1
|
Lin KY, Wu YF, Aung LM, Teng NC, Sun YS, Salamanca E, Chang WJ. Magnesium-enhanced porcine particles using hydrothermal technique improve the osteogenic differentiation of cells. RSC Adv 2024; 14:29455-29463. [PMID: 39297044 PMCID: PMC11409227 DOI: 10.1039/d4ra03496a] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/12/2024] [Accepted: 08/18/2024] [Indexed: 09/21/2024] Open
Abstract
Background: Guided bone regeneration (GBR) uses bone grafts and barrier membranes to block soft tissue invasion and eventually create a new bone. Some studies indicate that a porcine bone graft demonstrates excellent biocompatibility and holds promise as a xenograft for GBR. However, only a few studies have investigated the effectiveness of this biomaterial after magnesium coating in improving osteoblast performance. Aim: This study aimed to prove that the hydrothermal method can be used to coat magnesium oxide (MgO) on the surface of a porcine graft and enhance the biomaterial's property for better osteogenic differentiation of osteoblasts in vitro. Materials and Method: A porcine bone graft was produced, and the hydrothermal method was used to coat 2 mM and 5 mM of MgO on the graft. Material physiochemistry and biocompatibility analyses were performed at days 1, 3, and 5. Results: pH value assay results suggested that MgO slightly increased the alkalinity of the graft. SEM images showed that MgO with some surface roughness was coated on the porcine bone surface, and EDX indicated that the Mg and O element percentages increased by about 5% and 9%, respectively. The porcine graft coated with MgO was rougher than an uncoated porcine graft. FTIR analysis of the porcine graft implied that its chemical structure did not change due to MgO hydrothermal processing. Cell viability assay illustrated the highest cell proliferation with the porcine graft with 5 mM MgO (P < 0.001), and good cell attachment was observed on the graft with immunofluorescence using confocal laser scanning microscopy. Cell differentiation assay results revealed that the porcine graft with 5 mM MgO had the highest alkaline phosphate activity (P < 0.0001) among the uncoated porcine graft and the porcine graft with 2 mM MgO. Relative quantitative polymerase chain reaction (qPCR) at days 1 and 5 revealed upregulated osteoblast gene expression with a statistically significant difference. Conclusion: The porcine graft hydrothermally coated with 5 mM MgO was more biocompatible and enhanced osteoblast differentiation. Thus, the findings of this study indicate that a porcine graft with 5 mM MgO has great potential as a bio-bone graft for guided bone regeneration.
Collapse
Affiliation(s)
- Kai-Yi Lin
- School of Dental Technology, College of Oral Medicine, Taipei Medical University Taipei Taiwan
| | - Yi-Fan Wu
- Department of Biomedical Engineering, Ming-Chuan University Taoyuan Taiwan
| | - Lwin Moe Aung
- School of Dentistry, College of Oral Medicine, Taipei Medical University Taipei Taiwan +886-2-2736-2295 +886-2-2736-1661 (ext. 5150)
| | - Nai-Chia Teng
- School of Dentistry, College of Oral Medicine, Taipei Medical University Taipei Taiwan +886-2-2736-2295 +886-2-2736-1661 (ext. 5150)
| | - Ying-Sui Sun
- School of Dental Technology, College of Oral Medicine, Taipei Medical University Taipei Taiwan
| | - Eisner Salamanca
- School of Dentistry, College of Oral Medicine, Taipei Medical University Taipei Taiwan +886-2-2736-2295 +886-2-2736-1661 (ext. 5150)
| | - Wei-Jen Chang
- School of Dentistry, College of Oral Medicine, Taipei Medical University Taipei Taiwan +886-2-2736-2295 +886-2-2736-1661 (ext. 5150)
- Department of Dentistry, Shuang Ho Hospital, Taipei Medical University New Taipei Taiwan
| |
Collapse
|
2
|
Newman A, Anderson NK, Romanos GE. Bovine Mineral Grafting Affects the Hydrophilicity of Dental Implant Surfaces: An In Vitro Study. MATERIALS (BASEL, SWITZERLAND) 2024; 17:4052. [PMID: 39203230 PMCID: PMC11356546 DOI: 10.3390/ma17164052] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Subscribe] [Scholar Register] [Received: 07/20/2024] [Revised: 08/05/2024] [Accepted: 08/09/2024] [Indexed: 09/03/2024]
Abstract
Wettability is recognized as an important property of implant surfaces for ensuring improved biological responses. However, limited information exists on how bone grafting procedures including materials influence the hydrophilic behavior of implant surfaces. This in vitro study aimed to investigate the influence of two bovine grafting materials after hydration on the wettability of four different disk surfaces: commercially pure titanium (CP-Ti), titanium-zirconium dioxide (TiZrO2-Cerid®), zirconia (SDS®), and niobium. Wettability tests were performed on each of the four implant surfaces with a solution of 0.9% sodium chloride after mixture with W-boneTM (Group A) or Bio-Oss® (Group B) or 0.9% sodium chloride alone (Group C). In total, 360 contact angle measurements were completed with n = 30 per group. Statistical analysis was performed using a one-way analysis with variance (ANOVA) test with a significant mean difference at the 0.05 level. For pure titanium, Group A demonstrated increased hydrophilicity compared to Group B. Both TiZrO2 and zirconia showed significant differences for Groups A, B and C, exhibiting a decrease in hydrophilicity after the use of bovine grafting materials compared to titanium surfaces. Niobium remained consistently hydrophobic. In summary, this study revealed that bovine grafting materials may diminish the hydrophilicity of zirconia surfaces and exert varied effects on titanium and niobium. These findings contribute to the understanding of implant surface interactions with grafting materials, offering insights for optimizing biological responses in implantology.
Collapse
Affiliation(s)
- Allyson Newman
- Laboratory of Periodontal, Implant-, Phototherapy, Department of Periodontics and Endodontics, Stony Brook University, Stony Brook, NY 11794, USA;
| | - Nina K. Anderson
- Department of Oral Biology and Pathology, Stony Brook University, Stony Brook, NY 11794, USA;
| | - Georgios E. Romanos
- Laboratory of Periodontal, Implant-, Phototherapy, Department of Periodontics and Endodontics, Stony Brook University, Stony Brook, NY 11794, USA;
| |
Collapse
|
3
|
Yeom WK, Lee JW, Bae JA, Sung DI, Kim T, Lee JH, Yeom GY. Biocompatible Co-organic Composite Thin Film Deposited by VHF Plasma-Enhanced Atomic Layer Deposition at a Low Temperature. ACS OMEGA 2024; 9:33735-33742. [PMID: 39130588 PMCID: PMC11307275 DOI: 10.1021/acsomega.4c02845] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 03/25/2024] [Revised: 05/24/2024] [Accepted: 05/27/2024] [Indexed: 08/13/2024]
Abstract
Although metal-organic thin films are required for many biorelated applications, traditional deposition methods have proven challenging in preparing these composite materials. Here, a Co-organic composite thin film was prepared by plasma-enhanced atomic layer deposition (PEALD) with cobaltocene (Co(Cp)2) on polydimethylsiloxane (PDMS), using two very high frequency (VHF) NH3 plasmas (60 and 100 MHz), for use as a tissue culture scaffold. VHF PEALD was employed to reduce the temperature and control the thickness and composition. In the result of the VHF PEALD process, the Young's modulus of the Co-organic composite thin film ranged from 82.0 ± 28.6 to 166.0 ± 15.2 MPa, which is similar to the Young's modulus of soft tissues. In addition, the deposited Co ion on the Co-organic composite thin film was released into the cell culture media under a nontoxic level for the biological environment. The proliferation of both L929, the mouse fibroblast cell line, and C2C12, the mouse myoblast cell line, increased to 164.9 ± 23.4% during 7 days of incubation. Here, this novel bioactive Co-organic composite thin film on an elastic PDMS substrate enhanced the proliferation of L929 and C2C12 cell lines, thereby expanding the application range of VHF PEALD in biological fields.
Collapse
Affiliation(s)
- Won Kyun Yeom
- SKKU
Advanced Institute of Nano Technology (SAINT), Sungkyunkwan University, 2066 Seobu-ro, Jangan-gu, Suwon-si, Gyeonggi-do 16419, Republic of Korea
| | - Jin Woong Lee
- School
of Advanced Materials Science and Engineering, Sungkyunkwan University, 2066 Seobu-ro, Jangan-gu, Suwon-si, Gyeonggi-do 16419, Republic of Korea
- Research
Center for Advanced Materials Technology, Sungkyunkwan University (SKKU), 2066 Seobu-ro, Jangan-gu, Suwon-si, Gyeonggi-do 16419, Republic of Korea
| | - Jin-A Bae
- School
of Advanced Materials Science and Engineering, Sungkyunkwan University, 2066 Seobu-ro, Jangan-gu, Suwon-si, Gyeonggi-do 16419, Republic of Korea
| | - Da In Sung
- School
of Advanced Materials Science and Engineering, Sungkyunkwan University, 2066 Seobu-ro, Jangan-gu, Suwon-si, Gyeonggi-do 16419, Republic of Korea
| | - Taeyeop Kim
- School
of Mechanical Engineering, Sungkyunkwan
University, 2066 Seobu-ro, Jangan-gu, Suwon-si, Gyeonggi-do 16419, Republic
of Korea
| | - Jung Heon Lee
- SKKU
Advanced Institute of Nano Technology (SAINT), Sungkyunkwan University, 2066 Seobu-ro, Jangan-gu, Suwon-si, Gyeonggi-do 16419, Republic of Korea
- School
of Advanced Materials Science and Engineering, Sungkyunkwan University, 2066 Seobu-ro, Jangan-gu, Suwon-si, Gyeonggi-do 16419, Republic of Korea
- Research
Center for Advanced Materials Technology, Sungkyunkwan University (SKKU), 2066 Seobu-ro, Jangan-gu, Suwon-si, Gyeonggi-do 16419, Republic of Korea
- Biomedical
Institute for Convergence at SKKU (BICS), Sungkyunkwan University (SKKU), 2066 Seobu-ro, Jangan-gu, Suwon-si, Gyeonggi-do 16419, Republic of Korea
| | - Geun Young Yeom
- SKKU
Advanced Institute of Nano Technology (SAINT), Sungkyunkwan University, 2066 Seobu-ro, Jangan-gu, Suwon-si, Gyeonggi-do 16419, Republic of Korea
- School
of Advanced Materials Science and Engineering, Sungkyunkwan University, 2066 Seobu-ro, Jangan-gu, Suwon-si, Gyeonggi-do 16419, Republic of Korea
| |
Collapse
|
4
|
Wang Y, Zong Y, Chen W, Diao N, Zhao Q, Li C, Jia B, Zhang M, Li J, Zhao Y, Du R, He Z. Decellularized Antler Cancellous Bone Matrix Material Can Serve as Potential Bone Tissue Scaffold. Biomolecules 2024; 14:907. [PMID: 39199295 PMCID: PMC11353137 DOI: 10.3390/biom14080907] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/21/2024] [Revised: 07/15/2024] [Accepted: 07/16/2024] [Indexed: 09/01/2024] Open
Abstract
Due to the limited supply of autologous bone grafts, there is a need to develop more bone matrix materials to repair bone defects. Xenograft bone is expected to be used for clinical treatment due to its exact structural similarity to natural bone and its high biocompatibility. In this study, decellularized antler cancellous bone matrix (DACB) was first prepared, and then the extent of decellularization of DACB was verified by histological staining, which demonstrated that it retained the extracellular matrix (ECM). The bioactivity of DACB was assessed using C3H10T1/2 cells, revealing that DACB enhanced cell proliferation and facilitated cell adhesion and osteogenic differentiation. When evaluated by implanting DACB into nude mice, there were no signs of necrosis or inflammation in the epidermal tissues. The bone repair effect of DACB was verified in vivo using sika deer during the antler growth period as an animal model, and the molecular mechanisms of bone repair were further evaluated by transcriptomic analysis of the regenerated tissues. Our findings suggest that the low immunogenicity of DACB enhances the production of bone extracellular matrix components, leading to effective osseointegration between bone and DACB. This study provides a new reference for solving bone defects.
Collapse
Affiliation(s)
- Yusu Wang
- College of Chinese Medicinal Materials, Jilin Agricultural University, Changchun 130118, China; (Y.W.); (Y.Z.); (W.C.); (N.D.); (Q.Z.); (C.L.); (M.Z.); (J.L.); (Y.Z.)
- Institute of Antler Science and Product Technology, Changchun Sci-Tech University, Changchun 130112, China
| | - Ying Zong
- College of Chinese Medicinal Materials, Jilin Agricultural University, Changchun 130118, China; (Y.W.); (Y.Z.); (W.C.); (N.D.); (Q.Z.); (C.L.); (M.Z.); (J.L.); (Y.Z.)
| | - Weijia Chen
- College of Chinese Medicinal Materials, Jilin Agricultural University, Changchun 130118, China; (Y.W.); (Y.Z.); (W.C.); (N.D.); (Q.Z.); (C.L.); (M.Z.); (J.L.); (Y.Z.)
| | - Naichao Diao
- College of Chinese Medicinal Materials, Jilin Agricultural University, Changchun 130118, China; (Y.W.); (Y.Z.); (W.C.); (N.D.); (Q.Z.); (C.L.); (M.Z.); (J.L.); (Y.Z.)
| | - Quanmin Zhao
- College of Chinese Medicinal Materials, Jilin Agricultural University, Changchun 130118, China; (Y.W.); (Y.Z.); (W.C.); (N.D.); (Q.Z.); (C.L.); (M.Z.); (J.L.); (Y.Z.)
| | - Chunyi Li
- College of Chinese Medicinal Materials, Jilin Agricultural University, Changchun 130118, China; (Y.W.); (Y.Z.); (W.C.); (N.D.); (Q.Z.); (C.L.); (M.Z.); (J.L.); (Y.Z.)
