1
|
Abstract
PURPOSE Dental implant osseointegration comprises two types of bone formation-contact and distance osteogenesis-which result in bone formation originating from the implant surface or bone edges, respectively. The physicochemical properties of the implant surface regulate initial contact osteogenesis by directly tuning the osteoprogenitor cells in the peri-implant environment. However, whether these implant surface properties can regulate osteoprogenitor cells distant from the implant remains unclear. Innate immune cells, including neutrophils and macrophages, govern bone metabolism, suggesting their involvement in osseointegration and distance osteogenesis. This narrative review discusses the role of innate immunity in osseointegration and the effects of implant surface properties on distant osteogenesis, focusing on innate immune regulation. STUDY SELECTION The role of innate immunity in bone formation and the effects of implant surface properties on innate immune function were reviewed based on clinical, animal, and in vitro studies. RESULTS Neutrophils and macrophages are responsible for bone formation during osseointegration, via inflammatory mediators. The microroughness and hydrophilic status of titanium implants have the potential to alleviate this inflammatory response of neutrophils, and induce an anti-inflammatory response in macrophages, to tune both contact and distance osteogenesis through the activation of osteoblasts. Thus, the surface micro-roughness and hydrophilicity of implants can regulate the function of distant osteoprogenitor cells through innate immune cells. CONCLUSIONS Surface modification of implants aimed at regulating innate immunity may be useful in promoting further osteogenesis and overcoming the limitations encountered in severe situations, such as early loading protocol application.
Collapse
Affiliation(s)
- Takeru Kondo
- Division of Molecular and Regenerative Prosthodontics, Tohoku University Graduate School of Dentistry, Sendai, Japan
| | - Masahiro Yamada
- Division of Molecular and Regenerative Prosthodontics, Tohoku University Graduate School of Dentistry, Sendai, Japan
| | - Hiroshi Egusa
- Division of Molecular and Regenerative Prosthodontics, Tohoku University Graduate School of Dentistry, Sendai, Japan
| |
Collapse
|
2
|
Du T, Liu J, Dong J, Xie H, Wang X, Yang X, Yang Y. Multifunctional coatings of nickel-titanium implant toward promote osseointegration after operation of bone tumor and clinical application: a review. Front Bioeng Biotechnol 2024; 12:1325707. [PMID: 38444648 PMCID: PMC10912669 DOI: 10.3389/fbioe.2024.1325707] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/18/2023] [Accepted: 01/29/2024] [Indexed: 03/07/2024] Open
Abstract
Metal implants, especially Ni-Ti shape memory alloy (Ni-Ti SMA) implants, have increasingly become the first choice for fracture and massive bone defects after orthopedic bone tumor surgery. In this paper, the internal composition and shape memory properties of Ni-Ti shape memory alloy were studied. In addition, the effects of porous Ni-Ti SMA on osseointegration, and the effects of surface hydrophobicity and hydrophilicity on the osseointegration of Ni-Ti implants were also investigated. In addition, the effect of surface coating modification technology of Ni-Ti shape memory alloy on bone bonding was also studied. Several kinds of Ni-Ti alloy implants commonly used in orthopedic clinic and their advantages and disadvantages were introduced. The surface changes of Ni-Ti alloy implants promote bone fusion, enhance the adhesion of red blood cells and platelets, promote local tissue regeneration and fracture healing. In the field of orthopaedics, the use of Ni-Ti shape memory alloy implants significantly promoted clinical development. Due to the introduction of the coating, the osseointegration and biocompatibility of the implant surface have been enhanced, and the success rate of the implant has been greatly improved.
Collapse
Affiliation(s)
- Tianhao Du
- Department of Rehabilitation Medicine, General Hospital of Northern Theater Command, Shenyang, China
- Liaoning University of traditional Chinese Medicine, Shenyang, China
| | - Jia Liu
- Liaoning University of traditional Chinese Medicine, Shenyang, China
| | - Jinhan Dong
- Liaoning University of traditional Chinese Medicine, Shenyang, China
| | - Haoxu Xie
- Department of Rehabilitation Medicine, General Hospital of Northern Theater Command, Shenyang, China
- Liaoning University of traditional Chinese Medicine, Shenyang, China
| | - Xiao Wang
- Department of Rehabilitation Medicine, General Hospital of Northern Theater Command, Shenyang, China
- Liaoning University of traditional Chinese Medicine, Shenyang, China
| | - Xu Yang
- Liaoning University of traditional Chinese Medicine, Shenyang, China
| | - Yingxin Yang
- Liaoning University of traditional Chinese Medicine, Shenyang, China
| |
Collapse
|
3
|
Ng E, Tay JRH, Mattheos N, Bostanci N, Belibasakis GN, Seneviratne CJ. A Mapping Review of the Pathogenesis of Peri-Implantitis: The Biofilm-Mediated Inflammation and Bone Dysregulation (BIND) Hypothesis. Cells 2024; 13:315. [PMID: 38391928 PMCID: PMC10886485 DOI: 10.3390/cells13040315] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/07/2023] [Revised: 02/04/2024] [Accepted: 02/07/2024] [Indexed: 02/24/2024] Open
Abstract
This mapping review highlights the need for a new paradigm in the understanding of peri-implantitis pathogenesis. The biofilm-mediated inflammation and bone dysregulation (BIND) hypothesis is proposed, focusing on the relationship between biofilm, inflammation, and bone biology. The close interactions between immune and bone cells are discussed, with multiple stable states likely existing between clinically observable definitions of peri-implant health and peri-implantitis. The framework presented aims to explain the transition from health to disease as a staged and incremental process, where multiple factors contribute to distinct steps towards a tipping point where disease is manifested clinically. These steps might be reached in different ways in different patients and may constitute highly individualised paths. Notably, factors affecting the underlying biology are identified in the pathogenesis of peri-implantitis, highlighting that disruptions to the host-microbe homeostasis at the implant-mucosa interface may not be the sole factor. An improved understanding of disease pathogenesis will allow for intervention on multiple levels and a personalised treatment approach. Further research areas are identified, such as the use of novel biomarkers to detect changes in macrophage polarisation and activation status, and bone turnover.
Collapse
Affiliation(s)
- Ethan Ng
- Department of Restorative Dentistry, National Dental Centre Singapore, Singapore 168938, Singapore;
| | - John Rong Hao Tay
- Department of Restorative Dentistry, National Dental Centre Singapore, Singapore 168938, Singapore;
| | - Nikos Mattheos
- Department of Oral and Maxillofacial Surgery, Faculty of Dentistry, Chulalongkorn University, Bangkok 10330, Thailand;
- Division of Oral Health and Periodontology, Department of Dental Medicine, Karolinska Institute, 14152 Stockholm, Sweden; (N.B.); (G.N.B.)
| | - Nagihan Bostanci
- Division of Oral Health and Periodontology, Department of Dental Medicine, Karolinska Institute, 14152 Stockholm, Sweden; (N.B.); (G.N.B.)
| | - Georgios N. Belibasakis
- Division of Oral Health and Periodontology, Department of Dental Medicine, Karolinska Institute, 14152 Stockholm, Sweden; (N.B.); (G.N.B.)
| | - Chaminda Jayampath Seneviratne
- School of Dentistry, The University of Queensland, Brisbane, QLD 4006, Australia
- School of Dentistry, Center for Oral-Facial Regeneration, Rehabilitation and Reconstruction (COR3), The University of Queensland, Brisbane, QLD 4072, Australia
- National Dental Research Institute Singapore, National Dental Centre Singapore, Singapore 168938, Singapore
| |
Collapse
|
4
|
Tseng KF, Shiu ST, Hung CY, Chan YH, Chee TJ, Huang PC, Lai PC, Feng SW. Osseointegration Potential Assessment of Bone Graft Materials Loaded with Mesenchymal Stem Cells in Peri-Implant Bone Defects. Int J Mol Sci 2024; 25:862. [PMID: 38255941 PMCID: PMC10815485 DOI: 10.3390/ijms25020862] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/09/2023] [Revised: 01/06/2024] [Accepted: 01/07/2024] [Indexed: 01/24/2024] Open
Abstract
Many studies have been exploring the use of bone graft materials (BGMs) and mesenchymal stem cells in bone defect reconstruction. However, the regeneration potential of Algipore (highly purified hydroxyapatite) and Biphasic (hydroxyapatite/beta-tricalcium phosphate) BGMs combined with bone marrow-derived mesenchymal stem cells (BMSCs) remains unclear. Therefore, we evaluated their osseointegration capacities in reconstructing peri-implant bone defects. The cellular characteristics of BMSCs and the material properties of Algipore and Biphasic were assessed in vitro. Four experimental groups-Algipore, Biphasic, Algipore+BMSCs, and Biphasic+BMSCs-were designed in a rabbit tibia peri-implant defect model. Implant stability parameters were measured. After 4 and 8 weeks of healing, all samples were evaluated using micro-CT, histological, and histomorphometric analysis. In the energy-dispersive X-ray spectroscopy experiment, the Ca/P ratio was higher for Algipore (1.67) than for Biphasic (1.44). The ISQ values continuously increased, and the PTV values gradually decreased for all groups during the healing period. Both Algipore and Biphasic BGM promoted new bone regeneration. Higher implant stability and bone volume density were observed when Algipore and Biphasic BGMs were combined with BMSCs. Biphasic BGM exhibited a faster degradation rate than Algipore BGM. Notably, after eight weeks of healing, Algipore with BSMCs showed more bone-implant contact than Biphasic alone (p < 0.05). Both Algipore and Biphasic are efficient in reconstructing peri-implant bone defects. In addition, Algipore BGM incorporation with BSMCs displayed the best performance in enhancing implant stability and osseointegration potential.
