s)
- Vahid Baghdadi
- Blood Transfusion Research Center, High Institute for Research and Education in Transfusion Medicine, Tehran, Iran
| | - Fatemeh Yari
- Blood Transfusion Research Center, High Institute for Research and Education in Transfusion Medicine, Tehran, Iran. Elevtronic Address:
| | - Mahin Nikougoftar
- Blood Transfusion Research Center, High Institute for Research and Education in Transfusion Medicine, Tehran, Iran
| | - Mohammad Hessam Rafiee
- Blood Transfusion Research Center, High Institute for Research and Education in Transfusion Medicine, Tehran, Iran
| |
Collapse
|
10
|
Targeting Tyrosine Phosphatases by 3-Bromopyruvate Overcomes Hyperactivation of Platelets from Gastrointestinal Cancer Patients. J Clin Med 2019; 8:jcm8070936. [PMID: 31261776 PMCID: PMC6678874 DOI: 10.3390/jcm8070936] [Citation(s) in RCA: 10] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/16/2019] [Revised: 06/17/2019] [Accepted: 06/21/2019] [Indexed: 12/24/2022] Open
Abstract
Venous thromboembolism (VTE) is one of the most common causes of cancer related mortality. It has been speculated that hypercoagulation in cancer patients is triggered by direct or indirect contact of platelets with tumor cells, however the underlying molecular mechanisms involved are currently unknown. Unraveling these mechanisms may provide potential avenues for preventing platelet-tumor cell aggregation. Here, we investigated the role of protein tyrosine phosphatases in the functionality of platelets in both healthy individuals and patients with gastrointestinal cancer, and determined their use as a target to inhibit platelet hyperactivity. This is the first study to demonstrate that platelet agonists selectively activate low molecular weight protein tyrosine phosphatase (LMWPTP) and PTP1B, resulting in activation of Src, a tyrosine kinase known to contribute to several platelet functions. Furthermore, we demonstrate that these phosphatases are a target for 3-bromopyruvate (3-BP), a lactic acid analog currently investigated for its use in the treatment of various metabolic tumors. Our data indicate that 3-BP reduces Src activity, platelet aggregation, expression of platelet activation makers and platelet-tumor cell interaction. Thus, in addition to its anti-carcinogenic effects, 3-BP may also be effective in preventing platelet-tumor cell aggregationin cancer patients and therefore may reduce cancer mortality by limiting VTE in patients.
Collapse
|
11
|
Marini I, Aurich K, Jouni R, Nowak-Harnau S, Hartwich O, Greinacher A, Thiele T, Bakchoul T. Cold storage of platelets in additive solution: the impact of residual plasma in apheresis platelet concentrates. Haematologica 2018; 104:207-214. [PMID: 30115655 PMCID: PMC6312032 DOI: 10.3324/haematol.2018.195057] [Citation(s) in RCA: 33] [Impact Index Per Article: 5.5] [Reference Citation Analysis] [Abstract] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/16/2018] [Accepted: 08/09/2018] [Indexed: 11/09/2022] Open
Abstract
Platelet transfusion has become essential therapy in modern medicine. Although the clinical advantage of platelet transfusion has been well established, adverse reactions upon transfusion, especially transmission of bacterial infection, still represent a major challenge. While bacterial contamination is favored by the storage of platelets at room temperature, cold storage may represent a solution for this important clinical issue. In this study, we aimed to clarify whether plasma has protective or detrimental effects on cold-stored platelets. We investigated the impact of different residual plasma contents in apheresis-derived platelet concentrates, stored at 4°C or room temperature, on platelet function and survival. We found that platelets stored at 4°C have higher expression of apoptosis marker compared to platelets stored at room temperature, leading to accelerated clearance from the circulation in a humanized animal model. While cold-induced apoptosis was independent of the residual plasma concentration, cold storage was associated with better adhesive properties and higher response to activators. Interestingly, delta (δ) granule-related functions, such as ADP-mediated aggregation and CD63 release, were better preserved at 4°C, especially in 100% plasma. An extended study to assess cold-stored platelet concentrates produced under standard care Good Manufacturing Practice conditions showed that platelet function, metabolism and integrity were better compared to those stored at room temperature. Taken together, our results show that residual plasma concentration does not have a cardinal impact on the cold storage lesions of apheresis-derived platelet concentrates and indicate that the current generation of additive solutions represent suitable substitutes for plasma to store platelets at 4°C.