- Institute of Antler Science and Product Technology, Changchun Sci-Tech University, Changchun 130112, China
| | - Boyin Jia
- College of Animal Medicine, College of Animal Science and Technology, Jilin Agricultural University, Changchun 130118, China;
| | - Miao Zhang
- College of Chinese Medicinal Materials, Jilin Agricultural University, Changchun 130118, China; (Y.W.); (Y.Z.); (W.C.); (N.D.); (Q.Z.); (C.L.); (M.Z.); (J.L.); (Y.Z.)
| | - Jianming Li
- College of Chinese Medicinal Materials, Jilin Agricultural University, Changchun 130118, China; (Y.W.); (Y.Z.); (W.C.); (N.D.); (Q.Z.); (C.L.); (M.Z.); (J.L.); (Y.Z.)
| | - Yan Zhao
- College of Chinese Medicinal Materials, Jilin Agricultural University, Changchun 130118, China; (Y.W.); (Y.Z.); (W.C.); (N.D.); (Q.Z.); (C.L.); (M.Z.); (J.L.); (Y.Z.)
| | - Rui Du
- College of Chinese Medicinal Materials, Jilin Agricultural University, Changchun 130118, China; (Y.W.); (Y.Z.); (W.C.); (N.D.); (Q.Z.); (C.L.); (M.Z.); (J.L.); (Y.Z.)
| | - Zhongmei He
- College of Chinese Medicinal Materials, Jilin Agricultural University, Changchun 130118, China; (Y.W.); (Y.Z.); (W.C.); (N.D.); (Q.Z.); (C.L.); (M.Z.); (J.L.); (Y.Z.)
| |
Collapse
|
5
|
Steyl SK, Jeyapalina S, Griffin A, Krishnamoorthi V, Beck JP, Agarwal J, Shea J. Efficacy of sintered Zinc-doped fluorapatite scaffold as an antimicrobial regenerative bone filler for dental applications. J Dent 2024; 146:105070. [PMID: 38740251 PMCID: PMC11180563 DOI: 10.1016/j.jdent.2024.105070] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/15/2024] [Revised: 05/08/2024] [Accepted: 05/10/2024] [Indexed: 05/16/2024] Open
Abstract
OBJECTIVES The objective of this study was to assess whether zinc-doped fluorapatite (ZnFA) could serve as an effective antimicrobial dental bone filler for bone regeneration compared to autografts. METHODS FA and 2 % zinc-doped FA (2ZnFA) were synthesized and characterized in-house. Compressed and sintered FA and 2ZnFA disks were incubated with bacteria to assess antimicrobial properties. Adipose-derived stem cells were cultured on these discs to evaluate the surfaces' ability to support cell growth and promote osteogenic differentiation. Surfaces exhibiting the highest expressions of the bone markers osteopontin and osteocalcin were selected for an in vivo study in a rat mandibular defect model. Twenty rats were divided into 5 groups, equally, and a 5 mm surgical defect of the jaw was left untreated or filled with 2ZnFA, FA, autograft, or demineralized bone matrix (DBM). At 12 weeks, the defects and surrounding tissues were harvested and subjected to microCT and histological evaluations. RESULTS Standard techniques such as FTIR, ICP-MS, fluoride probe, and XRD revealed the sintered FA and ZnFA's chemical compositions and structures. Bacterial studies revealed no significant differences in surface bacterial adhesion properties between FA and 2ZnFA, but significantly fewer bacterial loads than control titanium discs (p < 0.05). Cell culture data confirmed that both surfaces could support cell growth and promote the osteogenic differentiation of stem cells. MicroCT analysis confirmed statistical similarities in bone regeneration within FA, 2ZnFA, and autograft groups. CONCLUSION The data suggests that both FA and 2ZnFA could serve as alternatives to autograft materials, which are the current gold standard. Moreover, these bone fillers outperformed DBM, an allograft material commonly used as a dental bone void filler. CLINICAL SIGNIFICANCE The use of FA or 2ZnFA for treating mandibular defects led to bone regeneration statistically similar to autograft repair and significantly outperformed the widely used dental bone filler, DBM. Additional translational research may confirm FA-based materials as superior substitutes for existing synthetic bone fillers, ultimately enhancing patient outcomes.
Collapse
Affiliation(s)
- Samantha K Steyl
- Orthopaedic and Plastic Surgery Research Laboratory, George E. Wahlen Department of Veterans Affairs Medical Center, 500 Foothill Drive Salt Lake City, UT 84148, USA; Division of Plastic Surgery, Department of Surgery, University of Utah School of Medicine, 30 North 1900 East, Salt Lake City, UT 84132, USA; Department of Biomedical Engineering, University of Utah, 36 S. Wasatch Drive, Rm. 3100. Salt Lake City, UT 84112, USA
| | - Sujee Jeyapalina
- Orthopaedic and Plastic Surgery Research Laboratory, George E. Wahlen Department of Veterans Affairs Medical Center, 500 Foothill Drive Salt Lake City, UT 84148, USA; Division of Plastic Surgery, Department of Surgery, University of Utah School of Medicine, 30 North 1900 East, Salt Lake City, UT 84132, USA; Department of Biomedical Engineering, University of Utah, 36 S. Wasatch Drive, Rm. 3100. Salt Lake City, UT 84112, USA
| | - Alec Griffin
- Orthopaedic and Plastic Surgery Research Laboratory, George E. Wahlen Department of Veterans Affairs Medical Center, 500 Foothill Drive Salt Lake City, UT 84148, USA
| | - Vishnu Krishnamoorthi
- Orthopaedic and Plastic Surgery Research Laboratory, George E. Wahlen Department of Veterans Affairs Medical Center, 500 Foothill Drive Salt Lake City, UT 84148, USA
| | - James Peter Beck
- Orthopaedic and Plastic Surgery Research Laboratory, George E. Wahlen Department of Veterans Affairs Medical Center, 500 Foothill Drive Salt Lake City, UT 84148, USA; Department of Orthopaedics, University of Utah School of Medicine, 590 Wakara Way Salt Lake City, UT 84108, USA
| | - Jay Agarwal
- Orthopaedic and Plastic Surgery Research Laboratory, George E. Wahlen Department of Veterans Affairs Medical Center, 500 Foothill Drive Salt Lake City, UT 84148, USA; Division of Plastic Surgery, Department of Surgery, University of Utah School of Medicine, 30 North 1900 East, Salt Lake City, UT 84132, USA
| | - Jill Shea
- Orthopaedic and Plastic Surgery Research Laboratory, George E. Wahlen Department of Veterans Affairs Medical Center, 500 Foothill Drive Salt Lake City, UT 84148, USA; Division of Plastic Surgery, Department of Surgery, University of Utah School of Medicine, 30 North 1900 East, Salt Lake City, UT 84132, USA; Department of Biomedical Engineering, University of Utah, 36 S. Wasatch Drive, Rm. 3100. Salt Lake City, UT 84112, USA.
| |
Collapse
|
6
|
Kim SH, Ki MR, Han Y, Pack SP. Biomineral-Based Composite Materials in Regenerative Medicine. Int J Mol Sci 2024; 25:6147. [PMID: 38892335 PMCID: PMC11173312 DOI: 10.3390/ijms25116147] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/05/2024] [Revised: 05/21/2024] [Accepted: 05/29/2024] [Indexed: 06/21/2024] Open
Abstract
Regenerative medicine aims to address substantial defects by amplifying the body's natural regenerative abilities and preserving the health of tissues and organs. To achieve these goals, materials that can provide the spatial and biological support for cell proliferation and differentiation, as well as the micro-environment essential for the intended tissue, are needed. Scaffolds such as polymers and metallic materials provide three-dimensional structures for cells to attach to and grow in defects. These materials have limitations in terms of mechanical properties or biocompatibility. In contrast, biominerals are formed by living organisms through biomineralization, which also includes minerals created by replicating this process. Incorporating biominerals into conventional materials allows for enhanced strength, durability, and biocompatibility. Specifically, biominerals can improve the bond between the implant and tissue by mimicking the micro-environment. This enhances cell differentiation and tissue regeneration. Furthermore, biomineral composites have wound healing and antimicrobial properties, which can aid in wound repair. Additionally, biominerals can be engineered as drug carriers, which can efficiently deliver drugs to their intended targets, minimizing side effects and increasing therapeutic efficacy. This article examines the role of biominerals and their composite materials in regenerative medicine applications and discusses their properties, synthesis methods, and potential uses.
Collapse
Affiliation(s)
- Sung Ho Kim
- Department of Biotechnology and Bioinformatics, Korea University, 2511 Sejong-ro, Sejong 30019, Republic of Korea; (S.H.K.); (M.-R.K.)
| | - Mi-Ran Ki
- Department of Biotechnology and Bioinformatics, Korea University, 2511 Sejong-ro, Sejong 30019, Republic of Korea; (S.H.K.); (M.-R.K.)
- Institute of Industrial Technology, Korea University, 2511 Sejong-ro, Sejong 30019, Republic of Korea
| | - Youngji Han
- Biological Clock-Based Anti-Aging Convergence RLRC, Korea University, 2511 Sejong-ro, Sejong 30019, Republic of Korea;
| | - Seung Pil Pack
- Department of Biotechnology and Bioinformatics, Korea University, 2511 Sejong-ro, Sejong 30019, Republic of Korea; (S.H.K.); (M.-R.K.)
| |
Collapse
|
7
|
Naini AY, Kobravi S, Jafari A, Lotfalizadeh M, Lotfalizadeh N, Farhadi S. Comparing the effects of Bone +B® xenograft and InterOss® xenograft bone material on rabbit calvaria bone defect regeneration. Clin Exp Dent Res 2024; 10:e875. [PMID: 38798121 PMCID: PMC11128774 DOI: 10.1002/cre2.875] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/13/2023] [Revised: 02/17/2024] [Accepted: 02/19/2024] [Indexed: 05/29/2024] Open
Abstract
BACKGROUND The bone regeneration therapy is often used in patients with inadequate bone support for implants, particularly following tooth extractions. Xenografts derived from animal tissues are effective bone reconstructive options that resist resorption and pose a low risk of transmitting disease. Therefore, these implants may be a good option for enhancing and stabilizing maxillary sinuses. The purpose of this study was to compare two xenografts, Bone+B® and InterOss®, for the reconstruction of rabbit calvaria defects. METHODS AND MATERIALS The study involved seven male New Zealand white rabbits. In the surgical procedure, 21 spots were created on both sides of the midline calvarium by creating three 8-millimeter defects. A control group was used, as well as two treatment groups utilizing Bone+B® Grafts and InterOss® Grafts. After 3 months, the rabbits were euthanized, followed by pathological evaluation. Analysis of these samples focused on bone formation, xenograft remaining material, and inflammation levels, using Adobe Photoshop CS 8.0 and SPSS version 24. RESULTS With the application of Bone+B® graft, bone formation ranged from 32% to 45%, with a mean of 37.80% (±5.63), and the remaining material ranged from 28% to 37%, with a mean of 32.60% (±3.65). Using InterOss® grafts, bone formation was 61% to 75%, the mean was 65.83% (±4.75), and the remaining material was 9% to 18%, with a mean of 13.17% (±3.06). The bone formation in the control group ranged from 10% to 25%, with a mean of 17.17% (±6.11). InterOss® had lower inflammation levels than other groups, but the difference was not statistically significant (p > .05). CONCLUSION InterOss® bone powder is the best option for maxillofacial surgery and bone reconstruction. This is due to more bone formation, less remaining material, and a lower inflammation level. Compared to the control group, Bone+B® improves healing and bone quality, thus making it an alternative to InterOss®.
Collapse
Affiliation(s)
- Afshin Yadegari Naini
- Department of Oral and Maxillofacial Surgery, Faculty of Dentistry (Khorasgan)Isfahan Azad UniversityIsfahanIran
| | - Sepehr Kobravi
- Department of Oral and Maxillofacial Surgery, Faculty of Dentistry, Tehran medical sciencesIslamic Azad UniversityTehranIran
| | - Aida Jafari
- Department of Oral and Maxillofacial Surgery, Faculty of Dentistry (Khorasgan)Isfahan Azad UniversityIsfahanIran
| | | | - Narges Lotfalizadeh
- Department of Clinical Sciences, Faculty of Veterinary MedicineFerdowsi University of MashhadMashhadIran
| | - Sareh Farhadi
- Department of Oral & Maxillofacial Pathology, Faculty of Dentistry, Tehran Medical SciencesIslamic Azad UniversityTehranIran
| |
Collapse
|
8
|
Mahboubian MH, Kadkhodazadeh M, Amid R, Moscowchi A. Comparative assessment of the physical structure of antler and bovine bone substitutes: An in vitro study. JOURNAL OF ADVANCED PERIODONTOLOGY & IMPLANT DENTISTRY 2024; 16:4-8. [PMID: 39027212 PMCID: PMC11252153 DOI: 10.34172/japid.2024.012] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Subscribe] [Scholar Register] [Received: 12/14/2023] [Accepted: 05/13/2024] [Indexed: 07/20/2024]
Abstract
Background The use of bone graft materials has significantly increased. Given the inherent variations in structure and functionality between different grafting materials, this evaluated and compared the physical attributes of antler and bovine femur bone substitutes. Methods In the present in vitro investigation, the surface morphological architecture of the two bone substitutes with different origins was assessed through scanning electron microscopy. Furthermore, the Brunauer-Emmett-Teller (BET) technique was employed to measure the porosity, specific surface area (SSA), and pore morphology. Results Scanning electron microscopy observations indicated that the surface of the bovine particles appeared smoother, while the antler particles exhibited a rougher surface texture. The BET analysis revealed that both samples exhibited identical pore morphology. The SSA was 15.974 m2/g in the antler particles compared with 18.404 m2/g in the bovine sample. The total porosity volume in the antler and bovine femur bone substitutes were 0.2172 cm3/g and 0.2918 cm3/g, respectively. Additionally, the antler particles had a porosity percentage of 40%, whereas the bovine femur bone substitute showed a porosity percentage of 43.5%. Conclusion Based on the results of this study, it seems that the two samples of bone grafting materials have comparable physical structures.