Collapse
Affiliation(s)
- Kuo-Fang Tseng
- School of Dentistry, College of Oral Medicine, Taipei Medical University, Taipei City 110301, Taiwan
| | - Shiau-Ting Shiu
- School of Dentistry, College of Oral Medicine, Taipei Medical University, Taipei City 110301, Taiwan
- Department of Dentistry, Shuang Ho Hospital, Taipei Medical University, New Taipei City 235041, Taiwan
| | - Chia-Yi Hung
- School of Dentistry, College of Oral Medicine, Taipei Medical University, Taipei City 110301, Taiwan
- School of Dentistry and Graduate Institute of Dental Science, National Defense Medical Center, Taipei City 114201, Taiwan
| | - Ya-Hui Chan
- School of Oral Hygiene, College of Oral Medicine, Taipei Medical University, Taipei City 110301, Taiwan
| | - Tze-Jian Chee
- School of Dentistry, College of Oral Medicine, Taipei Medical University, Taipei City 110301, Taiwan
| | - Pai-Chun Huang
- School of Dentistry, College of Oral Medicine, Taipei Medical University, Taipei City 110301, Taiwan
| | - Pin-Chuang Lai
- Department of Periodontics, School of Dentistry, University of Missouri-Kansas City, Kansas City, MO 64108, USA
| | - Sheng-Wei Feng
- School of Dentistry, College of Oral Medicine, Taipei Medical University, Taipei City 110301, Taiwan
- School of Dentistry and Graduate Institute of Dental Science, National Defense Medical Center, Taipei City 114201, Taiwan
- Division of Prosthodontics, Department of Dentistry, Taipei Medical University Hospital, Taipei City 11031, Taiwan
| |
Collapse
|
5
|
Vaidya PV, Dutta A, Rooj S, Talukdar R, Bhombe K, Seesala VS, Syed ZQ, Bandyopadhyay TK, Dhara S. Design modification of surgical drill bit for final osteotomy site preparation towards improved bone-implant contact. Heliyon 2023; 9:e16451. [PMID: 37292286 PMCID: PMC10245014 DOI: 10.1016/j.heliyon.2023.e16451] [Citation(s) in RCA: 1] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/11/2023] [Revised: 05/15/2023] [Accepted: 05/17/2023] [Indexed: 06/10/2023] Open
Abstract
Implant stability significantly impacts accelerated osseointegration, leading to faster patient recovery. Both primary and secondary stability necessitates superior bone-implant contact influenced by the surgical tool required to prepare the final osteotomy site. Besides, excessive shearing and frictional forces generate heat causing local tissue necrosis. Hence, surgical procedure necessitates proper irrigation with water to minimize heat generation. Notably, the water irrigation system removes bone chips and osseous coagulums, which may help accelerate osseointegration and improve bone-implant contact. The inferior bone-implant contact and thermal necrosis at the osteotomy site are primarily responsible for poor osseointegration and eventual failure. Therefore, optimizing tool geometry is key to minimizing shear force, heat generation, and necrosis during final osteotomy site preparation. The present study explores modified drilling tool geometry, especially cutting edge for osteotomy site preparation. The mathematical modeling is used to find out ideal cutting-edge geometry that facilitates drilling under relatively less operational force (0.55-5.24 N) and torque (98.8-154.5 N-mm) with a significant reduction (28.78%-30.87%) in heat generation. Twenty-three conceivable designs were obtained using the mathematical model; however, only three have shown promising results in static structural FEM platforms. These drill bits are designed for the final drilling operation and need to be carried out during the final osteotomy site preparation.
Collapse
Affiliation(s)
| | - Abir Dutta
- Advanced Technology Development Centre, IIT Kharagpur, West Bengal, India
| | - Suparna Rooj
- Advanced Technology Development Centre, IIT Kharagpur, West Bengal, India
| | - Rahul Talukdar
- Advanced Technology Development Centre, IIT Kharagpur, West Bengal, India
| | - Komal Bhombe
- Sharad Pawar Dental Collage and Hospital, Dutta Meghe Institute of Medical Science, Wardha, Maharashtra, India
| | | | - Zahiruddin Quazi Syed
- Jawaharlal Nehru Medical College, Dutta Meghe Institute of Medical Science, Wardha, Maharashtra, India
| | | | - Santanu Dhara
- School of Medical Science and Technology, IIT Kharagpur, West Bengal, India
| |
Collapse
|
6
|
Fu Y, Huang S, Feng Z, Huang L, Zhang X, Lin H, Mo A. MXene-Functionalized Ferroelectric Nanocomposite Membranes with Modulating Surface Potential Enhance Bone Regeneration. ACS Biomater Sci Eng 2023; 9:900-917. [PMID: 36715700 DOI: 10.1021/acsbiomaterials.2c01174] [Citation(s) in RCA: 6] [Impact Index Per Article: 6.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/31/2023]
Abstract
Rapid and effective bone defect repair remains a challenging issue for clinical treatment. Applying biomaterials with endogenous surface potential has been widely studied to enhance bone regeneration, but how to regulate the electric potential and surface morphology of the implanted materials precisely to achieve an optimal bioelectric microenvironment is still a major challenge. The aim of this study is to develop electroactive biomaterials that better mimic the extracellular microenvironment for bone regeneration. Hence, MXene/polyvinylidene fluoride (MXene/PVDF) ferroelectric nanocomposite membranes were prepared by electrospinning. Physicochemical characterization demonstrated that Ti3C2Tx MXene nanosheets were wrapped in PVDF shell layer and the surface morphology and potential were modulated by altering the content of MXene, where uniform distribution of fibers and enhanced electric potential can be obtained and precisely assembled into a natural extracellular matrix (ECM) in bone tissue. Consequently, the MXene/PVDF membranes facilitated cell adhesion, stretching, and growth, showing good biocompatibility; meanwhile, their intrinsic electric potential promoted the recruitment of osteogenic cells and accelerated the differentiation of osteoblast. Furthermore, 1 wt % MXene/PVDF membrane with a suitable surface potential and better topographical structure for bone regeneration qualitatively and quantitatively promoted bone tissue formation in a rat calvarial bone defect after 4 and 8 weeks of healing. The fabricated MXene/PVDF ferroelectric nanocomposite membranes show a biomimetic microenvironment with a sustainable electric potential and optimal 3D topographical structure, providing an innovative and well-suited strategy for application in bone regeneration.