Collapse
Affiliation(s)
- Irene Marini
- Centre for Clinical Transfusion Medicine, Medical Faculty of Tübingen, University of Tübingen
| | - Konstanze Aurich
- Institute of Immunology and Transfusion Medicine, University of Greifswald, Germany
| | - Rabie Jouni
- Centre for Clinical Transfusion Medicine, Medical Faculty of Tübingen, University of Tübingen
| | - Stefanie Nowak-Harnau
- Centre for Clinical Transfusion Medicine, Medical Faculty of Tübingen, University of Tübingen
| | - Oliver Hartwich
- Institute of Immunology and Transfusion Medicine, University of Greifswald, Germany
| | - Andreas Greinacher
- Institute of Immunology and Transfusion Medicine, University of Greifswald, Germany
| | - Thomas Thiele
- Institute of Immunology and Transfusion Medicine, University of Greifswald, Germany
| | - Tamam Bakchoul
- Centre for Clinical Transfusion Medicine, Medical Faculty of Tübingen, University of Tübingen .,Institute of Immunology and Transfusion Medicine, University of Greifswald, Germany
| |
Collapse
|
12
|
Effect of Nitric Oxide Donor on Metabolism of Apheresis Platelets. Indian J Hematol Blood Transfus 2018; 34:517-523. [DOI: 10.1007/s12288-017-0881-1] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/15/2017] [Accepted: 09/20/2017] [Indexed: 11/30/2022] Open
|
13
|
Mechanisms of platelet clearance and translation to improve platelet storage. Blood 2018; 131:1512-1521. [PMID: 29475962 DOI: 10.1182/blood-2017-08-743229] [Citation(s) in RCA: 150] [Impact Index Per Article: 25.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/02/2017] [Accepted: 01/28/2018] [Indexed: 02/01/2023] Open
Abstract
Hundreds of billions of platelets are cleared daily from circulation via efficient and highly regulated mechanisms. These mechanisms may be stimulated by exogenous reagents or environmental changes to accelerate platelet clearance, leading to thrombocytopenia. The interplay between antiapoptotic Bcl-xL and proapoptotic molecules Bax and Bak sets an internal clock for the platelet lifespan, and BH3-only proteins, mitochondrial permeabilization, and phosphatidylserine (PS) exposure may also contribute to apoptosis-induced platelet clearance. Binding of plasma von Willebrand factor or antibodies to the ligand-binding domain of glycoprotein Ibα (GPIbα) on platelets can activate GPIb-IX in a shear-dependent manner by inducing unfolding of the mechanosensory domain therein, and trigger downstream signaling in the platelet including desialylation and PS exposure. Deglycosylated platelets are recognized by the Ashwell-Morell receptor and potentially other scavenger receptors, and are rapidly cleared by hepatocytes and/or macrophages. Inhibitors of platelet clearance pathways, including inhibitors of GPIbα shedding, neuraminidases, and platelet signaling, are efficacious at preserving the viability of platelets during storage and improving their recovery and survival in vivo. Overall, common mechanisms of platelet clearance have begun to emerge, suggesting potential strategies to extend the shelf-life of platelets stored at room temperature or to enable refrigerated storage.
Collapse
|
14
|
Yan Y, Xie R, Zhang Q, Zhu X, Han J, Xia R. Bcl-x L/Bak interaction and regulation by miRNA let-7b in the intrinsic apoptotic pathway of stored platelets. Platelets 2017; 30:75-80. [PMID: 29125379 DOI: 10.1080/09537104.2017.1371289] [Citation(s) in RCA: 14] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/06/2023]
Abstract
Bcl-2 family proteins play key roles in the intrinsic apoptosis pathway in platelets, with both pro- and antiapoptotic protein expressions regulating survival during ex vivo storage. We detected a significant decrease in antiapoptotic Bcl-xL and increase in proapoptotic Bak expression on the third day of storage and as a result the ratio of Bak:Bcl-xL also decreased. Moreover, we identified an interaction between Bcl-xL and Bak. These shifts corresponded with activation of the apoptotic pathway, suggesting these proteins might play an important role in platelet survival. We then performed bioinformatic analysis to gain insight into protein expression regulation during storage. This identified a potential binding site of the microRNA (miRNA) let-7b in the 3'-UTR of the Bcl-xL gene, which we confirmed by a dual-luciferase reporter assay. We also determined that let-7b was upregulated during platelet storage, and let-7b transfection influenced Bcl-xL and Bak protein, but not mRNA, expression. Together, these data suggest that only posttranscriptional mechanisms are available for regulating gene expression in anucleate platelets.