Collapse
Affiliation(s)
- Mohammad Hossein Mahboubian
- Dental Research Center, Research Institute for Dental Sciences, School of Dentistry, Shahid Beheshti University of Medical Sciences, Tehran, Iran
- Department of Periodontics, School of Dentistry, Shahid Beheshti University of Medical Sciences, Tehran, Iran
| | - Mahdi Kadkhodazadeh
- Dental Research Center, Research Institute for Dental Sciences, School of Dentistry, Shahid Beheshti University of Medical Sciences, Tehran, Iran
- Department of Periodontics, School of Dentistry, Shahid Beheshti University of Medical Sciences, Tehran, Iran
| | - Reza Amid
- Dental Research Center, Research Institute for Dental Sciences, School of Dentistry, Shahid Beheshti University of Medical Sciences, Tehran, Iran
- Department of Periodontics, School of Dentistry, Shahid Beheshti University of Medical Sciences, Tehran, Iran
| | - Anahita Moscowchi
- Dental Research Center, Research Institute for Dental Sciences, School of Dentistry, Shahid Beheshti University of Medical Sciences, Tehran, Iran
- Department of Periodontics, School of Dentistry, Shahid Beheshti University of Medical Sciences, Tehran, Iran
| |
Collapse
|
9
|
Wüster J, Neckel N, Sterzik F, Xiang-Tischhauser L, Barnewitz D, Genzel A, Koerdt S, Rendenbach C, Müller-Mai C, Heiland M, Nahles S, Knabe C. Effect of a synthetic hydroxyapatite-based bone grafting material compared to established bone substitute materials on regeneration of critical-size bone defects in the ovine scapula. Regen Biomater 2024; 11:rbae041. [PMID: 38903563 PMCID: PMC11187503 DOI: 10.1093/rb/rbae041] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/13/2023] [Revised: 03/11/2024] [Accepted: 03/30/2024] [Indexed: 06/22/2024] Open
Abstract
Lately, the potential risk of disease transmission due to the use of bovine-derived bone substitutes has become obvious, demonstrating the urgent need for a synthetic grafting material with comparable bioactive behaviour and properties. Therefore, the effect of a synthetic hydroxyapatite (HA) (Osbone®) bone grafting material on bone regeneration was evaluated 2 weeks, 1 month, and 3, 6, 12 and 18 months after implantation in critical-size bone defects in the ovine scapula and compared to that of a bovine-derived HA (Bio-Oss®) and β-tricalcium phosphate (TCP) (Cerasorb® M). New bone formation and the biodegradability of the bone substitutes were assessed histomorphometrically. Hard tissue histology and immunohistochemical analysis were employed to characterize collagen type I, alkaline phosphatase, osteocalcin, as well as bone sialoprotein expression in the various cell and matrix components of the bone tissue to evaluate the bioactive properties of the bone grafting materials. No inflammatory tissue response was detected with any of the bone substitute materials studied. After 3 and 6 months, β-TCP (Cerasorb® M) showed superior bone formation when compared to both HA-based materials (3 months: β-TCP 55.65 ± 2.03% vs. SHA 49.05 ± 3.84% and BHA 47.59 ± 1.97%; p ≤ 0.03; 6 months: β-TCP 62.03 ± 1.58%; SHA: 55.83 ± 2.59%; BHA: 53.44 ± 0.78%; p ≤ 0.04). Further, after 12 and 18 months, a similar degree of bone formation and bone-particle contact was noted for all three bone substitute materials without any significant differences. The synthetic HA supported new bone formation, osteogenic marker expression, matrix mineralization and good bone-bonding behaviour to an equal and even slightly superior degree compared to the bovine-derived HA. As a result, synthetic HA can be regarded as a valuable alternative to the bovine-derived HA without the potential risk of disease transmission.
Collapse
Affiliation(s)
- Jonas Wüster
- Department of Oral and Maxillofacial Surgery, Charité—Universitätsmedizin Berlin, Corporate Member of Freie Universität Berlin, Humboldt-Universität zu Berlin, and Berlin Institute of Health, Berlin, Germany
| | - Norbert Neckel
- Department of Oral and Maxillofacial Surgery, Charité—Universitätsmedizin Berlin, Corporate Member of Freie Universität Berlin, Humboldt-Universität zu Berlin, and Berlin Institute of Health, Berlin, Germany
| | - Florian Sterzik
- Department of Experimental Orofacial Medicine, Philipps University Marburg, Germany
| | - Li Xiang-Tischhauser
- Department of Experimental Orofacial Medicine, Philipps University Marburg, Germany
| | | | - Antje Genzel
- Veterinary Research Centre, Bad Langensalza, Germany
| | - Steffen Koerdt
- Department of Oral and Maxillofacial Surgery, Charité—Universitätsmedizin Berlin, Corporate Member of Freie Universität Berlin, Humboldt-Universität zu Berlin, and Berlin Institute of Health, Berlin, Germany
| | - Carsten Rendenbach
- Department of Oral and Maxillofacial Surgery, Charité—Universitätsmedizin Berlin, Corporate Member of Freie Universität Berlin, Humboldt-Universität zu Berlin, and Berlin Institute of Health, Berlin, Germany
| | - Christian Müller-Mai
- Department of Orthopaedics and Traumatology, Hospital for Special Surgery, Lünen, Germany
| | - Max Heiland
- Department of Oral and Maxillofacial Surgery, Charité—Universitätsmedizin Berlin, Corporate Member of Freie Universität Berlin, Humboldt-Universität zu Berlin, and Berlin Institute of Health, Berlin, Germany
| | - Susanne Nahles
- Department of Oral and Maxillofacial Surgery, Charité—Universitätsmedizin Berlin, Corporate Member of Freie Universität Berlin, Humboldt-Universität zu Berlin, and Berlin Institute of Health, Berlin, Germany
| | - Christine Knabe
- Department of Experimental Orofacial Medicine, Philipps University Marburg, Germany
| |
Collapse
|
10
|
Qasim SSB, Trajkovski B, Zafiropoulos GG. The response of human osteoblasts on bovine xenografts with and without hyaluronate used in bone augmentation. JOURNAL OF BIOMATERIALS SCIENCE. POLYMER EDITION 2024; 35:880-897. [PMID: 38346177 DOI: 10.1080/09205063.2024.2311454] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 12/24/2023] [Accepted: 01/24/2024] [Indexed: 04/13/2024]
Abstract
The aim of the in vitro study was to asses the effect of hyaluronate in conjunction with bovine derived xenografts on the viability, proliferation on day 4, 7 and 10, expression of early osteogenic differentiation marker Alkaline phosphatase on day 14 and 21, collagen, calcium deposition on day 14, 21 and 28 and cellular characteristics, as assessed through live cell image analysis, confocal laser scanning microscopy and scanning electron microscopy, in primary human osteoblasts compared to three bovine xenografts without hyaluronate. All experiments were performed in triplicates. Data were compared between groups and timepoints using one-way analysis of variance (ANOVA). Bonferroni post hoc test were further used for multiple comparison between groups (p < .05) An increase in cell viability (p < .05) and enhanced ALP activity was observed in all xenografts. Specimens containing hyaluronate showed a highest significant difference (23755 ± 29953, p < .0001). The highest levels of calcium (1.60 ± 0.30) and collagen (1.92 ± 0.09, p < .0001) deposition were also observed with hyaluronate loaded groups. The osteoblasts were well attached and spread on all xenograft groups. However, a higher number of cells were observed with hyaluronate functionalized xenograft (76.27 ± 15.11, (p < .0001) in live cell image analysis and they migrated towards the graft boundaries. The biofunctionalization of xenografts with hyaluronate improves their in vitro performance on human osteoblasts. This suggests that hyaluronate might be able to improve the bone regeneration when using such xenografts.
Collapse
Affiliation(s)
- Syed Saad Bin Qasim
- Department of Bioclinical Sciences, College of Dentistry, Kuwait University, Safat, Kuwait
| | - Branko Trajkovski
- Faculty of Dentistry, College of Dentistry, Kuwait University, Safat, Kuwait
| | | |
Collapse
|
11
|
Jo HM, Jang K, Shim KM, Bae C, Park JB, Kang SS, Kim SE. Application of modified porcine xenograft by collagen coating in the veterinary field: pre-clinical and clinical evaluations. Front Vet Sci 2024; 11:1373099. [PMID: 38566748 PMCID: PMC10985340 DOI: 10.3389/fvets.2024.1373099] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/19/2024] [Accepted: 03/04/2024] [Indexed: 04/04/2024] Open
Abstract
Introduction This study aimed to identify a collagen-coating method that does not affect the physicochemical properties of bone graft material. Based on this, we developed a collagen-coated porcine xenograft and applied it to dogs to validate its effectiveness. Methods Xenografts and collagen were derived from porcine, and the collagen coating was performed through N-ethyl-N'-(3- (dimethylamino)propyl) carbodiimide/N-hydroxysuccinimide (EDC/NHS) activation. The physicochemical characteristics of the developed bone graft material were verified through field emission scanning electron microscope (FE-SEM), brunauer emmett teller (BET), attenuated total reflectance-fourier transform infrared (ATR-FTIR), and water absorption test. Subsequently, the biocompatibility and bone healing effects were assessed using a rat calvarial defect model. Results The physicochemical test results confirmed that collagen coating increased bone graft materials' surface roughness and fluid absorption but did not affect their porous structure. In vivo evaluations revealed that collagen coating had no adverse impact on the bone healing effect of bone graft materials. After confirming the biocompatibility and effectiveness, we applied the bone graft materials in two orthopedic cases and one dental case. Notably, successful fracture healing was observed in both orthopedic cases. In the dental case, successful bone regeneration was achieved without any loss of alveolar bone. Discussion This study demonstrated that porcine bone graft material promotes bone healing in dogs with its hemostatic and cohesive effects resulting from the collagen coating. Bone graft materials with enhanced biocompatibility through collagen coating are expected to be widely used in veterinary clinical practice.
Collapse
Affiliation(s)
- Hyun Min Jo
- Department of Veterinary Surgery, College of Veterinary Medicine and BK21 Plus Project Team, Chonnam National University, Gwangju, Republic of Korea
- Biomaterial R&BD Center, Chonnam National University, Gwangju, Republic of Korea
| | - Kwangsik Jang
- Department of Veterinary Surgery, College of Veterinary Medicine and BK21 Plus Project Team, Chonnam National University, Gwangju, Republic of Korea
- Biomaterial R&BD Center, Chonnam National University, Gwangju, Republic of Korea
| | - Kyung Mi Shim
- Department of Veterinary Surgery, College of Veterinary Medicine and BK21 Plus Project Team, Chonnam National University, Gwangju, Republic of Korea
- Biomaterial R&BD Center, Chonnam National University, Gwangju, Republic of Korea
| | - Chunsik Bae
- Department of Veterinary Surgery, College of Veterinary Medicine and BK21 Plus Project Team, Chonnam National University, Gwangju, Republic of Korea
- Biomaterial R&BD Center, Chonnam National University, Gwangju, Republic of Korea
| | | | - Seong Soo Kang
- Department of Veterinary Surgery, College of Veterinary Medicine and BK21 Plus Project Team, Chonnam National University, Gwangju, Republic of Korea
- Biomaterial R&BD Center, Chonnam National University, Gwangju, Republic of Korea
| | - Se Eun Kim
- Department of Veterinary Surgery, College of Veterinary Medicine and BK21 Plus Project Team, Chonnam National University, Gwangju, Republic of Korea
- Biomaterial R&BD Center, Chonnam National University, Gwangju, Republic of Korea
| |
Collapse
|
12
|
Choi JW, Hwang SS, Yun PY, Kim YK. Horizontal ridge augmentation with porcine bone-derived grafting material: a long-term retrospective clinical study with more than 5 years of follow-up. J Korean Assoc Oral Maxillofac Surg 2023; 49:324-331. [PMID: 38155085 PMCID: PMC10761318 DOI: 10.5125/jkaoms.2023.49.6.324] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/10/2023] [Revised: 11/09/2023] [Accepted: 11/15/2023] [Indexed: 12/30/2023] Open
Abstract
Objectives The purpose of this study was to evaluate the outcomes of implants placed in horizontally augmented alveolar ridges using porcine bone grafts and to investigate the long-term stability of the porcine bone grafts. Materials and Methods A retrospective analysis was conducted on 49 sites that underwent horizontal ridge augmentation using porcine bone grafts and implant placement with a follow-up period longer than 5 years. Furthermore, additional analysis was conducted on 24 sites where porcine bone grafts were used exclusively for horizontal ridge augmentation and implant placement. Results The mean follow-up period after prosthesis loading was 67.5 months, with a mean marginal bone loss of 0.23 mm at 1 year and a cumulative mean marginal bone loss of 0.40 mm over the entire follow-up period. Of the 49 implants, 2 were lost and 3 did not meet the success criteria, resulting in a survival rate of 95.9% and a success rate of 89.8%. In 24 sites, the mean marginal bone loss was 0.23 mm at 1 year and 0.41 mm at 65.8 months, with 100% survival and success rates. Conclusion Porcine bone grafts can be successfully used in horizontal ridge augmentation for implant placement in cases of ridges with insufficient horizontal width.
Collapse
Affiliation(s)
- Jin-Won Choi
- Department of Oral and Maxillofacial Surgery, Section of Dentistry, Seoul National University Bundang Hospital, Seongnam, Korea
| | - Soo-Shin Hwang
- Department of Oral and Maxillofacial Surgery, Section of Dentistry, Seoul National University Bundang Hospital, Seongnam, Korea
| | - Pil-Young Yun
- Department of Oral and Maxillofacial Surgery, Section of Dentistry, Seoul National University Bundang Hospital, Seongnam, Korea
- Department of Dentistry and Dental Research Institute, School of Dentistry, Seoul National University, Seoul, Korea
| | - Young-Kyun Kim
- Department of Oral and Maxillofacial Surgery, Section of Dentistry, Seoul National University Bundang Hospital, Seongnam, Korea
| |
Collapse
|
13
|
Lee JH, Han JH, Jeong SN. Porcine-derived soft block bone substitutes for the treatment of severe class II furcation-involved mandibular molars: a prospective controlled follow-up study. J Periodontal Implant Sci 2023; 53:406-416. [PMID: 37154106 PMCID: PMC10761284 DOI: 10.5051/jpis.2203660183] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/29/2022] [Revised: 12/16/2022] [Accepted: 02/08/2023] [Indexed: 05/10/2023] Open
Abstract
PURPOSE No evidence exists regarding the advantages of periodontal regeneration treatment for furcation defects using soft block bone substitutes. Therefore, this randomized controlled trial aimed to assess the clinical and radiographic outcomes of regenerative therapy using porcine-derived soft block bone substitutes (DPBM-C, test group) compared with porcine-derived particulate bone substitutes (DPBM, control group) for the treatment of severe class II furcation defects in the mandibular molar regions. METHODS Thirty-five enrolled patients (test group, n=17; control group, n=18) were available for a 12-month follow-up assessment. Clinical (probing pocket depth [PPD] and clinical attachment level [CAL]) and radiographic (vertical furcation defect; VFD) parameters were evaluated at baseline and 6 and 12 months after regenerative treatment. Early postoperative discomfort (severity and duration of pain and swelling) and wound healing outcomes (dehiscence, suppuration, abscess formation, and swelling) were also assessed 2 weeks after surgery. RESULTS For both treatment modalities, significant improvements in PPD, CAL, and VFD were found in the test group (PPD reduction of 4.1±3.0 mm, CAL gain of 4.4±2.9 mm, and VFD reduction of 4.1±2.5 mm) and control group (PPD reduction of 2.7±2.0 mm, CAL gain of 2.0±2.8 mm, and VFD reduction of 2.4±2.5 mm) 12 months after the regenerative treatment of furcation defects (P<0.05). However, no statistically significant differences were found in any of the measured clinical and radiographic parameters, and no significant differences were observed in any early postoperative discomfort and wound healing outcomes between the 2 groups. CONCLUSIONS Similar to DPBM, DPBM-C showed favorable clinical and radiographic outcomes for periodontal regeneration of severe class II furcation defects in a 12-month follow-up period. TRIAL REGISTRATION Clinical Research Information Service Identifier: KCT0007305.