Collapse
Affiliation(s)
- Yu Fu
- State Key Laboratory of Oral Diseases, National Clinical Research Center for Oral Diseases, Department of Implantology, West China Hospital of Stomatology, Sichuan University, 14th 3 sect of Renmin South Road, Chengdu610041, China
| | - Si Huang
- State Key Laboratory of Oral Diseases, National Clinical Research Center for Oral Diseases, Department of Implantology, West China Hospital of Stomatology, Sichuan University, 14th 3 sect of Renmin South Road, Chengdu610041, China
| | - Zeru Feng
- State Key Laboratory of Oral Diseases, National Clinical Research Center for Oral Diseases, Department of Implantology, West China Hospital of Stomatology, Sichuan University, 14th 3 sect of Renmin South Road, Chengdu610041, China
| | - Lirong Huang
- State Key Laboratory of Oral Diseases, National Clinical Research Center for Oral Diseases, Department of Implantology, West China Hospital of Stomatology, Sichuan University, 14th 3 sect of Renmin South Road, Chengdu610041, China
| | - Xiaoqing Zhang
- State Key Laboratory of Oral Diseases, National Clinical Research Center for Oral Diseases, Department of Implantology, West China Hospital of Stomatology, Sichuan University, 14th 3 sect of Renmin South Road, Chengdu610041, China
| | - Hua Lin
- State Key Laboratory of Oral Diseases, National Clinical Research Center for Oral Diseases, Department of Implantology, West China Hospital of Stomatology, Sichuan University, 14th 3 sect of Renmin South Road, Chengdu610041, China
| | - Anchun Mo
- State Key Laboratory of Oral Diseases, National Clinical Research Center for Oral Diseases, Department of Implantology, West China Hospital of Stomatology, Sichuan University, 14th 3 sect of Renmin South Road, Chengdu610041, China
| |
Collapse
|
7
|
Computational assessment of growth of connective tissues around textured hip stem subjected to daily activities after THA. Med Biol Eng Comput 2023; 61:525-540. [PMID: 36534373 DOI: 10.1007/s11517-022-02729-3] [Citation(s) in RCA: 4] [Impact Index Per Article: 4.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/19/2022] [Accepted: 12/09/2022] [Indexed: 12/23/2022]
Abstract
Longer-term stability of uncemented femoral stem depends on ossification at bone-implant interface. Although attempts have been made to assess the amount of bone growth using finite element (FE) analysis in combination with a mechanoregulatory algorithm, there has been little research on tissue differentiation patterns on hip stems with proximal macro-textures. The primary goal of this investigation is to qualitatively compare the formation of connective tissues around a femoral implant with/without macro-textures on its proximal surfaces. This study also predicts formation of different tissue phenotypes and their spatio-temporal distribution around a macro-textured femoral stem under routine activities. Results from the study show that non-textured implants (80 to 94%) encourage fibroplasia compared to that in textured implants (71 to 85.38%) under similar routine activity, which might trigger aseptic loosening of implant. Formation of bone was more on medio-lateral sides and towards proximal regions of Gruen zones 2 and 6, which was found to be in line with clinical observations. Fibroplasia was higher under stair climbing (85 to 91%) compared to that under normal walking (71 to 85.38%). This study suggests that stair climbing, although falls under recommended activity, might be detrimental to patient compared to normal walking in the initial rehabilitation period.
Collapse
|
8
|
Gehrke SA, Cortellari GC, de Oliveira Fernandes GV, Scarano A, Martins RG, Cançado RM, Mesquita AMM. Randomized Clinical Trial Comparing Insertion Torque and Implant Stability of Two Different Implant Macrogeometries in the Initial Periods of Osseointegration. MEDICINA (KAUNAS, LITHUANIA) 2023; 59:medicina59010168. [PMID: 36676792 PMCID: PMC9862599 DOI: 10.3390/medicina59010168] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Figures] [Subscribe] [Scholar Register] [Received: 12/19/2022] [Revised: 01/06/2023] [Accepted: 01/10/2023] [Indexed: 01/19/2023]
Abstract
Objectives: The present study compared two implants with different macrogeometries placed in healed alveolar sites, evaluating the insertion torque (ITV) and implant stability quotient (ISQ) values at three different periods. Methods: Seventy patients with a total of 100 dental implants were allocated into two groups (n = 50 per group): DuoCone implants (DC group) that included 28 implants in the maxilla and 22 in the mandible, and Maestro implants (MAE group) that included 26 in the maxilla and 24 in the mandible. The ITV was measured during the implant placement, and the ISQ values were measured immediately at implant placement (baseline) and after 30 and 45 days. Results: The mean and standard deviations of the ITV were statistically significant (p < 0.0001), 56.4 ± 6.41 Ncm for the DC group and 29.3 ± 9.65 Ncm for the MAE group. In the DC group, the ISQs ranged between 61.1 ± 3.78 and 69.8 ± 3.86, while the MAE group presented similar values compared with the other group, ranging between 61.9 ± 3.92 and 72.1 ± 2.37. Conclusions: The value of implant insertion torque did not influence the ISQ values measured immediately after implant placement. However, the ITV influenced the ISQ values measured in the two initial periods of osseointegration, with implants installed with lower torques presenting higher ISQ values.
Collapse
Affiliation(s)
- Sergio Alexandre Gehrke
- Department of Research, Bioface/PgO/UCAM, Calle Cuareim 1483, Montevideo 11100, Uruguay
- Instituto de Bioingenieria, Universidad Miguel Hernández, Avda. Ferrocarril s/n., 03202 Elche, Spain
- Department of Biotechnology, Universidad Católica de Murcia (UCAM), 30107 Murcia, Spain
- Department of Materials Engineering, Pontificia Universidade Católica do Rio Grande do Sul, Porto Alegre 90619-900, Brazil
- Correspondence: ; Tel./Fax: +598-29015634
| | | | | | - Antonio Scarano
- Department of Research, Bioface/PgO/UCAM, Calle Cuareim 1483, Montevideo 11100, Uruguay
- Department of Innovative Technologies in Medicine & Dentistry, University of Chieti-Pescara, 66100 Chieti, Italy
| | | | | | | |
Collapse
|
9
|
Makarov VB, Dedukh NV, Nikolchenko OA. FEATURES OF BONE REMODELING AROUND SURFACE-MODIFIED TITANIUM AND TANTALUM IMPLANTS. WIADOMOSCI LEKARSKIE (WARSAW, POLAND : 1960) 2023; 76:1790-1796. [PMID: 37740972 DOI: 10.36740/wlek202308113] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 09/25/2023]
Abstract
OBJECTIVE The aim: To study the osseointegrative properties of titanium and tantalum implants with different surface structures in animal experiments. PATIENTS AND METHODS Materials and methods: The histological and morphometric study was carried out on 60 male white rats after titanium implants with different surface structures made by 3D printed technology were inserted in the distal femur bone: presented by the multilayered layers of interlacing pores of 300 microns (series 1); rough (> 2 microns) (series 2); and tantalum implants with 300 microns pores and 80% porosity (series 3) as control material. RESULTS Results: On the 30 days we found statistically significant differences in the bone-implant contact rate between the 2nd experiment series (44.77 ± 1.86)% and 1st (59.91 ± 2.86)% (p=0.000047) and 3rd (53.89 ± 2.11)% (р=0.000065), on the 90 days between the 2nd experiment series (51.26 ± 2.7)% and 1st (66.84 ± 2.63)% (p=0.000187) and 3rd (70.35 ± 4.32)% (p=0.000349). There was a difference between the indices of the bone-implant volume at day 90 between the 1st (48.43 ± 2.2)% and 2nd (36.88 ± 2.56)% series (p=0.000919), between the 2nd and 3rd series (51.2 ± 3.06)% (p=0.000107). There were no significant differences between the studied indices in the 1st and 3rd series of the experiment. CONCLUSION Conclusions: Titanium implants with multilayered interlaced pore layers of 300 microns and tantalum with 300 microns pore size and 80% porosity may be promising. Rough-surface titanium also has osseointegrative qualities, but they are lower compared to other materials.
Collapse
Affiliation(s)
| | - Ninel V Dedukh
- D.F. CHEBOTAREV INSTITUTE OF GERONTOLOGY OF THE NATIONAL ACADEMY OF MEDICAL SCIENCES OF UKRAINE, KYIV, UKRAINE
| | - Olga A Nikolchenko
- SYTENKO INSTITUTE OF SPINE AND JOINT PATHOLOGY OF THE NATIONAL ACADEMY OF MEDICAL SCIENCES OF UKRAINE, KHARKIV, UKRAINE
| |
Collapse
|
10
|
Peptides for Coating TiO 2 Implants: An In Silico Approach. Int J Mol Sci 2022; 23:ijms232214048. [PMID: 36430525 PMCID: PMC9693858 DOI: 10.3390/ijms232214048] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/09/2022] [Revised: 10/29/2022] [Accepted: 11/08/2022] [Indexed: 11/16/2022] Open
Abstract
Titanium is usually used in the manufacturing of metal implants due to its biocompatibility and high resistance to corrosion. A structural and functional connection between the living bone and the surface of the implant, a process called osseointegration, is mandatory for avoiding prolonged healing, infections, and tissue loss. Therefore, osseointegration is crucial for the success of the implantation procedure. Osseointegration is a process mediated by bone-matrix progenitor cells' proteins, named integrins. In this study, we used an in silico approach to assemble and test peptides that can be strategically used in sensitizing TiO2 implants in order to improve osseointegration. To do so, we downloaded PDB structures of integrins α5β1, αvβ3, and αIIbβ3; their biological ligands; and low-cost proteins from the Protein Data Bank, and then we performed a primary (integrin-protein) docking analysis. Furthermore, we modeled complex peptides with the potential to bind to the TiO2 surface on the implant, as well as integrins in the bone-matrix progenitor cells. Then we performed a secondary (integrin-peptide) docking analysis. The ten most promising integrin-peptide docking results were further verified by molecular dynamics (MD) simulations. We recognized 82 peptides with great potential to bind the integrins, and therefore to be used in coating TiO2 implants. Among them, peptides 1 (GHTHYHAVRTQTTGR), 3 (RKLPDATGR), and 8 (GHTHYHAVRTQTLKA) showed the highest binding stability during the MD simulations. This bioinformatics approach saves time and more effectively directs in vitro studies.