Collapse
Affiliation(s)
- Yuzhong Yan
- a Department of Transfusion Medicine , Huashan Hospital, Fudan University , Shanghai , China
| | - Rufeng Xie
- b Blood Engineering Laboratory, Shanghai Blood Center , Shanghai , China
| | - Qi Zhang
- a Department of Transfusion Medicine , Huashan Hospital, Fudan University , Shanghai , China
| | - Xinfang Zhu
- a Department of Transfusion Medicine , Huashan Hospital, Fudan University , Shanghai , China
| | - Jia Han
- a Department of Transfusion Medicine , Huashan Hospital, Fudan University , Shanghai , China
| | - Rong Xia
- a Department of Transfusion Medicine , Huashan Hospital, Fudan University , Shanghai , China
| |
Collapse
|
15
|
Wang X, Wu J, Yu C, Tang Y, Liu J, Chen H, Jin B, Mei Q, Cao S, Qin D. Lychee Seed Saponins Improve Cognitive Function and Prevent Neuronal Injury via Inhibiting Neuronal Apoptosis in a Rat Model of Alzheimer's Disease. Nutrients 2017; 9:nu9020105. [PMID: 28165366 PMCID: PMC5331536 DOI: 10.3390/nu9020105] [Citation(s) in RCA: 36] [Impact Index Per Article: 5.1] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/10/2016] [Revised: 12/19/2016] [Accepted: 01/16/2017] [Indexed: 12/20/2022] Open
Abstract
Lychee seed is a traditional Chinese medicine and possesses many activities, including hypoglycemia, liver protection, antioxidation, antivirus, and antitumor. However, its effect on neuroprotection is still unclear. The present study investigated the effects of lychee seed saponins (LSS) on neuroprotection and associated mechanisms. We established a rat model of Alzheimer’s disease (AD) by injecting Aβ25–35 into the lateral ventricle of rats and evaluated the effect of LSS on spatial learning and memory ability via the Morris water maze. Neuronal apoptosis was analyzed by hematoxylin and eosin stain and terminal deoxynucleotidyl transferase (Tdt)-mediated dUTP nick-end labeling analysis, and mRNA expression of caspase-3 and protein expressions of Bax and Bcl-2 by reverse transcription-polymerase chain reaction (RT-PCR) and Western blotting, respectively. The results showed that LSS remarkably improved cognitive function and alleviated neuronal injury by inhibiting apoptosis in the hippocampus of AD rats. Furthermore, the mRNA expression of caspase-3 and the protein expression of Bax were downregulated, while the protein expression of Bcl-2 and the ratio of Bcl-2/Bax were increased by LSS. We demonstrate that LSS significantly improves cognitive function and prevent neuronal injury in the AD rats via regulation of the apoptosis pathway. Therefore, LSS may be developed as a nutritional supplement and sold as a drug for AD prevention and/or treatment.
Collapse
Affiliation(s)
- Xiuling Wang
- Laboratory of Chinese Materia Medica, Department of Pharmacology, School of Pharmacy, Southwest Medical University, Luzhou 646000, Sichuan, China.
| | - Jianming Wu
- Laboratory of Chinese Materia Medica, Department of Pharmacology, School of Pharmacy, Southwest Medical University, Luzhou 646000, Sichuan, China.
| | - Chonglin Yu
- Department of Human Anatomy, School of Preclinical Medicine, Southwest Medical University, Luzhou 646000, Sichuan, China.
| | - Yong Tang
- Laboratory of Chinese Materia Medica, Department of Pharmacology, School of Pharmacy, Southwest Medical University, Luzhou 646000, Sichuan, China.
| | - Jian Liu
- Laboratory of Chinese Materia Medica, Department of Pharmacology, School of Pharmacy, Southwest Medical University, Luzhou 646000, Sichuan, China.
| | - Haixia Chen
- Laboratory of Chinese Materia Medica, Department of Pharmacology, School of Pharmacy, Southwest Medical University, Luzhou 646000, Sichuan, China.