Collapse
Affiliation(s)
- Jae-Hong Lee
- Department of Periodontology, College of Dentistry and Institute of Oral Bioscience, Jeonbuk National University, Jeonju, Korea
- Research Institute of Clinical Medicine of Jeonbuk National University-Biomedical Research Institute of Jeonbuk National University Hospital, Jeonju, Korea.
| | - Ji-Hoo Han
- Department of Periodontology, Daejeon Dental Hospital, Institute of Wonkwang Dental Research, Wonkwang University College of Dentistry, Daejeon, Korea
| | - Seong-Nyum Jeong
- Department of Periodontology, Daejeon Dental Hospital, Institute of Wonkwang Dental Research, Wonkwang University College of Dentistry, Daejeon, Korea
| |
Collapse
|
14
|
Krennmair S, Postl L, Schwarze UY, Malek M, Stimmelmayr M, Krennmair G. Clinical, radiographic, and histological/histomorphometric analysis of maxillary sinus grafting with deproteinized porcine or bovine bone mineral: A randomized clinical trial. Clin Oral Implants Res 2023; 34:1230-1247. [PMID: 37610063 DOI: 10.1111/clr.14164] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/25/2022] [Revised: 07/18/2023] [Accepted: 07/25/2023] [Indexed: 08/24/2023]
Abstract
OBJECTIVE The present study aimed to compare histomorphometrically evaluated new bone formation, radiographically measured graft stability, and clinical implant outcome between maxillary sinus grafting with either deproteinized porcine bone mineral (DPBM) or deproteinized bovine bone mineral (DBBM). MATERIALS AND METHODS Thirty maxillary sinuses were initially included and randomly assigned to the test group (TG; DPBM, n = 15) or control group (CG; DBBM, n = 15). After a healing period (6 months), axially retrieved bone biopsies of the molar region were used for histological/histomorphometric analysis of new bone formations. Additionally, radiographically measured graft stability and clinical implant outcome were assessed. RESULTS Twenty-three sinus sites with 10 sinuses of the TG and 13 of the CG were ultimately available for data and statistical analysis. In the TG, a slightly, but yet significantly (p = .040) higher proportion of new bone formation (TG: 27.7 ± 5.6% vs. CG: 22.9 ± 5.1%) and a lesser (p = .019) amount of connective (non-mineralized) tissue (TG: 47.5 ± 9.5% vs. CG: 56.1 ± 9.5%) was found than in the CG. However, both xenografts showed comparable (n.s.) residual bone graft (TG: 23.7 ± 7.2% vs. CG: 21.1 ± 9.85.6%), bone-to-graft contacts (TG: 26.2 ± 9.8% vs. CG: 30.8 ± 13.8%), similar graft height reduction over time (TG: 12.9 ± 6.7% CG: 12.4 ± 5.8%) and implant survival/success rate (100%). At the 3-year post-loading evaluation, the peri-implant marginal bone loss (TG: 0.52 ± 0.19 mm; CG: 0.48 ± 0.15 mm) and the peri-implant health conditions (TG: 87.5%/CG: 81.2%) did not differ between implants inserted in both xenografts used. CONCLUSIONS The use of DPBM or DBBM for maxillary sinus augmentation is associated with comparable bone formation providing stable graft dimension combined with healthy peri-implant conditions.
Collapse
Affiliation(s)
- Stefan Krennmair
- Department of Oral and Maxillofacial Surgery, Keplerklinikum Linz, Johannes Kepler University (JKU) Linz, Linz, Austria
- NumBiolab Research Associate, Ludwig-Maximilian University (LMU), Munich, Germany
| | - Lukas Postl
- Department of Oral and Maxillofacial Surgery, Keplerklinikum Linz, Johannes Kepler University (JKU) Linz, Linz, Austria
- NumBiolab Research Associate, Ludwig-Maximilian University (LMU), Munich, Germany
| | - Uwe Yacine Schwarze
- Division of Oral Surgery and Orthodontics and Musculo-Skeletal Research Unit for Biomaterials, Medical University Graz, Graz, Austria
| | - Michael Malek
- Department of Oral and Maxillofacial Surgery, Keplerklinikum Linz, Johannes Kepler University (JKU) Linz, Linz, Austria
| | - Michael Stimmelmayr
- Department of Prosthodontics, Ludwig-Maximilian University (LMU), Munich, Germany
| | - Gerald Krennmair
- Department of Prosthodontics, Dental School, Sigmund Freud Medical University of Vienna, Vienna, Austria
| |
Collapse
|
15
|
Roldan L, Isaza C, Ospina J, Montoya C, Domínguez J, Orrego S, Correa S. A Comparative Study of HA/DBM Compounds Derived from Bovine and Porcine for Bone Regeneration. J Funct Biomater 2023; 14:439. [PMID: 37754853 PMCID: PMC10532284 DOI: 10.3390/jfb14090439] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/12/2023] [Revised: 07/25/2023] [Accepted: 08/17/2023] [Indexed: 09/28/2023] Open
Abstract
This comparative study investigated the tissue regeneration and inflammatory response induced by xenografts comprised of hydroxyapatite (HA) and demineralized bone matrix (DBM) extracted from porcine (P) and bovine (B) sources. First, extraction of HA and DBM was independently conducted, followed by chemical and morphological characterization. Second, mixtures of HA/DBM were prepared in 50/50 and 60/40 concentrations, and the chemical, morphological, and mechanical properties were evaluated. A rat calvarial defect model was used to evaluate the tissue regeneration and inflammatory responses at 3 and 6 months. The commercial allograft DBM Puros® was used as a clinical reference. Different variables related to tissue regeneration were evaluated, including tissue thickness regeneration (%), amount of regenerated bone area (%), and amount of regenerated collagen area (%). The inflammatory response was evaluated by quantifying the blood vessel area. Overall, tissue regeneration from porcine grafts was superior to bovine. After 3 months of implantation, the tissue thickness regeneration in the 50/50P compound and the commercial DBM was significantly higher (~99%) than in the bovine materials (~23%). The 50/50P and DBM produced higher tissue regeneration than the naturally healed controls. Similar trends were observed for the regenerated bone and collagen areas. The blood vessel area was correlated with tissue regeneration in the first 3 months of evaluation. After 6 months of implantation, HA/DBM compounds showed less regenerated collagen than the DBM-only xenografts. In addition, all animal-derived xenografts improved tissue regeneration compared with the naturally healed defects. No clinical complications associated with any implanted compound were noted.
Collapse
Affiliation(s)
- Lina Roldan
- Grupo de Investigación en Bioingeniería (GIB), Universidad EAFIT, Medellín 050022, Colombia; (L.R.); (C.I.)
- Department of Oral Health Sciences, Kornberg School of Dentistry, Temple University, Philadelphia, PA 19122, USA; (C.M.); (S.O.)
| | - Catalina Isaza
- Grupo de Investigación en Bioingeniería (GIB), Universidad EAFIT, Medellín 050022, Colombia; (L.R.); (C.I.)
| | - Juan Ospina
- Centro de Investigación y Desarrollo Cárnico, Industrias de Alimentos Zenú S.A.S., Grupo Nutresa, Medellín 050044, Colombia;
| | - Carolina Montoya
- Department of Oral Health Sciences, Kornberg School of Dentistry, Temple University, Philadelphia, PA 19122, USA; (C.M.); (S.O.)
| | - José Domínguez
- Grupo de Investigación en Bioingeniería (GIB), Universidad EAFIT, Medellín 050022, Colombia; (L.R.); (C.I.)
| | - Santiago Orrego
- Department of Oral Health Sciences, Kornberg School of Dentistry, Temple University, Philadelphia, PA 19122, USA; (C.M.); (S.O.)
- Bioengineering Department, College of Engineering, Temple University, Philadelphia, PA 191122, USA
| | - Santiago Correa
- Grupo de Investigación en Bioingeniería (GIB), Universidad EAFIT, Medellín 050022, Colombia; (L.R.); (C.I.)
- Escuela de Ciencias Aplicadas e Ingeniería, Universidad EAFIT, Medellín 050022, Colombia
| |
Collapse
|
16
|
Ekhlasmand kermani M, Kheiri A, Amid R, Torshabi M, Houshmand B, Parsayan S. Sterility and bioactivity evaluation of two types of bone graft substitutes after removing the original packaging. JOURNAL OF ADVANCED PERIODONTOLOGY & IMPLANT DENTISTRY 2023; 15:15-21. [PMID: 37645549 PMCID: PMC10460786 DOI: 10.34172/japid.2023.007] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Received: 09/26/2022] [Accepted: 01/30/2023] [Indexed: 08/31/2023]
Abstract
Background Xenograft and allograft bone substitutes are widely used to replace the missing bone in defects. Since removing the packaging of these grafts can nullify their sterilization, this study aimed to evaluate the sterility and bioactivity changes of an allograft and a xenograft following uncapping/recap. Methods Two types of commercial allograft and xenograft vials were unpacked and further exposed to operating room air, where implant surgery was performed for one second, ten minutes, and one hour. After three repetitions, samples were analyzed using microbiological tests and scanning electron microscopy (SEM) with energy dispersive x-ray analysis (EDX) for sterility and bioactivity evaluation. Results None of the bone graft samples showed microbial growth or bioactivity-negative changes after seven days of unpacking the vials. Conclusion Despite the positive results of this study, future studies and more analysis considering influential factors are required. Also, disinfection and air exchange must still be observed during biomaterial application and bone grafting procedures.
Collapse
Affiliation(s)
- Mehdi Ekhlasmand kermani
- Department of Periodontics, School of Dentistry, Kerman University of Medical Sciences, Kerman, Iran
| | - Aida Kheiri
- Department of Periodontics, School of Dentistry, Shahid Beheshti University of Medical Sciences, Tehran, Iran
| | - Reza Amid
- Department of Periodontics, School of Dentistry, Shahid Beheshti University of Medical Sciences, Tehran, Iran
- Dental Research Center, Research Institute of Dental Sciences, School of Dentistry, Shahid Beheshti University of Medical Sciences, Tehran, Iran
| | - Maryam Torshabi
- Department of Dental Biomaterials, School of Dentistry, Shahid Beheshti University of Medical Sciences, Tehran, Iran
| | - Behzad Houshmand
- Department of Periodontics, School of Dentistry, Shahid Beheshti University of Medical Sciences, Tehran, Iran
| | - Sepideh Parsayan
- Dental Student, School of Dentistry, Shahid Beheshti University of Medical Sciences, Tehran, Iran
| |
Collapse
|
17
|
Recent Clinical Treatment and Basic Research on the Alveolar Bone. Biomedicines 2023; 11:biomedicines11030843. [PMID: 36979821 PMCID: PMC10044990 DOI: 10.3390/biomedicines11030843] [Citation(s) in RCA: 4] [Impact Index Per Article: 4.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/19/2023] [Revised: 03/07/2023] [Accepted: 03/07/2023] [Indexed: 03/12/2023] Open
Abstract
The periodontal ligament is located between the bone (alveolar bone) and the cementum of the tooth, and it is connected by tough fibers called Sharpey’s fibers. To maintain healthy teeth, the foundation supporting the teeth must be healthy. Periodontal diseases, also known as tooth loss, cause the alveolar bone to dissolve. The alveolar bone, similar to the bones in other body parts, is repeatedly resorbed by osteoclasts and renewed by osteogenic cells. This means that an old bone is constantly being resorbed and replaced by a new bone. In periodontal diseases, the alveolar bone around the teeth is absorbed, and as the disease progresses, the alveolar bone shrinks gradually. In most cases, the resorbed alveolar bone does not return to its original form even after periodontal disease is cured. Gum covers the tooth surface so that it matches the shape of the resorbed alveolar bone, exposing more of the tooth surface than before, making the teeth look longer, leaving gaps between the teeth, and in some cases causing teeth to sting. Previously, the only treatment for periodontal diseases was to stop the disease from progressing further before the teeth fell out, and restoration to the original condition was almost impossible. However, a treatment method that can help in the regeneration of the supporting tissues of the teeth destroyed by periodontal diseases and the restoration of the teeth to their original healthy state as much as possible is introduced. Recently, with improvements in implant material properties, implant therapy has become an indispensable treatment method in dentistry and an important prosthetic option. Treatment methods and techniques, which are mainly based on experience, have gradually accumulated scientific evidence, and the number of indications for treatment has increased. The development of bone augmentation methods has contributed remarkably to the expansion of indications, and this has been made possible by various advances in materials science. The induced pluripotent stem cell (iPS) cell technology for regenerating periodontal tissues, including alveolar bone, is expected to be applied in the treatment of diseases, such as tooth loss and periodontitis. This review focuses on the alveolar bone and describes clinical practice, techniques, and the latest basic research.
Collapse
|
18
|
Hwang SH, Moon K, Du W, Cho WT, Huh JB, Bae EB. Effect of Porcine- and Bovine-Derived Xenografts with Hydroxypropyl Methylcellulose for Bone Formation in Rabbit Calvaria Defects. MATERIALS (BASEL, SWITZERLAND) 2023; 16:1850. [PMID: 36902966 PMCID: PMC10004720 DOI: 10.3390/ma16051850] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Figures] [Subscribe] [Scholar Register] [Received: 12/23/2022] [Revised: 02/20/2023] [Accepted: 02/21/2023] [Indexed: 06/18/2023]
Abstract
In this study, hydroxypropyl methylcellulose (HPMC) was mixed with particle-type xenografts, derived from two different species (bovine and porcine), to increase the manipulability of bone grafts and compare the bone regeneration ability. Four circular defects with a diameter of 6 mm were formed on each rabbit calvaria, and the defects were randomly divided into three groups: no treatment (control group), HPMC-mixed bovine xenograft (Bo-Hy group), and HPMC-mixed porcine xenograft (Po-Hy group). At eight weeks, micro-computed tomography (µCT) scanning and histomorphometric analyses were performed to evaluate new bone formation within the defects. The results revealed that the defects treated with the Bo-Hy and the Po-Hy showed higher bone regeneration than the control group (p < 0.05), while there was no significant difference between the two xenograft groups (p > 0.05). Within the limitations of the present study, there was no difference in new bone formation between porcine and bovine xenografts with HPMC, and bone graft material was easily moldable with the desired shape during surgery. Therefore, the moldable porcine-derived xenograft with HPMC used in this study could be a promising substitute for the currently used bone grafts as it exhibits good bone regeneration ability for bony defects.