Collapse
|
11
|
Abstract
Surface characteristics are an important factor for long-term clinical success of dental implants. Alterations of implant surface characteristics accelerate or improve osseointegration by interacting with the physiology of bone healing. Dental implant surfaces have been traditionally modified at the microlevel. Recently, researchers have actively investigated nano-modifications in dental implants. This review explores implant surface modifications that enhance biological response at the interface between a bone and the implant.
Collapse
Affiliation(s)
- In-Sung Luke Yeo
- Department of Prosthodontics, School of Dentistry and Dental Research Institute, Seoul National University, 101 Daehak-Ro, Jongro-Gu, Seoul 03080, Korea.
| |
Collapse
|
12
|
Polymer–Metal Composite Healthcare Materials: From Nano to Device Scale. JOURNAL OF COMPOSITES SCIENCE 2022. [DOI: 10.3390/jcs6080218] [Citation(s) in RCA: 2] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 02/04/2023]
Abstract
Metals have been investigated as biomaterials for a wide range of medical applications. At nanoscale, some metals, such as gold nanoparticles, exhibit plasmonics, which have motivated researchers’ focus on biosensor development. At the device level, some metals, such as titanium, exhibit good physical properties, which could allow them to act as biomedical implants for physical support. Despite these attractive features, the non-specific delivery of metallic nanoparticles and poor tissue–device compatibility have greatly limited their performance. This review aims to illustrate the interplay between polymers and metals, and to highlight the pivotal role of polymer–metal composite/nanocomposite healthcare materials in different biomedical applications. Here, we revisit the recent plasmonic engineered platforms for biomolecules detection in cell-free samples and highlight updated nanocomposite design for (1) intracellular RNA detection, (2) photothermal therapy, and (3) nanomedicine for neurodegenerative diseases, as selected significant live cell–interactive biomedical applications. At the device scale, the rational design of polymer–metallic medical devices is of importance for dental and cardiovascular implantation to overcome the poor physical load transfer between tissues and devices, as well as implant compatibility under a dynamic fluidic environment, respectively. Finally, we conclude the treatment of these innovative polymer–metal biomedical composite designs and provide a future perspective on the aforementioned research areas.
Collapse
|
13
|
Kim UG, Choi JY, Lee JB, Yeo ISL. Platelet-rich plasma alone is unable to trigger contact osteogenesis on titanium implant surfaces. Int J Implant Dent 2022; 8:25. [PMID: 35666399 PMCID: PMC9170848 DOI: 10.1186/s40729-022-00427-1] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/05/2022] [Accepted: 05/31/2022] [Indexed: 11/10/2022] Open
Abstract
PURPOSE Osseointegration consists of bidirectional bone formation around modified implant surfaces by contact osteogenesis and distance osteogenesis. This study tested whether contact osteogenesis on the surface of a modified titanium (Ti) implant is stimulated by cytokines in the blood. METHODS In the first two types of experiments, sandblasted, large-grit, acid-etched Ti implants and turned Ti tubes were inserted into rabbit tibiae. To exclude the influence of distance osteogenesis, the tubes were inserted into the tibiae, and implants were placed inside the tubes. In a third type of experiment, the implants and tubes were inserted into the rabbit tibiae, and platelet-rich plasma (PRP) or recombinant human bone morphogenetic protein-2 (rhBMP-2) was applied topically. Four weeks after implantation, undecalcified specimens were prepared for histomorphometry. Bone-to-implant contact (BIC) and bone area per tissue (BA) were measured, and the data were analysed using one-way ANOVA at a significance level of 0.05. RESULTS When the response of bone to Ti tubes with implants was compared to that without implants (first experiment), little bone formation was found inside the tubes. The mean BIC of implant specimens inside the tubes was 21.41 ± 13.81% in a second experiment that evaluated bone responses to implants with or without Ti tubes. This mean BIC value was significantly lower than that in the implant-only group (without tubes) (47.32 ± 12.09%, P = 0.030). The third experiment showed that rhBMP-2 significantly increased contact osteogenesis on the implant surface, whereas PRP had no effect (mean BIC: 66.53 ± 14.06% vs. 16.34 ± 15.98%, P = 0.004). CONCLUSIONS Platelet-rich plasma alone is unable to trigger contact osteogenesis on the modified titanium implant surface.
Collapse
Affiliation(s)
- Ung-Gyu Kim
- Department of Prosthodontics, School of Dentistry and Dental Research Institute, Seoul National University, 101 Daehak-ro, Jongro-gu, Seoul, 03080, Korea
| | - Jung-You Choi
- Dental Research Institute, Seoul National University, Seoul, Korea
| | - Jun-Beom Lee
- Department of Periodontology, Seoul National University School of Dentistry, Seoul, Korea
| | - In-Sung Luke Yeo
- Department of Prosthodontics, School of Dentistry and Dental Research Institute, Seoul National University, 101 Daehak-ro, Jongro-gu, Seoul, 03080, Korea. .,Dental Research Institute, Seoul National University, Seoul, Korea.
| |
Collapse
|
14
|
Kim JC, Lee M, Yeo ISL. Three interfaces of the dental implant system and their clinical effects on hard and soft tissues. MATERIALS HORIZONS 2022; 9:1387-1411. [PMID: 35293401 DOI: 10.1039/d1mh01621k] [Citation(s) in RCA: 19] [Impact Index Per Article: 9.5] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 06/14/2023]
Abstract
Anatomically, the human tooth has structures both embedded within and forming part of the exterior surface of the human body. When a tooth is lost, it is often replaced by a dental implant, to facilitate the chewing of food and for esthetic purposes. For successful substitution of the lost tooth, hard tissue should be integrated into the implant surface. The microtopography and chemistry of the implant surface have been explored with the aim of enhancing osseointegration. Additionally, clinical implant success is dependent on ensuring that a barrier, comprising strong gingival attachment to an abutment, does not allow the infiltration of oral bacteria into the bone-integrated surface. Epithelial and connective tissue cells respond to the abutment surface, depending on its surface characteristics and the materials from which it is made. In particular, the biomechanics of the implant-abutment connection structure (i.e., the biomechanics of the interface between implant and abutment surfaces, and the screw mechanics of the implant-abutment assembly) are critical for both the soft tissue seal and hard tissue integration. Herein, we discuss the clinical importance of these three interfaces: bone-implant, gingiva-abutment, and implant-abutment.
Collapse
Affiliation(s)
- Jeong Chan Kim
- Department of Periodontology, Seoul National University School of Dentistry, Seoul 03080, Korea
| | - Min Lee
- Department of Bioengineering, University of California, Los Angeles, CA 90095, USA
| | - In-Sung Luke Yeo
- Department of Prosthodontics, School of Dentistry and Dental Research Institute, Seoul National University, 101 Daehak-Ro, Jongro-Gu, Seoul 03080, Korea.
| |
Collapse
|
15
|
Micro/nanostructural properties of peri-implant jaw bones: a human cadaver study. Int J Implant Dent 2022; 8:17. [PMID: 35411479 PMCID: PMC9001759 DOI: 10.1186/s40729-022-00417-3] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/25/2021] [Accepted: 04/05/2022] [Indexed: 11/10/2022] Open
Abstract
PURPOSE Many points concerning the structure of osseointegration and the surrounding jaw bone remain unclear, and its optimal histological form has yet to be identified. The aim of this study was to clarify the structural characteristics of peri-implant jaw bone on the micro- and nano-scales by quantitatively evaluating bone quality. METHODS Five samples of human mandibular bone containing dental implants and one dentate sample that had been in place for some years while the donors were still alive were collected. Bulk staining was performed, and 100-μm-thick polished specimens were prepared. The osteon distributions in peri-implant bone and mandibular cortical bone were measured, after which alignment analysis of biological apatite (BAp) crystallites and anisotropy analysis of collagen fiber orientation using second-harmonic generation imaging were carried out. RESULTS Osteons in the vicinity of the implant body ran parallel to it. In the cortical bone at the base of the mandible, however, most osteons were oriented mesiodistally. The preferential alignment of BAp crystallites was generally consistent with osteon orientation. The orientation of collagen fibers in peri-implant jaw bone resembled the concentric rings seen in normal cortical bone, but there were also fibers that ran orthogonally across these concentric fibers. CONCLUSIONS These results suggest that the mechanical strain imposed by implants causes the growth of cortical bone-like bone in areas that would normally consist of cancellous bone around the implants, and that its structural characteristics are optimized for the load environment of the peri-implant jaw bone.