| | - Bingjin Jin
- Laboratory of Chinese Materia Medica, Department of Pharmacology, School of Pharmacy, Southwest Medical University, Luzhou 646000, Sichuan, China.
| | - Qibing Mei
- Laboratory of Chinese Materia Medica, Department of Pharmacology, School of Pharmacy, Southwest Medical University, Luzhou 646000, Sichuan, China.
| | - Shousong Cao
- Laboratory of Cancer Pharmacology, Department of Pharmacology, School of Pharmacy, Southwest Medical University, Luzhou 646000, Sichuan, China.
| | - Dalian Qin
- Laboratory of Chinese Materia Medica, Department of Pharmacology, School of Pharmacy, Southwest Medical University, Luzhou 646000, Sichuan, China.
| |
Collapse
|
16
|
L-carnitine effectively improves the metabolism and quality of platelet concentrates during storage. Ann Hematol 2014; 94:671-80. [DOI: 10.1007/s00277-014-2243-5] [Citation(s) in RCA: 13] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/13/2014] [Accepted: 10/19/2014] [Indexed: 11/27/2022]
|
17
|
Chen Z, Schubert P, Culibrk B, Devine DV. p38MAPK is involved in apoptosis development in apheresis platelet concentrates after riboflavin and ultraviolet light treatment. Transfusion 2014; 55:848-57. [PMID: 25385501 DOI: 10.1111/trf.12905] [Citation(s) in RCA: 16] [Impact Index Per Article: 1.6] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/27/2014] [Revised: 08/29/2014] [Accepted: 09/08/2014] [Indexed: 01/04/2023]
Abstract
BACKGROUND Pathogen inactivation (PI) accelerates the platelet (PLT) storage lesion, including apoptotic-like changes. Proteomic studies have shown that phosphorylation levels of several kinases increase in PLTs after riboflavin and UV light (RF-PI) treatment. Inhibition of p38MAPK improved in vitro PLT quality, but the biochemical basis of this kinase's contribution to PLT damage requires further analysis. STUDY DESIGN AND METHODS In a pool-and-split design, apheresis PLT concentrates were either treated or kept untreated with or without selected kinase inhibitors. Samples were analyzed throughout 7 days of storage, monitoring in vitro quality variables including phosphatidylserine exposure, degranulation, and glucose metabolism. Changes in the protein expression of Bax, Bak, and Bcl-xL and the activities of caspase-3 and -9 were determined by immunoblot analysis and flow cytometry, respectively. RESULTS The expression levels of the proapoptotic proteins Bax and Bak, but not the antiapoptotic protein Bcl-xL, were significantly increased after the RF-PI treatment. This trend was reversed in the presence of p38MAPK inhibitor SB203580. As a result of increasing proapoptotic protein levels, caspase-3 and -9 activities were significantly increased in RF-PI treatment during storage compared with control (p < 0.05). Similarly, p38MAPK inhibition significantly reduced these caspase activities compared with vehicle control after RF-PI treatment (p < 0.05). CONCLUSION These findings revealed that p38MAPK is involved in signaling leading to apoptosis triggered by RF-PI. Elucidation of the biochemical processes influenced by PI is a necessary step in the development of strategies to improve the PLT quality and ameliorate the negative effects of PI treatment.
Collapse
Affiliation(s)
- Zhongming Chen
- Canadian Blood Services, Vancouver, British Columbia, Canada.,Centre for Blood Research, University of British Columbia, Vancouver, British Columbia, Canada
| | - Peter Schubert
- Canadian Blood Services, Vancouver, British Columbia, Canada.,Centre for Blood Research, University of British Columbia, Vancouver, British Columbia, Canada.,Department of Pathology and Laboratory Medicine, University of British Columbia, Vancouver, British Columbia, Canada
| | - Brankica Culibrk
- Canadian Blood Services, Vancouver, British Columbia, Canada.,Centre for Blood Research, University of British Columbia, Vancouver, British Columbia, Canada
| | - Dana V Devine
- Canadian Blood Services, Vancouver, British Columbia, Canada.,Centre for Blood Research, University of British Columbia, Vancouver, British Columbia, Canada.,Department of Pathology and Laboratory Medicine, University of British Columbia, Vancouver, British Columbia, Canada
| |
Collapse
|