Collapse
Affiliation(s)
- Su-Hyun Hwang
- Department of Prosthodontics, Dental Research Institute, Dental and Life Sciences Institute, Education and Research Team for Life Science on Dentistry, School of Dentistry, Pusan National University, Yangsan 50612, Republic of Korea
| | - Keumok Moon
- Department of Integrated Biological Science, Pusan National University, Busan 46241, Republic of Korea
| | - Wen Du
- State Key Laboratory of Oral Diseases, & National Clinical Research Center for Oral Diseases, Department of Prosthodontics, West China Hospital of Stomatology, Sichuan University, Chengdu 610093, China
- The Shapiro Family Laboratory of Viral Oncology and Aging Research, Section of Restorative Dentistry, UCLA School of Dentistry, Los Angeles, CA 90095, USA
| | - Won-Tak Cho
- Department of Prosthodontics, Dental Research Institute, Dental and Life Sciences Institute, Education and Research Team for Life Science on Dentistry, School of Dentistry, Pusan National University, Yangsan 50612, Republic of Korea
| | - Jung-Bo Huh
- Department of Prosthodontics, Dental Research Institute, Dental and Life Sciences Institute, Education and Research Team for Life Science on Dentistry, School of Dentistry, Pusan National University, Yangsan 50612, Republic of Korea
| | - Eun-Bin Bae
- Department of Prosthodontics, Dental Research Institute, Dental and Life Sciences Institute, Education and Research Team for Life Science on Dentistry, School of Dentistry, Pusan National University, Yangsan 50612, Republic of Korea
- The Shapiro Family Laboratory of Viral Oncology and Aging Research, Section of Restorative Dentistry, UCLA School of Dentistry, Los Angeles, CA 90095, USA
| |
Collapse
|
19
|
Esfahanian V, Ejeian F, Mohebinia H, Zojaji Nejad ZS, Yazdchi M, Ebrahimi Dastgerdi M, Ebrahimi Dastgerdi M, Nasr-Esfahani MH. Cellular Behaviors of Periodontal Ligament Stem Cells in the Presence of Bone Grafting Biomaterials, In-Vitro Study. LIFE (BASEL, SWITZERLAND) 2022; 13:life13010089. [PMID: 36676038 PMCID: PMC9862872 DOI: 10.3390/life13010089] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Subscribe] [Scholar Register] [Received: 11/14/2022] [Revised: 12/21/2022] [Accepted: 12/23/2022] [Indexed: 12/29/2022]
Abstract
Periodontal regeneration through the employment of bone substitutes has become a feasible strategy in animal and clinical studies. In this regard, we aimed to compare the periodontal ligament stem cell behavior in the vicinity of various bone grafting substitutes. Three types of popular bone substitutes, including allografts (Regen), xenografts (Cerabone), and alloplasts (Osteon) were studied in this experimental survey. The cellular attachment was assessed after four hours using the MTS assay and SEM imaging. In addition, cellular proliferation was investigated after 1, 3, 5, and 7 days through MTS assay. Osteogenesis was studied after 21 days of cell culture in a differentiation medium (DM+) and a normal medium (DM-), by employing real-time PCR and alizarin red staining. The highest cellular attachment was seen in the xenograft group with a significant difference in comparison to the other grafting materials. Despite the relatively low primary attachment of cells to allografts, the allograft group showed the highest total proliferation rate, while the lowest proliferation capacity was found in the alloplast group. Osteogenesis fount to be accelerated mostly by xenografts in both mediums (DM+ and DM-) after 3 weeks, while alloplasts showed the lowest osteogenesis. This study revealed that the type of bone substitutes used in regenerative treatments can affect cellular behavior and as a whole allografts and xenografts showed better results.
Collapse
Affiliation(s)
- Vahid Esfahanian
- Department of Periodontic, School of Dentistry, Isfahan (Khorasgan) Branch, Islamic Azad University, Isfahan 8155139998, Iran
| | - Fatemeh Ejeian
- Department of Animal Biotechnology, Cell Science Research Center, Royan Institute for Biotechnology, ACECR, Isfahan 8159358686, Iran
- Correspondence: (F.E.); (M.E.D.); Tel.: +98-31-95015680 (F.E.); Fax: +98-31-95015687 (F.E.)
| | - Hajar Mohebinia
- Department of Periodontics, Isfahan (Khorasgan) Branch, Islamic Azad University, Isfahan 8155139998, Iran
| | - Zahra Sadat Zojaji Nejad
- Department of Periodontics, Isfahan (Khorasgan) Branch, Islamic Azad University, Isfahan 8155139998, Iran
| | - Maryam Yazdchi
- Department of Animal Biotechnology, Cell Science Research Center, Royan Institute for Biotechnology, ACECR, Isfahan 8159358686, Iran
| | | | - Mehrnoush Ebrahimi Dastgerdi
- Department of Periodontics, Isfahan (Khorasgan) Branch, Islamic Azad University, Isfahan 8155139998, Iran
- Correspondence: (F.E.); (M.E.D.); Tel.: +98-31-95015680 (F.E.); Fax: +98-31-95015687 (F.E.)
| | - Mohammad Hossein Nasr-Esfahani
- Department of Animal Biotechnology, Cell Science Research Center, Royan Institute for Biotechnology, ACECR, Isfahan 8159358686, Iran
| |
Collapse
|
20
|
Osseointegration Levels of Implants Placed With Allogenic and Xenogenic Bone Ring: An Experimental Biomechanical Analysis. J Craniofac Surg 2022; 34:926-930. [PMID: 36730628 DOI: 10.1097/scs.0000000000009130] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/06/2022] [Accepted: 09/14/2022] [Indexed: 02/04/2023] Open
Abstract
This in vivo study aimed to do a biomechanical analysis of the early period bone-implant connection of titanium implants simultaneously inserted with xsenogenic and allogenic bone ring. In this study, 28 Sprague Dawley female rats were used. Four rats were killed to obtain an allogenic bone ring, and after this, the remaining rats were divided into control (n=8), xsenogenic (n=8), and allogenic (n=8) bone ring groups. Titanium-machined surfaced implants were integrated right tibias of the rats. In controls, only implants were integrated into right tibias. In the greft groups, the implants were integrated simultaneously with bone rings. After 2 weeks of the experimental period, the rats were killed ,and titanium implants and surrounding bone tissues were removed for biomechanic analysis. After biomechanical reverse torque analysis bone-implant connection was determined as Newton/cm2; in controls 3.26 (1.2 to 4.5), in allogenic ring group 3.37 (2 to 4.4), in xsenogenic ring group 5.93 (2.8 to 10). Statistically significant differences were not detected between the groups (P>0.05). Within the limitation of this study, both allogenic and xsenogenic bone grafts could be successfully used in bone augmentation in implant surgery.
Collapse
|
21
|
Abstract
As a widespread chronical disease, periodontitis progressively destroys tooth-supporting structures (periodontium) and eventually leads to tooth loss. Therefore, regeneration of damaged/lost periodontal tissues has been a major subject in periodontal research. During periodontal tissue regeneration, biomaterials play pivotal roles in improving the outcome of the periodontal therapy. With the advancement of biomaterial science and engineering in recent years, new biomimetic materials and scaffolding fabrication technologies have been proposed for periodontal tissue regeneration. This article summarizes recent progress in periodontal tissue regeneration from a biomaterial perspective. First, various guide tissue regeneration/guide bone regeneration membranes and grafting biomaterials for periodontal tissue regeneration are overviewed. Next, the recent development of multifunctional scaffolding biomaterials for alveolar bone/periodontal ligament/cementum regeneration is summarized. Finally, clinical care points and perspectives on the use of biomimetic scaffolding materials to reconstruct the hierarchical periodontal tissues are provided.
Collapse
Affiliation(s)
- Yuejia Deng
- Department of Biomedical Sciences, Texas A&M University College of Dentistry, 3302 Gaston Avenue, Dallas, TX 75246, USA
| | - Yongxi Liang
- Department of Biomedical Sciences, Texas A&M University College of Dentistry, 3302 Gaston Avenue, Dallas, TX 75246, USA
| | - Xiaohua Liu
- Department of Biomedical Sciences, Texas A&M University College of Dentistry, 3302 Gaston Avenue, Dallas, TX 75246, USA.
| |
Collapse
|
22
|
Valencia-Llano CH, Castro JI, Saavedra M, Zapata PA, Navia-Porras DP, Flórez-López E, Caicedo C, Calambas HL, Grande-Tovar CD. Histological Evaluation of Cassava Starch/Chicken Gelatin Membranes. Polymers (Basel) 2022; 14:polym14183849. [PMID: 36145994 PMCID: PMC9506157 DOI: 10.3390/polym14183849] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/17/2022] [Revised: 09/06/2022] [Accepted: 09/09/2022] [Indexed: 11/17/2022] Open
Abstract
The use of biopolymers for tissue engineering has recently gained attention due to the need for safer and highly compatible materials. Starch is one of the most used biopolymers for membrane preparation. However, incorporating other polymers into starch membranes introduces improvements, such as better thermal and mechanical resistance and increased water affinity, as we reported in our previous work. There are few reports in the literature on the biocompatibility of starch/chicken gelatin composites. We assessed the in vivo biocompatibility of the five composites (T1–T5) cassava starch/gelatin membranes with subdermal implantations in biomodels at 30, 60, and 90 days. The FT-IR spectroscopy analysis demonstrated the main functional groups for starch and chicken gelatin. At the same time, the thermal study exhibited an increase in thermal resistance for T3 and T4, with a remaining mass (~15 wt.%) at 800 °C. The microstructure analysis for the T2–T4 demonstrated evident roughness changes with porosity presence due to starch and gelatin mixture. The decrease in the starch content in the composites also decreased the gelatinization heats for T3 and T4 (195.67, 196.40 J/g, respectively). Finally, the implantation results demonstrated that the formulations exhibited differences in the degradation and resorption capacities according to the starch content, which is easily degraded by amylases. However, the histological results showed that the samples demonstrated almost complete reabsorption without a severe immune response, indicating a high in vivo biocompatibility. These results show that the cassava starch/chicken gelatin composites are promising membrane materials for tissue engineering applications.
Collapse
Affiliation(s)
- Carlos Humberto Valencia-Llano
- Research Group in Biomateriales Dentales, School of Odontología, Faculty of Health, Campus San Fernando, Universidad del Valle, Calle 4B # 36-00, Cali 76001, Colombia
| | - Jorge Iván Castro
- Research Group SIMERQO, Department of Chemistry, Faculty of Natural and Exact Sciences, Campus Melendez, Universidad del Valle, Calle 13 No. 100-00, Santiago de Cali 76001, Colombia
| | - Marcela Saavedra
- Research Group of Polímeros, Department of Chemistry, Faculty de Chemistry and Biology, Universidad de Santiago de Chile, USACH, Santiago 9170020, Chile
| | - Paula A. Zapata
- Research Group of Polímeros, Department of Chemistry, Faculty de Chemistry and Biology, Universidad de Santiago de Chile, USACH, Santiago 9170020, Chile
| | - Diana Paola Navia-Porras
- Research Group Biotecnología, Faculty of Engineering, Universidad de San Buenaventura Cali, Carrera 122 # 6-65, Santiago de Cali 76001, Colombia
| | - Edwin Flórez-López
- Research Group in Química y Biotecnología QUIBIO, Universidad Santiago de Cali, Calle 5 No 62-00, Cali 760035, Colombia
| | - Carolina Caicedo
- Research Group GIGAE3D, Faculty of Engineering, Unidad Central del Valle del Cauca (UCEVA), Carrera 17ª 48-144, Tuluá 763022, Colombia
| | - Heidy Lorena Calambas
- Research Group in Desarrollo de Materiales y Productos, Centro Nacional de Asistencia Técnica a la Industria (ASTIN), SENA, Cali 760003, Colombia
| | - Carlos David Grande-Tovar
- Research Group of Fotoquímica y Fotobiología, Universidad del Atlántico, Carrera 30 Número 8-49, Puerto Colombia 081008, Colombia
- Correspondence: ; Tel.: +57-5-3599-484
| |
Collapse
|
23
|
Valencia-Llano CH, López-Tenorio D, Saavedra M, Zapata PA, Grande-Tovar CD. Comparison of Two Bovine Commercial Xenografts in the Regeneration of Critical Cranial Defects. Molecules 2022; 27:5745. [PMID: 36144483 PMCID: PMC9506155 DOI: 10.3390/molecules27185745] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/01/2022] [Revised: 08/20/2022] [Accepted: 08/25/2022] [Indexed: 11/16/2022] Open
Abstract
Autologous bone is the gold standard in regeneration processes. However, there is an endless search for alternative materials in bone regeneration. Xenografts can act as bone substitutes given the difficulty of obtaining bone tissue from patients and before the limitations in the availability of homologous tissue donors. Bone neoformation was studied in critical-size defects created in the parietal bone of 40 adult male Wistar rats, implanted with xenografts composed of particulate bovine hydroxyapatite (HA) and with blocks of bovine hydroxyapatite (HA) and Collagen, which introduces crystallinity to the materials. The Fourier-transform infrared spectroscopy (FTIR) analysis demonstrated the carbonate and phosphate groups of the hydroxyapatite and the amide groups of the collagen structure, while the thermal transitions for HA and HA/collagen composites established mainly dehydration endothermal processes, which increased (from 79 °C to 83 °C) for F2 due to the collagen presence. The xenograft's X-ray powder diffraction (XRD) analysis also revealed the bovine HA crystalline structure, with a prominent peak centered at 32°. We observed macroporosity and mesoporosity in the xenografts from the morphology studies with heterogeneous distribution. The two xenografts induced neoformation in defects of critical size. Histological, histochemical, and scanning electron microscopy (SEM) analyses were performed 30, 60, and 90 days after implantation. The empty defects showed signs of neoformation lower than 30% in the three periods, while the defects implanted with the material showed partial regeneration. InterOss Collagen material temporarily induced osteon formation during the healing process. The results presented here are promising for bone regeneration, demonstrating a beneficial impact in the biomedical field.
Collapse
Affiliation(s)
| | - Diego López-Tenorio
- Grupo Biomateriales Dentales, Escuela de Odontología, Universidad del Valle, Calle 4B # 36-00, Cali 76001, Colombia
| | - Marcela Saavedra
- Grupo de Polímeros, Facultad de Química y Biología, Universidad de Santiago de Chile (USACH), Santiago 9170020, Chile
| | - Paula A. Zapata
- Grupo de Polímeros, Facultad de Química y Biología, Universidad de Santiago de Chile (USACH), Santiago 9170020, Chile
| | - Carlos David Grande-Tovar
- Grupo de Investigación de Fotoquímica y Fotobiología, Universidad del Atlántico, Carrera 30 Número 8-49, Puerto Colombia 081008, Colombia
| |
Collapse
|
24
|
Kim DH, Bae J, Heo JH, Park CH, Kim EB, Lee JH. Nanoparticles as Next-Generation Tooth-Whitening Agents: Progress and Perspectives. ACS NANO 2022; 16:10042-10065. [PMID: 35704786 DOI: 10.1021/acsnano.2c01412] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 06/15/2023]
Abstract
Whitening agents, such as hydrogen peroxide and carbamide peroxide, are currently used in clinical applications for dental esthetic and dental care. However, the free radicals generated by whitening agents cause pathological damage; therefore, their safety issues remain controversial. Furthermore, whitening agents are known to be unstable and short-lived. Since 2001, nanoparticles (NPs) have been researched for use in tooth whitening. Importantly, nanoparticles not only function as abrasives but also release reactive oxygen species and help remineralization. This review outlines the historical development of several NPs based on their whitening effects and side effects. NPs can be categorized into metals or metal oxides, ceramic particles, graphene oxide, and piezoelectric particles. Moreover, the status quo and future prospects are discussed, and recent progress in the development of NPs and their applications in various fields requiring tooth whitening is examined. This review promotes the research and development of next-generation NPs for use in tooth whitening.