Collapse
|
16
|
Ghosh R, Chanda S, Chakraborty D. Influence of sequential opening/closing of interface gaps and texture density on bone growth over macro-textured implant surfaces using FE based mechanoregulatory algorithm. Comput Methods Biomech Biomed Engin 2021; 25:985-999. [PMID: 34698599 DOI: 10.1080/10255842.2021.1994960] [Citation(s) in RCA: 4] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 10/20/2022]
Abstract
Intramedullary implant fixation is achieved through a press-fit between the implant and the host bone. A stronger press-fit between the bone and the prosthesis often introduces damage to the bone canal creating micro-gaps. The aim of the present investigation is to study the influences of simultaneous opening/closing of gaps on bone growth over macro-textured implant surfaces. Models based on textures available on CORAIL and SP-CL hip stems have been considered and 3D finite element (FE) analysis has been carried out in conjunction with mechanoregulation based tissue differentiation algorithm. Additionally, using a full-factorial approach, different combinations (between 5 µm to 15 µm) of sliding and gap distances at the bone-implant interface were considered to understand their combined influences on bone growth. All designs show an elevated fibrous tissue formation (10.96% at 5 µm to 29.38% at 40 µm for CORAIL based textured model; 11.45% at 5 µm to 32.25% at 40 µm for SP-CL based textured model) and inhibition of soft cartilaginous tissue (75.64% at 5 µm to 53.94% at 40 µm for CORAIL based model; 76.02% at 5 µm to 53.60% at 40 µm SP-CL based model) at progressively higher levels of normal micromotion, leading to a fragile bone-implant interface. These results highlight the importance of minimizing both sliding and gap distances simultaneously to enhance bone growth and implant stability. Further, results from the studies with differential texture density over CORAIL based implant reveal a non-linear complex relationship between tissue growth and texture density which might be investigated in a machine learning framework.
Collapse
Affiliation(s)
- Rajdeep Ghosh
- Composite Structures and Fracture Mechanics Laboratory, Department of Mechanical Engineering, Indian Institute of Technology Guwahati, Guwahati, Assam, India
| | - Souptick Chanda
- Biomechanics and Simulations Laboratory, Department of Biosciences and Bioengineering, Indian Institute of Technology Guwahati, Guwahati, Assam, India.,Mehta Family School of Data Science and Artificial Intelligence, Indian Institute of Technology Guwahati, Guwahati, Assam, India
| | - Debabrata Chakraborty
- Composite Structures and Fracture Mechanics Laboratory, Department of Mechanical Engineering, Indian Institute of Technology Guwahati, Guwahati, Assam, India
| |
Collapse
|
17
|
Ghosh R, Chanda S, Chakraborty D. Qualitative predictions of bone growth over optimally designed macro-textured implant surfaces obtained using NN-GA based machine learning framework. Med Eng Phys 2021; 95:64-75. [PMID: 34479694 DOI: 10.1016/j.medengphy.2021.08.002] [Citation(s) in RCA: 10] [Impact Index Per Article: 3.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/05/2021] [Revised: 08/06/2021] [Accepted: 08/09/2021] [Indexed: 01/23/2023]
Abstract
The surface features on implant surface can improve biologic fixation of the implant with the host bone leading to improved secondary (biological) implant stability. Application of finite element (FE) based mechanoregulatory schemes to estimate the amount of bone growth for a wide range of implant surface features is either manually intensive or computationally expensive. This study adopts an integrated approach combining FE, back-propagation neural network (BPNN) and genetic algorithm (GA) based search to evaluate optimum surface macro-textures from three representative implant models so as to enhance bone growth. Initial surface textures chosen for the implant models were based on an earlier investigation. Based on FE predicted dataset, a BPNN was formulated for faster prediction of bone growth. Using the BPNN predicted output, a GA-based search was carried out to maximize bone growth subject to clinically admissible micromotion at the bone-implant interface. The results from FE analysis and bone growth predictions from the BPNN were found to have strong correlation. The optimal osseointegration-maximized-textures (OMTs) obtained were found to offer enhanced biological fixation, as compared to that offered by the textures in the initial models. Results from the present study reveal that certain reduction in the dimension of ribs/grooves promotes bone growth. However, periodic patterns of ribs with higher and lower rib dimensions provide uniform stress environment at the interface thus promoting osseointegration.
Collapse
Affiliation(s)
- Rajdeep Ghosh
- Department of Mechanical Engineering, Indian Institute of Technology Guwahati, Guwahati, Assam 781 039, India
| | - Souptick Chanda
- Department of Biosciences and Bioengineering, Indian Institute of Technology Guwahati, Guwahati, Assam 781 039, India.
| | - Debabrata Chakraborty
- Department of Mechanical Engineering, Indian Institute of Technology Guwahati, Guwahati, Assam 781 039, India
| |
Collapse
|
18
|
Ahn N, Roh S, Park J. The status and issues of the Institutional Animal Care and Use Committee of Seoul National University: from its establishment to the present day. Exp Anim 2021; 70:532-540. [PMID: 34193732 PMCID: PMC8614008 DOI: 10.1538/expanim.21-0066] [Citation(s) in RCA: 4] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/22/2022] Open
Abstract
The Institutional Animal Care and Use Committee (IACUC) of Seoul National University (SNU) plays a key role in monitoring and managing the humane use of animals in scientific research.
Here, as one of the pioneers of the IACUC in Korea, we reported SNU-IACUC operations and activities including committee establishment and legal formulation, protocol review, and
post-approval monitoring of protocols, which the IACUC has undertaken in the last decade. In addition, legal regulations and improvements were also discussed, and encompassed the limited
number of committee members and the single IACUC policy in Korea. As of December, 2020, amendments are on the table at the National Assembly. We also emphasized the independent nature of the
IACUC in protecting activities, including approval and monitoring animal experiments, and its public role in narrowing the knowledge gap between society and scientists. Thus, the aim of this
report is to help society and scientists understand the operations of the SNU-IACUC and its role in animal welfare.
Collapse
Affiliation(s)
- Na Ahn
- Laboratory Animal Medicine, College of Veterinary Medicine, Seoul National University
| | - Sangho Roh
- School of Dentistry and Dental Research Institute, Seoul National University
| | - Jaehak Park
- Laboratory Animal Medicine, College of Veterinary Medicine, Seoul National University
| |
Collapse
|
19
|
Lee J, Lee JB, Yun J, Rhyu IC, Lee YM, Lee SM, Lee MK, Kim B, Kim P, Koo KT. The impact of surface treatment in 3-dimensional printed implants for early osseointegration: a comparison study of three different surfaces. Sci Rep 2021; 11:10453. [PMID: 34001989 PMCID: PMC8129142 DOI: 10.1038/s41598-021-89961-3] [Citation(s) in RCA: 8] [Impact Index Per Article: 2.7] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/08/2021] [Accepted: 04/29/2021] [Indexed: 11/13/2022] Open
Abstract
3D printing technology has been gradually applied to various areas. In the present study, 3D-printed implants were fabricated with direct metal laser sintering technique for a dental single root with titanium. The 3D implants were allocated into following groups: not treated (3D-None), sandblasted with a large grit and acid-etched (3D-SLA), and target-ion-induced plasma-sputtered surface (3D-TIPS). Two holes were drilled in each tibia of rabbit, and the three groups of implants were randomly placed with a mallet. Rabbits were sacrificed at two, four, and twelve weeks after the surgery. Histologic and histomorphometric analyses were performed for the evaluation of mineralized bone-to-implant contact (mBIC), osteoid-to-implant contact (OIC), total bone-to-implant contact (tBIC), mineralized bone area fraction occupancy (mBAFO), osteoid area fraction occupancy (OAFO), and total bone area fraction occupancy (tBAFO) in the inner and outer areas of lattice structure. At two weeks, 3D-TIPS showed significantly higher inner and outer tBIC and inner tBAFO compared with other groups. At four weeks, 3D-TIPS showed significantly higher outer OIC than 3D-SLA, but there were no significant differences in other variables. At twelve weeks, there were no significant differences. The surface treatment with TIPS in 3D-printed implants could enhance the osseointegration process in the rabbit tibia model, meaning that earlier osseointegration could be achieved.
Collapse
Affiliation(s)
- Jungwon Lee
- One-Stop Specialty Center, Seoul National University Dental Hospital, Seoul, Republic of Korea.,Department of Periodontology and Dental Research Institute, School of Dentistry, Seoul National University, 101, Daehak-ro, Jongno-gu, Seoul, 03080, Korea
| | - Jun-Beom Lee
- Department of Periodontology and Dental Research Institute, School of Dentistry, Seoul National University, 101, Daehak-ro, Jongno-gu, Seoul, 03080, Korea
| | - Junseob Yun
- Department of Periodontology and Dental Research Institute, School of Dentistry, Seoul National University, 101, Daehak-ro, Jongno-gu, Seoul, 03080, Korea
| | - In-Chul Rhyu
- Department of Periodontology and Dental Research Institute, School of Dentistry, Seoul National University, 101, Daehak-ro, Jongno-gu, Seoul, 03080, Korea
| | - Yong-Moo Lee
- Department of Periodontology and Dental Research Institute, School of Dentistry, Seoul National University, 101, Daehak-ro, Jongno-gu, Seoul, 03080, Korea
| | - Sung-Mi Lee
- Department of Materials Science and Engineering, Seoul National University, Seoul, Republic of Korea.,Biomedical Implant Convergence Research Center, Advanced Institutes of Convergence Technology, Suwon, Korea
| | - Min-Kyu Lee
- Department of Materials Science and Engineering, Seoul National University, Seoul, Republic of Korea
| | - Byoungkook Kim
- 3D Printer R&D Team, Dentium Co., Ltd., Suwon, Republic of Korea
| | - Pangyu Kim
- 3D Printer R&D Team, Dentium Co., Ltd., Suwon, Republic of Korea
| | - Ki-Tae Koo
- Department of Periodontology and Dental Research Institute, School of Dentistry, Seoul National University, 101, Daehak-ro, Jongno-gu, Seoul, 03080, Korea.
| |
Collapse
|
20
|
Grzeskowiak RM, Schumacher J, Dhar MS, Harper DP, Mulon PY, Anderson DE. Bone and Cartilage Interfaces With Orthopedic Implants: A Literature Review. Front Surg 2020; 7:601244. [PMID: 33409291 PMCID: PMC7779634 DOI: 10.3389/fsurg.2020.601244] [Citation(s) in RCA: 23] [Impact Index Per Article: 5.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/31/2020] [Accepted: 11/25/2020] [Indexed: 12/21/2022] Open
Abstract
The interface between a surgical implant and tissue consists of a complex and dynamic environment characterized by mechanical and biological interactions between the implant and surrounding tissue. The implantation process leads to injury which needs to heal over time and the rapidity of this process as well as the property of restored tissue impact directly the strength of the interface. Bleeding is the first and most relevant step of the healing process because blood provides growth factors and cellular material necessary for tissue repair. Integration of the implants placed in poorly vascularized tissue such as articular cartilage is, therefore, more challenging than compared with the implants placed in well-vascularized tissues such as bone. Bleeding is followed by the establishment of a provisional matrix that is gradually transformed into the native tissue. The ultimate goal of implantation is to obtain a complete integration between the implant and tissue resulting in long-term stability. The stability of the implant has been defined as primary (mechanical) and secondary (biological integration) stability. Successful integration of an implant within the tissue depends on both stabilities and is vital for short- and long-term surgical outcomes. Advances in research aim to improve implant integration resulting in enhanced implant and tissue interface. Numerous methods have been employed to improve the process of modifying both stability types. This review provides a comprehensive discussion of current knowledge regarding implant-tissue interfaces within bone and cartilage as well as novel approaches to strengthen the implant-tissue interface. Furthermore, it gives an insight into the current state-of-art biomechanical testing of the stability of the implants. Current knowledge reveals that the design of the implants closely mimicking the native structure is more likely to become well integrated. The literature provides however several other techniques such as coating with a bioactive compound that will stimulate the integration and successful outcome for the patient.
Collapse
Affiliation(s)
- Remigiusz M. Grzeskowiak
- Large Animal Clinical Sciences, University of Tennessee College of Veterinary Medicine, Knoxville, TN, United States
| | - Jim Schumacher
- Large Animal Clinical Sciences, University of Tennessee College of Veterinary Medicine, Knoxville, TN, United States
| | - Madhu S. Dhar
- Large Animal Clinical Sciences, University of Tennessee College of Veterinary Medicine, Knoxville, TN, United States
| | - David P. Harper
- The Center for Renewable Carbon, Institute of Agriculture, University of Tennessee, Knoxville, TN, United States
| | - Pierre-Yves Mulon
- Large Animal Clinical Sciences, University of Tennessee College of Veterinary Medicine, Knoxville, TN, United States
| | - David E. Anderson
- Large Animal Clinical Sciences, University of Tennessee College of Veterinary Medicine, Knoxville, TN, United States
| |
Collapse
|
21
|
Zhang H, Liu K, Lu M, Liu L, Yan Y, Chu Z, Ge Y, Wang T, Qiu J, Bu S, Tang C. Micro/nanostructured calcium phytate coating on titanium fabricated by chemical conversion deposition for biomedical application. MATERIALS SCIENCE & ENGINEERING. C, MATERIALS FOR BIOLOGICAL APPLICATIONS 2020; 118:111402. [PMID: 33255005 DOI: 10.1016/j.msec.2020.111402] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Received: 04/14/2020] [Revised: 07/26/2020] [Accepted: 08/11/2020] [Indexed: 01/01/2023]
Abstract
A bioactive micro/nanostructured calcium phytate coating was successfully prepared on titanium surfaces by chemical conversion deposition, mainly through hydrothermal treatment of a mixed solution of phytic acid and saturated calcium hydroxide solution. Ultraviolet radiation was carried out to improve the adhesion of the coating to the titanium substrate. Pure titanium with a sandblasted/acid-etched surface was used as the control group. The topography and chemical composition of the modified surfaces were characterized by scanning electron microscopy (SEM), atomic force microscopy (AFM), X-ray photoelectron spectroscopy (XPS), energy-dispersive X-ray spectroscopy (EDX), and static water contact angle measurement. A pull-off test was performed to measure the coating-to-substrate adhesion strength. Bovine serum albumin was used as a model to study the protein adsorption effect. Cells were cultured on titanium surfaces for 7 days in osteogenic differentiation medium, then the osteoblast compatibility in vitro were explored by alkaline phosphatase and alizarin red staining. After 1, 2, 4 and 8 wks of immediate implantation of titanium implants into the mandibles of New Zealand white rabbits, biological effects in vivo were researched by microcomputed tomography analysis and histological evaluation. The results indicated that the roughness and hydrophilicity of the modified surfaces with micro/nanostructure remarkably increased compared to those of the control group. The pull-off test showed the average adhesion strength at the coating-substrate interface to be higher than 13.56 ± 1.71 MPa. In addition, approximately 4.41 mg/L calcium ion was released from the calcium phytate micro/nano coatings to the local environment after 48 h of immersion. More importantly, the micro/nanostructure titanium substrates significantly promoted cellular differentiation in vitro and in vivo. After 8 wks, the bone implant contact ratio (BIC, %) of the modified implants was higher than that of the control group, at 94.09 ± 0.55% and 86.18 ± 1.99% (p < 0.05). Overall, this study provided new insights into the factors promoting early osseointegration of titanium alloys, which had great potential not only for dental implants but also for various other biomaterial applications.