Collapse
Affiliation(s)
- Dai-Hwan Kim
- School of Advanced Materials Science and Engineering, Sungkyunkwan University (SKKU), Suwon 16419, Republic of Korea
| | - Jina Bae
- School of Advanced Materials Science and Engineering, Sungkyunkwan University (SKKU), Suwon 16419, Republic of Korea
| | - Jun Hyuk Heo
- School of Advanced Materials Science and Engineering, Sungkyunkwan University (SKKU), Suwon 16419, Republic of Korea
- Advanced Materials Technology Research Center, Sungkyunkwan University (SKKU), Suwon 16419, Republic of Korea
| | - Cheol Hyun Park
- School of Advanced Materials Science and Engineering, Sungkyunkwan University (SKKU), Suwon 16419, Republic of Korea
| | - Eun Bi Kim
- School of Advanced Materials Science and Engineering, Sungkyunkwan University (SKKU), Suwon 16419, Republic of Korea
| | - Jung Heon Lee
- School of Advanced Materials Science and Engineering, Sungkyunkwan University (SKKU), Suwon 16419, Republic of Korea
- Advanced Materials Technology Research Center, Sungkyunkwan University (SKKU), Suwon 16419, Republic of Korea
- SKKU Advanced Institute of Nanotechnology (SAINT), Sungkyunkwan University (SKKU), Suwon 16419, Republic of Korea
- Biomedical Institute for Convergence at SKKU (BICS), Sungkyunkwan University (SKKU), Suwon 16419, Republic of Korea
| |
Collapse
|
25
|
Valencia-Llano CH, López-Tenorio D, Grande-Tovar CD. Biocompatibility Assessment of Two Commercial Bone Xenografts by In Vitro and In Vivo Methods. Polymers (Basel) 2022; 14:polym14132672. [PMID: 35808724 PMCID: PMC9268806 DOI: 10.3390/polym14132672] [Citation(s) in RCA: 2] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/13/2022] [Revised: 06/26/2022] [Accepted: 06/28/2022] [Indexed: 02/07/2023] Open
Abstract
Bone substitutes based on xenografts have been used for a long time in bone regeneration thanks to their inductive capacity for bone tissue regeneration. Some bone-based scaffolds have been modified by adding collagen and other proteins to improve their regenerative capacity and prevent migration and aggregation, especially particles. However, rejection of this graft has been reported due to protein residues caused by poor material preparation. We compared the in vitro and in vivo biological response of two commercial xenografts (InterOss®, F1 and InterOss® Collagen, F2) and a commercial porcine collagen membrane (InterCollagen® Guide, F3) as a rapid degradation control. Fourier Transform Infrared Spectroscopy (FT-IR) analysis evidenced the presence of hydroxyl, orthophosphate, and carbonate groups of the xenografts and amide groups of collagen. Thermogravimetric analysis (TGA) of the xenografts demonstrated their thermal stability and the presence of a few amounts of organic material. The study by differential scanning calorimetry showed the presence of endothermic peaks typical of the dehydration of the xenografts (F1 and F2) and for the collagen membrane (F3), the beginning of structural three-dimensional protein changes. Subsequently, in vitro biocompatibility tests were carried out for the materials with Artemia salina and MTT cell viability with HeLa cells, demonstrating the high biocompatibility of the materials. Finally, in vivo biocompatibility was studied by implanting xenografts in biomodels (Wistar rats) at different periods (30, 60, and 90 days). The F1 xenograft (InterOss) remained remarkably stable throughout the experiment (90 days). F2 (InterOss Collagen) presented a separation of its apatite and collagen components at 60 days and advanced resorption at 90 days of implantation. Finally, the collagen membrane (F3) presented faster resorption since, at 90 days, only some tiny fragments of the material were evident. All the in vivo and in vitro test results demonstrated the biocompatibility of the xenografts, demonstrating the potential of these materials for tissue engineering.
Collapse
Affiliation(s)
- Carlos Humberto Valencia-Llano
- Grupo Biomateriales Dentales, Escuela de Odontología, Universidad del Valle, Calle 4B # 36-00, Cali 76001, Colombia; (C.H.V.-L.); (D.L.-T.)
| | - Diego López-Tenorio
- Grupo Biomateriales Dentales, Escuela de Odontología, Universidad del Valle, Calle 4B # 36-00, Cali 76001, Colombia; (C.H.V.-L.); (D.L.-T.)
| | - Carlos David Grande-Tovar
- Grupo de Investigación de Fotoquímica y Fotobiología, Universidad del Atlántico, Carrera 30 Número 8-49, Puerto Colombia 081008, Colombia
- Correspondence: ; Tel.: +57-5-3599-484
| |
Collapse
|
26
|
Seo YH, Hwang SH, Kim YN, Kim HJ, Bae EB, Huh JB. Bone Reconstruction Using Two-Layer Porcine-Derived Bone Scaffold Composed of Cortical and Cancellous Bones in a Rabbit Calvarial Defect Model. Int J Mol Sci 2022; 23:ijms23052647. [PMID: 35269791 PMCID: PMC8910567 DOI: 10.3390/ijms23052647] [Citation(s) in RCA: 4] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/19/2022] [Revised: 02/12/2022] [Accepted: 02/21/2022] [Indexed: 12/04/2022] Open
Abstract
In this study, we aimed to investigate the bone regeneration efficiency of two-layer porcine-derived bone scaffolds composed of cancellous and cortical bones in a rabbit calvarial defect model. Four circular calvaria defects were formed on cranium of rabbit and were filled with block bone scaffolds of each group: cortical bone block (Cortical group), cancellous bone block (Cancellous group), and two-layer bone block (2layer group). After 8 weeks, new bones were primarily observed in cancellous parts of the Cancellous and 2layer groups, while the Cortical group exhibited few new bones. In the results of new bone volume and area analyses, the Cancellous group showed the highest value, followed by the 2layer group, and were significantly higher than the Cortical group. Within the limitations of this study, the cancellous and two-layer porcine-derived bone scaffolds showed satisfactory bone regeneration efficiency; further studies on regulating the ratio of cortical and cancellous bones in two-layer bones are needed.
Collapse
Affiliation(s)
- Yong-Ho Seo
- Department of Prosthodontics, Dental and Life Sciences Institute, Education and Research Team for Life Science on Dentistry, School of Dentistry, Pusan National University, Yangsan 50612, Korea; (Y.-H.S.); (S.-H.H.)
| | - Su-Hyun Hwang
- Department of Prosthodontics, Dental and Life Sciences Institute, Education and Research Team for Life Science on Dentistry, School of Dentistry, Pusan National University, Yangsan 50612, Korea; (Y.-H.S.); (S.-H.H.)
| | - Yu-Na Kim
- Department of Oral Physiology, Periodontal Diseases Signaling Network Research Center, Dental and Life Science Institute, School of Dentistry, Pusan National University, Yangsan 50612, Korea; (Y.-N.K.); (H.-J.K.)
| | - Hyung-Joon Kim
- Department of Oral Physiology, Periodontal Diseases Signaling Network Research Center, Dental and Life Science Institute, School of Dentistry, Pusan National University, Yangsan 50612, Korea; (Y.-N.K.); (H.-J.K.)
| | - Eun-Bin Bae
- Department of Prosthodontics, Dental and Life Sciences Institute, Education and Research Team for Life Science on Dentistry, School of Dentistry, Pusan National University, Yangsan 50612, Korea; (Y.-H.S.); (S.-H.H.)
- Section of Restorative Dentistry, University of California, Los Angeles, CA 90095, USA
- Correspondence: (E.-B.B.); (J.-B.H.); Tel.: +82-10-2355-6550 (E.-B.B.); +82-10-8007-9099 (J.-B.H.); Fax: +82-55-360-5134 (J.-B.H.)
| | - Jung-Bo Huh
- Department of Prosthodontics, Dental and Life Sciences Institute, Education and Research Team for Life Science on Dentistry, School of Dentistry, Pusan National University, Yangsan 50612, Korea; (Y.-H.S.); (S.-H.H.)
- Correspondence: (E.-B.B.); (J.-B.H.); Tel.: +82-10-2355-6550 (E.-B.B.); +82-10-8007-9099 (J.-B.H.); Fax: +82-55-360-5134 (J.-B.H.)
| |
Collapse
|
27
|
Galindo-Moreno P, Abril-García D, Carrillo-Galvez AB, Zurita F, Martín-Morales N, O'Valle F, Padial-Molina M. Maxillary sinus floor augmentation comparing bovine versus porcine bone xenografts mixed with autogenous bone graft. A split-mouth randomized controlled trial. Clin Oral Implants Res 2022; 33:524-536. [PMID: 35224778 PMCID: PMC9313845 DOI: 10.1111/clr.13912] [Citation(s) in RCA: 12] [Impact Index Per Article: 6.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/03/2021] [Revised: 01/29/2022] [Accepted: 02/16/2022] [Indexed: 11/30/2022]
Abstract
Aim To compare the effectiveness of two xenografts for maxillary sinus floor augmentation in terms of clinical, radiographical, histologic, and molecular outcomes. Materials and methods A split‐mouth randomized clinical trial was conducted at the University of Granada. Ten consecutive patients in need of bilateral two‐staged maxillary sinus floor augmentation were included. Each patient received both biomaterials (porcine bone mineral and anorganic bovine bone), which were randomly assigned for bilateral sinus augmentation. The maxillary autogenous bone scraped from the sinus access window was mixed with each xenograft at a 20:80 ratio. After a healing period of 6 months, bone biopsies were collected with a trephine during the implant placement in the regenerated area. Histologic, histomorphometrical, immunohistochemical, and molecular outcomes were analyzed. Clinical and radiographical data throughout the treatment phases were also evaluated. Results The resulting anatomic features were similar between both groups. After six months of graft consolidation, the graft resorption rates were similar between both biomaterials. The histologic, histomorphometrical, and immunohistochemical results showed no statistical differences between groups. Conclusion Anorganic bovine bone and porcine bone mineral combined with maxillary autogenous cortical bone show similar biologic and radiologic features in terms of biomaterial resorption, osteoconduction, and osteogenesis when used for maxillary sinus floor augmentation.
Collapse
Affiliation(s)
- Pablo Galindo-Moreno
- Department of Oral Surgery and Implant Dentistry, School of Dentistry, University of Granada, Granada, Spain
| | - Dario Abril-García
- Department of Oral Surgery and Implant Dentistry, School of Dentistry, University of Granada, Granada, Spain
| | - Ana Belen Carrillo-Galvez
- Department of Oral Surgery and Implant Dentistry, School of Dentistry, University of Granada, Granada, Spain
| | - Federico Zurita
- Department of Genetics, School of Sciences, University of Granada, Granada, Spain
| | - Natividad Martín-Morales
- Department of Oral Surgery and Implant Dentistry, School of Dentistry, University of Granada, Granada, Spain.,Department of Pathology, School of Medicine, University of Granada, Granada, Spain
| | - Francisco O'Valle
- Department of Pathology, School of Medicine, University of Granada, Granada, Spain.,Institute of Biopathology and Regenerative Medicine (IBIMER, CIBM), and Institute of Biosanitary (ibs-Granada), University of Granada, Granada, Spain
| | - Miguel Padial-Molina
- Department of Oral Surgery and Implant Dentistry, School of Dentistry, University of Granada, Granada, Spain
| |
Collapse
|
28
|
Kim C, Lee JW, Heo JH, Park C, Kim DH, Yi GS, Kang HC, Jung HS, Shin H, Lee JH. Natural bone-mimicking nanopore-incorporated hydroxyapatite scaffolds for enhanced bone tissue regeneration. Biomater Res 2022; 26:7. [PMID: 35216625 PMCID: PMC8876184 DOI: 10.1186/s40824-022-00253-x] [Citation(s) in RCA: 15] [Impact Index Per Article: 7.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/24/2021] [Accepted: 01/30/2022] [Indexed: 12/19/2022] Open
Abstract
Background A considerable number of studies has been carried out to develop alloplastic bone graft materials such as hydroxyapatite (HAP) that mimic the hierarchical structure of natural bones with multiple levels of pores: macro-, micro-, and nanopores. Although nanopores are known to play many essential roles in natural bones, only a few studies have focused on HAPs containing them; none of those studies investigated the functions of nanopores in biological systems. Method We developed a simple yet powerful method to introduce nanopores into alloplastic HAP bone graft materials in large quantities by simply pressing HAP nanoparticles and sintering them at a low temperature. Results The size of nanopores in HAP scaffolds can be controlled between 16.5 and 30.2 nm by changing the sintering temperature. When nanopores with a size of ~ 30.2 nm, similar to that of nanopores in natural bones, are introduced into HAP scaffolds, the mechanical strength and cell proliferation and differentiation rates are significantly increased. The developed HAP scaffolds containing nanopores (SNPs) are biocompatible, with negligible erythema and inflammatory reactions. In addition, they enhance the bone regeneration when are implanted into a rabbit model. Furthermore, the bone regeneration efficiency of the HAP-based SNP is better than that of a commercially available bone graft material. Conclusion Nanopores of HAP scaffolds are very important for improving the bone regeneration efficiency and may be one of the key factors to consider in designing highly efficient next-generation alloplastic bone graft materials. Supplementary Information The online version contains supplementary material available at 10.1186/s40824-022-00253-x.
Collapse
Affiliation(s)
- Chansong Kim
- School of Advanced Materials Science and Engineering, Sungkyunkwan University (SKKU), Suwon, 16419, Republic of Korea
| | - Jin Woong Lee
- School of Advanced Materials Science and Engineering, Sungkyunkwan University (SKKU), Suwon, 16419, Republic of Korea.,Research Center for Advanced Materials Technology, Sungkyunkwan University (SKKU), Suwon, 16419, Republic of Korea
| | - Jun Hyuk Heo
- School of Advanced Materials Science and Engineering, Sungkyunkwan University (SKKU), Suwon, 16419, Republic of Korea. .,Research Center for Advanced Materials Technology, Sungkyunkwan University (SKKU), Suwon, 16419, Republic of Korea.
| | - Cheolhyun Park
- School of Advanced Materials Science and Engineering, Sungkyunkwan University (SKKU), Suwon, 16419, Republic of Korea
| | - Dai-Hwan Kim
- School of Advanced Materials Science and Engineering, Sungkyunkwan University (SKKU), Suwon, 16419, Republic of Korea
| | - Gyu Sung Yi
- School of Advanced Materials Science and Engineering, Sungkyunkwan University (SKKU), Suwon, 16419, Republic of Korea
| | - Ho Chang Kang
- Probiomimetic Research Institute, Bundang Technopark, Seongnam, 13219, Republic of Korea
| | - Hyun Suk Jung
- School of Advanced Materials Science and Engineering, Sungkyunkwan University (SKKU), Suwon, 16419, Republic of Korea
| | - Hyunjung Shin
- Department of Energy Science, Sungkyunkwan University (SKKU), Suwon, 16419, Republic of Korea
| | - Jung Heon Lee
- School of Advanced Materials Science and Engineering, Sungkyunkwan University (SKKU), Suwon, 16419, Republic of Korea. .,Research Center for Advanced Materials Technology, Sungkyunkwan University (SKKU), Suwon, 16419, Republic of Korea. .,Biomedical Institute for Convergence at Sungkyunkwan University, Sungkyunkwan University (SKKU), Suwon, 16419, Republic of Korea. .,Institute of Quantum Biophysics (IQB), Sungkyunkwan University (SKKU), Suwon, 16419, Republic of Korea.
| |
Collapse
|
29
|
A New Anorganic Equine Bone Substitute for Oral Surgery: Structural Characterization and Regenerative Potential. MATERIALS 2022; 15:ma15031031. [PMID: 35160976 PMCID: PMC8840601 DOI: 10.3390/ma15031031] [Citation(s) in RCA: 4] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 11/26/2021] [Revised: 01/20/2022] [Accepted: 01/26/2022] [Indexed: 12/22/2022]
Abstract
Different xenogeneic inorganic bone substitutes are currently used as bone grafting materials in oral and maxillo-facial surgery. The aim of the present study was to determine the physicochemical properties and the in vivo performance of an anorganic equine bone (AEB) substitute. AEB is manufactured by applying a process involving heating at >300 °C with the aim of removing all the antigens and the organic components. AEB was structurally characterized by scanning electron microscopy (SEM), X-ray diffraction (XRD), X-ray fluorescence (XRF), and Fourier-transformed infrared (FT-IR) spectroscopy and compared to the anorganic bovine bone (ABB). In order to provide a preliminary evaluation of the in vivo performance of AEB, 18 bone defects were prepared and grafted with AEB (nine sites), or ABB (nine sites) used as a control, in nine Yucatan Minipigs. De novo bone formation, residual bone substitute, as well as local inflammatory and tissue effects were histologically evaluated at 30 and 90 days after implantation. The structural characterization showed that the surface morphology, particle size, chemical composition, and crystalline structure of AEB were similar to cancellous human bone. The histological examination of AEB showed a comparable pattern of newly formed bone and residual biomaterial to that of ABB. Overall, the structural data and pre-clinical evidence reported in the present study suggests that AEB can be effectively used as bone grafting material in oral surgery procedures.
Collapse
|
30
|
Sinus Mucosa Thinning and Perforations after Sinus Lifting Performed with Different Xenografts: A Histological Analysis in Rabbits. Dent J (Basel) 2021; 10:dj10010002. [PMID: 35049600 PMCID: PMC8774798 DOI: 10.3390/dj10010002] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/12/2021] [Revised: 12/17/2021] [Accepted: 12/24/2021] [Indexed: 12/29/2022] Open
Abstract
Background: Experimental studies have shown a progressive thinning and perforations of the sinus mucosa associated with sharpened edges and the cutting projections of graft particles used simultaneously for maxillary sinus augmentation. Hence, the aim of the present study was to evaluate the damaging effects of two different bovine grafts on the sinus mucosa after sinus augmentation. Methods: Twenty New Zealand rabbits received a bilateral sinus lifting using, as fillers, two different types of deproteinized bovine bone in granules, one processed at low temperature (low-T group), and the other at high temperature (high-T group). Thinned mucosa sites (<40 µm) and perforations were evaluated in the sinus mucosa that were in contact with graft granules after 2 and 10 weeks, in ten animals per period. Results: After 2 weeks of healing, the number of thinned mucosa sites was 118 in the low-T group, and 149 in the high-T group (p = 0.191). At the 10-week assessment, the thinned sites increased to 237 and 195 sites, respectively. The numbers of sinus mucosa perforations after 2 weeks were eight and three in the low-T and high-T group, respectively. At the 10-week evaluation, the perforations increased to 19 in the low-T group, and to 14 in the high-T group. Conclusions: The contact with bovine xenografts yielded thinning and perforations of the sinus mucosa. Despite the differences in characteristics and dimensions, no differences were found between the two xenografts in the numbers of thinning mucosa sites and perforations. However, a trend of more events was found in the low-T compared to the high-T group.
Collapse
|
31
|
Lee JW, Chae S, Oh S, Kim SH, Meeseepong M, Choi KH, Jeon J, Lee NE, Song SY, Lee JH, Choi JY. Bio-essential Inorganic Molecular Nanowires as a Bioactive Muscle Extracellular-Matrix-Mimicking Material. ACS APPLIED MATERIALS & INTERFACES 2021; 13:39135-39141. [PMID: 34374274 DOI: 10.1021/acsami.1c12440] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 06/13/2023]
Abstract
Many physiochemical properties of the extracellular matrix (ECM) of muscle tissues, such as nanometer scale dimension, nanotopography, negative charge, and elasticity, must be carefully reproduced to fabricate scaffold materials mimicking muscle tissues. Hence, we developed a muscle tissue ECM-mimicking scaffold using Mo6S3I6 inorganic molecular wires (IMWs). Composed of bio-essential elements and having a nanofibrous structure with a diameter of ∼1 nm and a negative surface charge with high stability, Mo6S3I6 IMWs are ideal for mimicking natural ECM molecules. Once Mo6S3I6 IMWs were patterned on a polydimethylsiloxane surface with an elasticity of 1877.1 ± 22.2 kPa, that is, comparable to that of muscle tissues, the proliferation and α-tubulin expression of myoblasts enhanced significantly. Additionally, the repetitive one-dimensional patterns of Mo6S3I6 IMWs induced the alignment and stretching of myoblasts with enhanced α-tubulin expression and differentiation into myocytes. This study demonstrates that Mo6S3I6 IMWs are promising for mimicking the ECM of muscle tissues.
Collapse
Affiliation(s)
- Jin Woong Lee
- School of Advanced Materials Science & Engineering, Sungkyunkwan University (SKKU), Suwon 16419, Republic of Korea
- Research Center for Advanced Materials Technology, Sungkyunkwan University, Suwon 16419, Republic of Korea
| | - Sudong Chae
- School of Advanced Materials Science & Engineering, Sungkyunkwan University (SKKU), Suwon 16419, Republic of Korea
| | - Seungbae Oh
- School of Advanced Materials Science & Engineering, Sungkyunkwan University (SKKU), Suwon 16419, Republic of Korea
| | - Si Hyun Kim
- SKKU Advanced Institute of Nanotechnology (SAINT), Sungkyunkwan University, Suwon 16419, Republic of Korea
| | - Montri Meeseepong
- SKKU Advanced Institute of Nanotechnology (SAINT), Sungkyunkwan University, Suwon 16419, Republic of Korea
| | - Kyung Hwan Choi
- SKKU Advanced Institute of Nanotechnology (SAINT), Sungkyunkwan University, Suwon 16419, Republic of Korea
| | - Jiho Jeon
- SKKU Advanced Institute of Nanotechnology (SAINT), Sungkyunkwan University, Suwon 16419, Republic of Korea
| | - Nae-Eung Lee
- School of Advanced Materials Science & Engineering, Sungkyunkwan University (SKKU), Suwon 16419, Republic of Korea
- Research Center for Advanced Materials Technology, Sungkyunkwan University, Suwon 16419, Republic of Korea
- SKKU Advanced Institute of Nanotechnology (SAINT), Sungkyunkwan University, Suwon 16419, Republic of Korea
- Biomedical Institute for Convergence at SKKU (BICS), Sungkyunkwan University, Suwon 16419, Republic of Korea
| | - Si Young Song
- Department of Orthopaedic Surgery, Hallym University Dongtan Sacred Heart Hospital, Hwaseong 18450, Republic of Korea
| | - Jung Heon Lee
- School of Advanced Materials Science & Engineering, Sungkyunkwan University (SKKU), Suwon 16419, Republic of Korea
- Research Center for Advanced Materials Technology, Sungkyunkwan University, Suwon 16419, Republic of Korea
- SKKU Advanced Institute of Nanotechnology (SAINT), Sungkyunkwan University, Suwon 16419, Republic of Korea
- Biomedical Institute for Convergence at SKKU (BICS), Sungkyunkwan University, Suwon 16419, Republic of Korea
| | - Jae-Young Choi
- School of Advanced Materials Science & Engineering, Sungkyunkwan University (SKKU), Suwon 16419, Republic of Korea
- SKKU Advanced Institute of Nanotechnology (SAINT), Sungkyunkwan University, Suwon 16419, Republic of Korea
| |
Collapse
|
32
|
Khalaf ME, Abubakr NH, Alenezi HM, Ziada HM. Patients' Perspectives of Grafting Materials in Implant Dentistry: A Qualitative Analysis. J Int Soc Prev Community Dent 2021; 11:428-436. [PMID: 34430505 PMCID: PMC8352050 DOI: 10.4103/jispcd.jispcd_82_21] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/14/2021] [Revised: 04/04/2021] [Accepted: 04/24/2021] [Indexed: 11/29/2022] Open
Abstract
AIMS The aim of this study was to evaluate the cultural, psychological, and religious influences on the choice of autografts, allografts, xenografts, and synthetic bone products for the grafting procedure and with implant placement. MATERIALS AND METHODS A qualitative methodology was employed, using the principles of the constant comparative method of the grounded theory; to investigate how people perceive and understand their experiences regarding the graft materials in implant dentistry. The data were collected using detailed qualitative interviews, till saturation was achieved, from 10 patients. RESULTS The three main themes that emerged in the analysis were: (a) grafting material preference, (b) religious and psychological influences, and (c) trust the doctor and cost influences. The three themes that emerged seemed to be interrelated. There were many statements of preference or rejection of choice based on religious, cultural, and psychological influences. CONCLUSIONS Within the limitations of this study, three themes emerged and they indicated that the influence on the grafting material's choice is unique to every individual; it also shares similarities, based on common religious and cultural values.
Collapse
Affiliation(s)
- Mai E Khalaf
- Department of General Dental Practice, Faculty of Dentistry, Kuwait University, Kuwait
| | - Neamat H Abubakr
- Department of Biomedical Sciences, School of Dental Medicine, University of Nevada, Las Vegas, NV, USA
| | - Hanadi M Alenezi
- Department of General Dental Practice, Faculty of Dentistry, Kuwait University, Kuwait
| | - Hassan M Ziada
- Department of Clinical Dental Sciences, School of Dental Medicine, University of Nevada, Las Vegas, NV, USA
| |
Collapse
|
33
|
Biomaterials for Periodontal and Peri-Implant Regeneration. MATERIALS 2021; 14:ma14123319. [PMID: 34203989 PMCID: PMC8232756 DOI: 10.3390/ma14123319] [Citation(s) in RCA: 26] [Impact Index Per Article: 8.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 05/20/2021] [Revised: 06/03/2021] [Accepted: 06/09/2021] [Indexed: 12/23/2022]
Abstract
Periodontal and peri-implant regeneration is the technique that aims to restore the damaged tissue around teeth and implants. They are surrounded by a different apparatus, and according to it, the regenerative procedure can differ for both sites. During the last century, several biomaterials and biological mediators were proposed to achieve a complete restoration of the damaged tissues with less invasiveness and a tailored approach. Based on relevant systematic reviews and articles searched on PubMed, Scopus, and Cochrane databases, data regarding different biomaterials were extracted and summarized. Bone grafts of different origin, membranes for guided tissue regeneration, growth factors, and stem cells are currently the foundation of the routinary clinical practice. Moreover, a tailored approach, according to the patient and specific to the involved tooth or implant, is mandatory to achieve a better result and a reduction in patient morbidity and discomfort. The aim of this review is to summarize clinical findings and future developments regarding grafts, membranes, molecules, and emerging therapies. In conclusion, tissue engineering is constantly evolving; moreover, a tailor-made approach for each patient is essential to obtain a reliable result and the combination of several biomaterials is the elective choice in several conditions.
Collapse
|
34
|
Chauhan N, Lakhkar N, Chaudhari A. Development and physicochemical characterization of novel porous phosphate glass bone graft substitute and in vitro comparison with xenograft. JOURNAL OF MATERIALS SCIENCE. MATERIALS IN MEDICINE 2021; 32:60. [PMID: 33999295 PMCID: PMC8128851 DOI: 10.1007/s10856-021-06532-8] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Figures] [Subscribe] [Scholar Register] [Received: 05/01/2020] [Accepted: 04/27/2021] [Indexed: 06/12/2023]
Abstract
The process of bone regeneration in bone grafting procedures is greatly influenced by the physicochemical properties of the bone graft substitute. In this study, porous phosphate glass (PPG) morsels were developed and their physicochemical properties such as degradation, crystallinity, organic content, surface topography, particle size and porosity were evaluated using various analytical methods. The in vitro cytotoxicity of the PPG morsels was assessed and the interaction of the PPG morsels with Dental Pulp Stem Cells (DPSCs) was studied by measuring cell proliferation and cell penetration depth. The cell-material interactions between PPG morsels and a commercially available xenograft (XG) were compared. The PPG morsels were observed to be amorphous, biocompatible and highly porous (porosity = 58.45%). From in vitro experiments, PPG morsels were observed to be non-cytotoxic and showed better cell proliferation. The internal surface of PPG was easily accessible to the cells compared to XG.