Collapse
Affiliation(s)
- Hao Zhang
- Jiangsu Key Laboratory of Oral Diseases, Nanjing Medical University, Nanjing 210029, China; Department of Dental Implantology, The Affiliated Stomatological Hospital of Nanjing Medical University, Nanjing 210029, China; Department of Stomatology, The First Affiliated Hospital of Nanjing Medical University, Nanjing 210029, China
| | - Kun Liu
- Jiangsu Key Laboratory of Oral Diseases, Nanjing Medical University, Nanjing 210029, China; Department of Dental Implantology, The Affiliated Stomatological Hospital of Nanjing Medical University, Nanjing 210029, China; Department of Implantology, Hefei Stomatological Hospital, Hefei Clinical School of Stomatology, Anhui Medical University, Hefei 230001, China
| | - Mengmeng Lu
- Jiangsu Key Laboratory of Oral Diseases, Nanjing Medical University, Nanjing 210029, China; Department of Dental Implantology, The Affiliated Stomatological Hospital of Nanjing Medical University, Nanjing 210029, China
| | - Lin Liu
- Jiangsu Key Laboratory of Oral Diseases, Nanjing Medical University, Nanjing 210029, China; Department of Dental Implantology, The Affiliated Stomatological Hospital of Nanjing Medical University, Nanjing 210029, China
| | - Yanzhe Yan
- Jiangsu Key Laboratory of Oral Diseases, Nanjing Medical University, Nanjing 210029, China
| | - Zhuangzhuang Chu
- Jiangsu Key Laboratory of Oral Diseases, Nanjing Medical University, Nanjing 210029, China
| | - Yuran Ge
- Jiangsu Key Laboratory of Oral Diseases, Nanjing Medical University, Nanjing 210029, China
| | - Tao Wang
- College of Materials Science and Technology, Nanjing University of Aeronautics and Astronautics, Nanjing 210016, China
| | - Jing Qiu
- Jiangsu Key Laboratory of Oral Diseases, Nanjing Medical University, Nanjing 210029, China; Department of Dental Implantology, The Affiliated Stomatological Hospital of Nanjing Medical University, Nanjing 210029, China
| | - Shoushan Bu
- Department of Stomatology, The First Affiliated Hospital of Nanjing Medical University, Nanjing 210029, China
| | - Chunbo Tang
- Jiangsu Key Laboratory of Oral Diseases, Nanjing Medical University, Nanjing 210029, China; Department of Dental Implantology, The Affiliated Stomatological Hospital of Nanjing Medical University, Nanjing 210029, China.
| |
Collapse
|
22
|
The influence of macro-textural designs over implant surface on bone on-growth: A computational mechanobiology based study. Comput Biol Med 2020; 124:103937. [PMID: 32818741 DOI: 10.1016/j.compbiomed.2020.103937] [Citation(s) in RCA: 11] [Impact Index Per Article: 2.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/07/2020] [Revised: 07/26/2020] [Accepted: 07/26/2020] [Indexed: 01/09/2023]
Abstract
The longerterm secondary stability of an uncemented implant depends primarily on the quality and extent of bone in-growth or on-growth at the bone-implant interface. Investigations are warranted to predict the influences of implant macro-textures on bone on-growth pattern. Mechanoregulatory tissue differentiation algorithms can predict such patterns effectively. There is, however, a dearth of volumetric in silico study to assess the influence of macro-textures on bone growth. The present study investigated the influence of macro-textural grooves/ribs on changes in tissue formation at the bone-implant interface by carrying out a 3D finite element (FE) analysis. Three distinct macro-textures, loosely based on commercially viable hip stem models, were comparatively assessed for varying levels of interfacial micromotion. The study predicted elevated fibrogenesis and chondrogenesis, followed by a suppressed osteogenesis for higher levels of micromotion (60 μm and 100 μm), resulting in weak bone-implant interface strength. However, small judicious modifications in implant surface texture may enhance bone growth to a considerable extent. The numerical scheme can further be used as a template for more rigorous parametric and multi-scale studies.
Collapse
|
23
|
Trento G, de A Carvalho PH, de C Reis ENR, Spin-Neto R, Bassi APF, Pereira-Filho VA. Bone formation around two titanium implant surfaces placed in bone defects with and without a bone substitute material: A histological, histomorphometric, and micro-computed tomography evaluation. Clin Implant Dent Relat Res 2020; 22:177-185. [PMID: 32090450 DOI: 10.1111/cid.12880] [Citation(s) in RCA: 6] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/11/2019] [Revised: 11/20/2019] [Accepted: 12/09/2019] [Indexed: 12/25/2022]
Abstract
OBJECTIVE To evaluate the histological and microtomographic response of peri-implant bone tissue around titanium implants with different surface treatments, placed in bone defects filled or not filled with bone substitute materials. MATERIALS AND METHODS Thirty rabbits were divided into two groups according to the implant surface treatment. A bone defect was created in both tibias of all the rabbits, followed by the placement of one implant in each of these defects. On the left tibia, the defect was filled with a blood clot (BC), and on the right tibia, the defect was filled with biphasic hydroxyapatite/β-tricalcium-phosphate (HA/TCP); thus, there were four groups in total: BC-N: bone defect filled with a BC and porous surface titanium implant (control group); BC-A: bone defect filled with a BC and porous-hydrophilic surface titanium implant; HA/TCP-N: bone defect filled with a bone substitute material and porous surface titanium implant; HA/TCP-A: bone defect filled with a bone substitute material and porous-hydrophilic surface titanium implant. The animals were submitted for euthanasia at three distinct periods: 15, 30, and 60 days after implant installation. The samples were evaluated histologically and histometrically, to assess the quantity and quality of cells and the remaining bone substitute material in the grafted areas. The bone quantity was assessed by micro-computed tomography (CT). RESULTS For both surface types, the presence of a bone substitute material led to higher values in all evaluated micro-CT parameters, except in the bone surface/volume ratio parameter. No significant statistical difference was found for new bone formation between the four groups (P < .05; CI 95%). At all periods, the HA/TCP-A group had a higher percentage of new bone formation. CONCLUSION These results suggest that a porous hydrophilic surface in the presence of bone substitute material can accelerate peri-implant bone tissue formation.
Collapse
Affiliation(s)
- Guilherme Trento
- Department of Diagnosis and Surgery, School of Dentistry, Sao Paulo State University, Araraquara, Brazil
| | | | - Erik N R de C Reis
- Department of Dentistry and Oral Health, Section of Oral Radiology, Faculty of Health, Aarhus University, Aarhus, Denmark
| | - Rubens Spin-Neto
- Department of Oral and Maxillofacial Surgery, School of Dentistry, São Paulo State University, Araçatuba, Brazil
| | - Ana Paula F Bassi
- Department of Dentistry and Oral Health, Section of Oral Radiology, Faculty of Health, Aarhus University, Aarhus, Denmark
| | | |
Collapse
|
24
|
Modifications of Dental Implant Surfaces at the Micro- and Nano-Level for Enhanced Osseointegration. MATERIALS 2019; 13:ma13010089. [PMID: 31878016 PMCID: PMC6982017 DOI: 10.3390/ma13010089] [Citation(s) in RCA: 71] [Impact Index Per Article: 14.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 10/30/2019] [Revised: 12/13/2019] [Accepted: 12/20/2019] [Indexed: 02/07/2023]
Abstract
This review paper describes several recent modification methods for biocompatible titanium dental implant surfaces. The micro-roughened surfaces reviewed in the literature are sandblasted, large-grit, acid-etched, and anodically oxidized. These globally-used surfaces have been clinically investigated, showing survival rates higher than 95%. In the past, dental clinicians believed that eukaryotic cells for osteogenesis did not recognize the changes of the nanostructures of dental implant surfaces. However, research findings have recently shown that osteogenic cells respond to chemical and morphological changes at a nanoscale on the surfaces, including titanium dioxide nanotube arrangements, functional peptide coatings, fluoride treatments, calcium–phosphorus applications, and ultraviolet photofunctionalization. Some of the nano-level modifications have not yet been clinically evaluated. However, these modified dental implant surfaces at the nanoscale have shown excellent in vitro and in vivo results, and thus promising potential future clinical use.
Collapse
|
25
|
Liu Y, Rath B, Tingart M, Eschweiler J. Role of implants surface modification in osseointegration: A systematic review. J Biomed Mater Res A 2019; 108:470-484. [DOI: 10.1002/jbm.a.36829] [Citation(s) in RCA: 84] [Impact Index Per Article: 16.8] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/08/2019] [Accepted: 10/23/2019] [Indexed: 12/24/2022]
Affiliation(s)
- Yu Liu
- Department of Orthopaedic Surgery RWTH Aachen University Clinic Aachen Germany
| | - Björn Rath
- Department of Orthopaedic Surgery RWTH Aachen University Clinic Aachen Germany
| | - Markus Tingart
- Department of Orthopaedic Surgery RWTH Aachen University Clinic Aachen Germany
| | - Jörg Eschweiler
- Department of Orthopaedic Surgery RWTH Aachen University Clinic Aachen Germany
| |
Collapse
|
26
|
Osteogenic Cell Behavior on Titanium Surfaces in Hard Tissue. J Clin Med 2019; 8:jcm8050604. [PMID: 31052572 PMCID: PMC6571803 DOI: 10.3390/jcm8050604] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/12/2019] [Revised: 04/26/2019] [Accepted: 04/28/2019] [Indexed: 12/15/2022] Open
Abstract
It is challenging to remove dental implants once they have been inserted into the bone because it is hard to visualize the actual process of bone formation after implant installation, not to mention the cellular events that occur therein. During bone formation, contact osteogenesis occurs on roughened implant surfaces, while distance osteogenesis occurs on smooth implant surfaces. In the literature, there have been many in vitro model studies of bone formation on simulated dental implants using flattened titanium (Ti) discs; however, the purpose of this study was to identify the in vivo cell responses to the implant surfaces on actual, three-dimensional (3D) dental Ti implants and the surrounding bone in contact with such implants at the electron microscopic level using two different types of implant surfaces. In particular, the different parts of the implant structures were scrutinized. In this study, dental implants were installed in rabbit tibiae. The implants and bone were removed on day 10 and, subsequently, assessed using scanning electron microscopy (SEM), immunofluorescence microscopy (IF), transmission electron microscopy (TEM), focused ion-beam (FIB) system with Cs-corrected TEM (Cs-STEM), and confocal laser scanning microscopy (CLSM)-which were used to determine the implant surface characteristics and to identify the cells according to the different structural parts of the turned and roughened implants. The cell attachment pattern was revealed according to the different structural components of each implant surface and bone. Different cell responses to the implant surfaces and the surrounding bone were attained at an electron microscopic level in an in vivo model. These results shed light on cell behavioral patterns that occur during bone regeneration and could be a guide in the use of electron microscopy for 3D dental implants in an in vivo model.
Collapse
|
27
|
Inomata K, Tsuji K, Onuma H, Hoshino T, Udo M, Akiyama M, Nakagawa Y, Katagiri H, Miyatake K, Sekiya I, Muneta T, Koga H. Time course analyses of structural changes in the infrapatellar fat pad and synovial membrane during inflammation-induced persistent pain development in rat knee joint. BMC Musculoskelet Disord 2019; 20:8. [PMID: 30611247 PMCID: PMC6320593 DOI: 10.1186/s12891-018-2391-1] [Citation(s) in RCA: 19] [Impact Index Per Article: 3.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 09/03/2018] [Accepted: 12/21/2018] [Indexed: 12/23/2022] Open
Abstract
BACKGROUND Osteoarthritis (OA) is a common joint disease in aging societies, which is accompanied by chronic inflammation and degeneration of the joint structure. Inflammation of the infrapatellar fat pad (IFP) and synovial membrane (IFP surface) plays essential roles in persistent pain development in patients with OA. To identify the point during the inflammatory process critical for persistent pain development, we performed a time course histological analysis in a rat arthritis model. METHODS Wistar rats received single intra-articular injection of monoiodoacetic acid (MIA, 0.2 or 1.0 mg/30 μL) in the right knees or phosphate-buffered saline (PBS, 30 μL) as a control in the left knees. Pain avoidance behaviors (weight-bearing asymmetry and tactile hypersensitivity of the plantar surface of the hind paw) were evaluated on days 0, 1, 3, 5, 7, and 14 after injection. Histological assessments of the knee joint were performed on days 0, 1, 3, 5, and 7 after MIA injection. RESULTS Weight-bearing asymmetry was observed along with the onset of acute inflammation in both the low- (0.2 mg) and high-dose (1.0 mg) groups. In the low-dose group, weight-bearing asymmetry was completely reversed on day 10, indicating that joint pain seemed to alleviate between days 7 and 10. In contrast, we observed persistent joint pain after day 10 in the high-dose group. Histological assessments of the high-dose group indicated that the initial sign of inflammatory responses was observed in the perivascular region inside the IFP. Inflammatory cell infiltration from the perivascular region to the parenchymal region of the IFP was observed on day 3 and reached the IFP surface (synovial membrane) on day 7. Extensive fibrosis throughout the IFP was observed between days 5 and 7 after MIA injection. CONCLUSION Our data indicated that acute joint pain occurs along with the onset of acute inflammatory process. Irreversible structural changes in the IFP, such as extensive fibrosis, are observed prior to persistent pain development. Thus, we consider that this process may play important roles in persistent pain development.
Collapse
Affiliation(s)
- Kei Inomata
- Department of Joint Surgery and Sports Medicine, Graduate School, Tokyo Medical and Dental University, Tokyo, Japan
| | - Kunikazu Tsuji
- Department of Cartilage Regeneration, Tokyo Medical and Dental University, 1-5-45, Yushima, Bunkyo-ku, Tokyo, 113-8510, Japan.
| | - Hiroaki Onuma
- Department of Joint Surgery and Sports Medicine, Graduate School, Tokyo Medical and Dental University, Tokyo, Japan
| | - Takashi Hoshino
- Department of Joint Surgery and Sports Medicine, Graduate School, Tokyo Medical and Dental University, Tokyo, Japan
| | - Mio Udo
- Department of Joint Surgery and Sports Medicine, Graduate School, Tokyo Medical and Dental University, Tokyo, Japan
| | - Masako Akiyama
- Research Administration Unit, Tokyo Medical and Dental University, Tokyo, Japan
| | - Yusuke Nakagawa
- Department of Cartilage Regeneration, Tokyo Medical and Dental University, 1-5-45, Yushima, Bunkyo-ku, Tokyo, 113-8510, Japan
| | - Hiroki Katagiri
- Department of Joint Surgery and Sports Medicine, Graduate School, Tokyo Medical and Dental University, Tokyo, Japan
| | - Kazumasa Miyatake
- Department of Joint Surgery and Sports Medicine, Graduate School, Tokyo Medical and Dental University, Tokyo, Japan
| | - Ichiro Sekiya
- Center for Stem Cell and Regenerative Medicine, Tokyo Medical and Dental University, Tokyo, Japan
| | - Takeshi Muneta
- Department of Joint Surgery and Sports Medicine, Graduate School, Tokyo Medical and Dental University, Tokyo, Japan.,National Hospital Organization Disaster Medical Center, Tokyo, Japan
| | - Hideyuki Koga
- Department of Joint Surgery and Sports Medicine, Graduate School, Tokyo Medical and Dental University, Tokyo, Japan
| |
Collapse
|
28
|
de Araujo Munhoz FB, Branco FP, Souza RLR, Dos Santos MCLG. Matrix metalloproteinases gene polymorphism haplotype is a risk factor to implant loss: A case-control study. Clin Implant Dent Relat Res 2018; 20:1003-1008. [PMID: 30328228 DOI: 10.1111/cid.12671] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/19/2018] [Revised: 05/24/2018] [Accepted: 08/09/2018] [Indexed: 01/02/2023]
Abstract
BACKGROUND Dental implants consist in the treatment of choice to replace tooth loss. The knowledge that implant loss tends to cluster in subsets of individuals may indicate that host response is influenced by genetic factors. Matrix metalloproteinases (MMPs) are enzymes that contribute to degradation and removal of collagen from extracellular matrix. PURPOSE This case-control study aimed to investigate the haplotypic combination of MMP polymorphism (rs1144393, rs1799750, rs3025058, and rs11225395) and implant loss. MATERIALS AND METHODS Two hundred nonsmokers subjects were matched by gender, age, implant number and position and divided in control group, 100 patients with one or more healthy implants, and test group, and 100 patients with one or more implant failures. Genomic DNA was extracted from saliva and genotypes were obtained by PCR-RFLP. RESULTS A significant association of rs1799750 (MMP-1) and rs11225395 (MMP-8) polymorphism on early implant loss was demonstrated (P ≤ 0.001). Global haplotype analysis indicated a significant difference between both groups (P < 0.0001). Haplotype T-A-GG-5A-C had a statistically significant risk effect, while haplotype C-A-G-6A-C andT-G-2G-5A-C had a protective effect in implant loss. CONCLUSIONS The results of this study showed that MMPs haplotype are a risk factor to early implant loss.
Collapse
Affiliation(s)
| | - Filipe Polese Branco
- Institute of Postgraduate and Research in Dentistry (IPPO), Balneário Camboriú, Santa Catarina, Brazil
| | | | | |
Collapse
|