Collapse
Affiliation(s)
- Niketa Chauhan
- SynThera Biomedical Pvt. Ltd. 100, NCL Innovation Park, Dr. Homi Bhabha Road, Pashan, Pune, Maharashtra, 411008, India
| | - Nilay Lakhkar
- SynThera Biomedical Pvt. Ltd. 100, NCL Innovation Park, Dr. Homi Bhabha Road, Pashan, Pune, Maharashtra, 411008, India
| | - Amol Chaudhari
- SynThera Biomedical Pvt. Ltd. 100, NCL Innovation Park, Dr. Homi Bhabha Road, Pashan, Pune, Maharashtra, 411008, India.
| |
Collapse
|
35
|
WİYAH M, PRANATA A, NASUTİON H, RAMADHANİ F, HUTASOİT I. Real-Time PCR to Identify Porcine DNA in Prosthodontic Materials. CUMHURIYET DENTAL JOURNAL 2021. [DOI: 10.7126/cumudj.887101] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/22/2022] Open
|
36
|
Pröhl A, Batinic M, Alkildani S, Hahn M, Radenkovic M, Najman S, Jung O, Barbeck M. In Vivo Analysis of the Biocompatibility and Bone Healing Capacity of a Novel Bone Grafting Material Combined with Hyaluronic Acid. Int J Mol Sci 2021; 22:ijms22094818. [PMID: 34062885 PMCID: PMC8124336 DOI: 10.3390/ijms22094818] [Citation(s) in RCA: 9] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/27/2021] [Revised: 04/26/2021] [Accepted: 04/28/2021] [Indexed: 12/28/2022] Open
Abstract
The present in vivo study analyses both the inflammatory tissue reactions and the bone healing capacity of a newly developed bone substitute material (BSM) based on xenogeneic bone substitute granules combined with hyaluronate (HY) as a water-binding molecule. The results of the hyaluronate containing bone substitute material (BSM) were compared to a control xenogeneic BSM of the same chemical composition and a sham operation group up to 16 weeks post implantationem. A major focus of the study was to analyze the residual hyaluronate and its effects on the material-dependent healing behavior and the inflammatory tissue responses. The study included 63 male Wistar rats using the calvaria implantation model for 2, 8, and 16 weeks post implantationem. Established and Good Laboratory Practice (GLP)-conforming histological, histopathological, and histomorphometrical analysis methods were conducted. The results showed that the new hyaluronate containing BSM was gradually integrated within newly formed bone up to the end of the study that ended in a condition of complete bone defect healing. Thereby, no differences to the healing capacity of the control BSM were found. However, the bone formation in both groups was continuously significantly higher compared to the sham operation group. Additionally, no differences in the (inflammatory) tissue response that was analyzed via qualitative and (semi-) quantitative methods were found. Interestingly, no differences were found between the numbers of pro- and anti-inflammatory macrophages between the three study groups over the entire course of the study. No signs of the HY as a water-binding part of the BSM were histologically detectable at any of the study time points, altogether the results of the present study show that HY allows for an optimal material-associated bone tissue healing comparable to the control xenogeneic BSM. The added HY seems to be degraded within a very short time period of less than 2 weeks so that the remaining BSM granules allow for a gradual osteoconductive bone regeneration. Additionally, no differences between the inflammatory tissue reactions in both material groups and the sham operation group were found. Thus, the new hyaluronate containing xenogeneic BSM and also the control BSM have been shown to be fully biocompatible without any differences regarding bone regeneration.
Collapse
Affiliation(s)
- Annica Pröhl
- BerlinAnalytix GmbH, 12109 Berlin, Germany; (A.P.); (M.B.); (S.A.)
| | - Milijana Batinic
- BerlinAnalytix GmbH, 12109 Berlin, Germany; (A.P.); (M.B.); (S.A.)
| | - Said Alkildani
- BerlinAnalytix GmbH, 12109 Berlin, Germany; (A.P.); (M.B.); (S.A.)
| | - Michael Hahn
- Institute of Osteology and Biomechanics, Eppendorf University Hospital, University of Hamburg, 20246 Hamburg, Germany;
| | - Milena Radenkovic
- Department for Cell and Tissue Engineering, Faculty of Medicine, University of Niš, 18108 Niš, Serbia; (M.R.); (S.N.)
| | - Stevo Najman
- Department for Cell and Tissue Engineering, Faculty of Medicine, University of Niš, 18108 Niš, Serbia; (M.R.); (S.N.)
- Department of Biology and Human Genetics, Faculty of Medicine, University of Niš, 18108 Niš, Serbia
| | - Ole Jung
- Clinic and Policlinic for Dermatology and Venereology, University Medical Center Rostock, 18057 Rostock, Germany;
| | - Mike Barbeck
- Department of Ceramic Materials, Chair of Advanced Ceramic Materials, Institute for Materials Science and Technologies, Technical University Berlin, 10623 Berlin, Germany
- Correspondence: ; Tel.: +49-176-81022467
| |
Collapse
|
37
|
Scaffold-Type Structure Dental Ceramics with Different Compositions Evaluated through Physicochemical Characteristics and Biosecurity Profiles. MATERIALS 2021; 14:ma14092266. [PMID: 33925656 PMCID: PMC8124461 DOI: 10.3390/ma14092266] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 03/29/2021] [Revised: 04/20/2021] [Accepted: 04/22/2021] [Indexed: 02/07/2023]
Abstract
The design and development of ceramic structures based on 3D scaffolding as dental bone substitutes has become a topic of great interest in the regenerative dentistry research area. In this regard, the present study focuses on the development of two scaffold-type structures obtained from different commercial dental ceramics by employing the foam replication method. At the same time, the study underlines the physicochemical features and the biological profiles of the newly developed scaffolds, compared to two traditional Cerabone® materials used for bone augmentation, by employing both the in vitro Alamar blue proliferation test at 24, 48 and 96 h poststimulation and the in ovo chick chorioallantoic membrane (CAM) assay. The data reveal that the newly developed scaffolds express comparable results with the traditional Cerabone® augmentation masses. In terms of network porosity, the scaffolds show higher pore interconnectivity compared to Cerabone® granules, whereas regarding the biosafety profile, all ceramic samples manifest good biocompatibility on primary human gingival fibroblasts (HGFs); however only the Cerabone® samples induced proliferation of HGF cells following exposure to concentrations of 5 and 10 µg/mL. Additionally, none of the test samples induce irritative activity on the vascular developing plexus. Thus, based on the current results, the preliminary biosecurity profile of ceramic scaffolds supports the usefulness for further testing of high relevance for their possible clinical dental applications.
Collapse
|
38
|
Schorn L, Fienitz T, De Donno F, Sterner-Kock A, Maul AC, Holtmann H, Lommen J, Rothamel D. Critical-size Defect Augmentation Using Sintered and Non-Sintered Bovine Bone Matrix - An Experimental Controlled Study in Minipigs. J Oral Maxillofac Surg 2021; 79:1866-1873. [PMID: 34051155 DOI: 10.1016/j.joms.2021.03.025] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/05/2021] [Revised: 03/11/2021] [Accepted: 03/23/2021] [Indexed: 01/14/2023]
Abstract
PURPOSE Xenogeneic bone substitute materials are often used for augmentation of larger bone defects. Purification methods for these materials vary, mainly in terms of temperature. The aim of this study was to determine in vivo how sintering affects quantitative and qualitative bone regeneration of 2 bovine augmentation materials. METHODS A total of 56 critical size defects were set at the frontal bone of 14 domestic pigs (4 each) and filled randomly with either bovine, sintered hydroxyapatite (BO), bovine, non-sintered hydroxyapatite (BOS), local autologous bone (AB) or left empty. All defects were additionally covered with a collagen membrane. Specimens were harvested after 4 and 8 weeks and were evaluated histologically and histomorphometrically. RESULTS Histologically new bone could be seen in every group. Significantly highest new bone formation was found in AB. No significant difference could be detected between BO and BOS. CONCLUSIONS According to the results of this study, sintered bone substitute material remains histologically distinguishable but does not affect quantitative and qualitative bone regeneration.
Collapse
Affiliation(s)
- Lara Schorn
- Resident, Department of Oral, Maxillofacial and Facial Plastic Surgery, University Hospital Düsseldorf Düsseldorf, DE
| | - Tim Fienitz
- Resident, Department of Oral, Maxillofacial and Facial Plastic Surgery, Evangelisches Krankenhaus Bethesda, Mönchengladbach, DE; Head of Department, Department of Oral, Maxillofacial and Facial Plastic Surgery, Evangelisches Krankenhaus Bethesda, Mönchengladbach, Germany and Professor, , University Hospital Düsseldorf, Düsseldorf,DE.
| | - Francesco De Donno
- Resident, Department of Oral, Maxillofacial and Facial Plastic Surgery, Evangelisches Krankenhaus Bethesda, Mönchengladbach, DE
| | - Anja Sterner-Kock
- Professor, Head of Department, Center for Experimental Medicine, University of Cologne, Faculty of Medicine and University Hospital Cologne, Cologne, DE
| | - Alexandra C Maul
- Head of Department, Center for Experimental Medicine, University of Cologne, Faculty of Medicine and University Hospital Cologne, Cologne, DE
| | - Henrik Holtmann
- Consultant, Department of Oral, Maxillofacial and Facial Plastic Surgery, Evangelisches Krankenhaus Bethesda, Mönchengladbach,DE
| | - Julian Lommen
- Resident, Department of Oral, Maxillofacial and Facial Plastic Surgery, University Hospital Düsseldorf Düsseldorf,DE
| | - Daniel Rothamel
- Head of Department, Department of Oral, Maxillofacial and Facial Plastic Surgery, Evangelisches Krankenhaus Bethesda, Mönchengladbach, Germany and Professor, , University Hospital Düsseldorf, Düsseldorf,DE
| |
Collapse
|
39
|
Amid R, Kheiri A, Kheiri L, Kadkhodazadeh M, Ekhlasmandkermani M. Structural and chemical features of xenograft bone substitutes: A systematic review of in vitro studies. Biotechnol Appl Biochem 2020; 68:1432-1452. [PMID: 33135215 DOI: 10.1002/bab.2065] [Citation(s) in RCA: 6] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/14/2020] [Accepted: 10/24/2020] [Indexed: 11/10/2022]
Abstract
Xenograft bone substitutes are obtained from different species and prepared by various procedures including heat treatment, hydrazine, and chemical and hydrothermal methods. These grafts are utilized widely because of similar structure and properties to human bone, proper bone formation, and biocompatibility. The aim of this systematic review was to evaluate different xenografts from structural and chemical aspects. In vitro studies published in English language, which assessed xenografts' features, met the inclusion criteria. Electronic search of four databases including PubMed, Google Scholar, Scopus, and Web of Science and a hand search until September 2020 were performed. The irrelevant studies were the ones which focused on cell adhesion and effect of growth factors. Finally, 25 studies were included in the review. Nineteen studies used bovine xenografts, and 12 studies applied heat treatment as their preparation method. Particles showed various morphologies, and their largest size was observed at 5 mm. From 18 studies, it is found that the smallest pore size was 1.3 µm and the highest pore size was 1000 µm. There is large heterogeneity of porosity, crystallinity, Ca/P ratio, and osteogenesis based on the preparation method. Proper porosity and the connection between pores affect bone regeneration. Therefore, biomaterial selection and outcomes evaluation should be interpreted separately.
Collapse
Affiliation(s)
- Reza Amid
- Dental Research Center, School of Dentistry, Research Institute of Dental Sciences, Shahid Beheshti University of Medical Sciences, Tehran, Iran.,Department of Periodontics, School of Dentistry, Shahid Beheshti University of Medical Sciences, Tehran, Iran
| | - Aida Kheiri
- Student Research Committee, Gifted and Talented Dental Students Division, School of Dentistry, Shahid Beheshti University of Medical Sciences, Tehran, Iran
| | - Lida Kheiri
- Department of Oral and Maxillofacial Surgery, School of Dentistry, Isfahan (Khorasgan) Branch, Islamic Azad University, Isfahan, Iran
| | - Mahdi Kadkhodazadeh
- Dental Research Center, School of Dentistry, Research Institute of Dental Sciences, Shahid Beheshti University of Medical Sciences, Tehran, Iran
| | - Mehdi Ekhlasmandkermani
- Department of Periodontics, School of Dentistry, Shahid Beheshti University of Medical Sciences, Tehran, Iran
| |
Collapse
|
40
|
Tanaka K, Botticelli D, Canullo L, Baba S, Xavier SP. New bone ingrowth into β-TCP/HA graft activated with argon plasma: a histomorphometric study on sinus lifting in rabbits. Int J Implant Dent 2020; 6:36. [PMID: 32789544 PMCID: PMC7423814 DOI: 10.1186/s40729-020-00236-4] [Citation(s) in RCA: 4] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/13/2020] [Accepted: 06/02/2020] [Indexed: 12/04/2022] Open
Abstract
BACKGROUND In a previous experimental study, new bone was found growing within granules of HA/β-TCP. In vitro and experimental studies have shown increased protein adsorption and cell adhesion graft material bioactivated with Argon plasma. The aims of the present experiment were to study new bone ingrowth into β-TCP/HA granules used as filler material for sinus lifting and the influence on the healing of the bioactivation of the graft with argon plasma. METHODS Sinus lifting was carried out in 20 rabbits using 60% HA and 40% β-TCP as filler material either bio-activated with argon plasma (plasma group) or left untreated (control group). The antrostomies were closed with collagen membranes. Biopsies representing the healing after 2 and 10 weeks were collected, and ground sections were prepared for histomorphometric analyses. Various regions of the elevated space were analyzed both around (outer bone; OB) and inside (interpenetrating bone network, IBN) the graft particles. RESULTS After 2 weeks of healing, 8.2% and 9.3% (n = 10; p = 0.635) of total new bone (OB + IBN) was found in the plasma and control groups, respectively. Small fractions of IBN were found, spreading from the periphery inward of the graft particles. After 10 weeks of healing, the total new bone was 34.0% in the plasma and 31.3% in Control groups (n = 9; p = 0.594). The respective fractions of IBN were 18.0% and 16.0%. New bone was penetrating from the peripheral regions inside the remnants of graft particles, where it was forming a network of bridges in continuity to the remnants of biomaterial through its porosities. The biomaterial decreased in proportion between 2 and 10 weeks from 52.1 to 28.3% in the plasma group, and from 52.5% to 31.9% in the control group. CONCLUSION The bio-activation with argon plasma on a synthetic graft composed of 60% HA and 40% β-TCP used as filler material for sinus lifting showed a tendency to improve bone formation; however, the difference with the control group was neither statistically significant nor clinically relevant.
Collapse
Affiliation(s)
- Kazushige Tanaka
- Department of Oral Implantology, Osaka Dental University, Osaka, Japan
- ARDEC Academy, Rimini, Italy
| | | | - Luigi Canullo
- Department of Stomatology, Faculty of Medicine and Dentistry, University of Valencia, Valencia, Spain
| | - Shunsuke Baba
- Department of Oral Implantology, Osaka Dental University, Osaka, Japan
| | - Samuel P Xavier
- Depto CTBMF e Periodontia FORP-USP-Faculty of Ribeirão Preto (SP), São Paulo, Brazil
| |
Collapse
|
41
|
Gashtasbi F, Hasannia S, Hasannia S, Mahdi Dehghan M, Sarkarat F, Shali A. Comparative study of impact of animal source on physical, structural, and biological properties of bone xenograft. Xenotransplantation 2020; 27:e12628. [PMID: 32654298 DOI: 10.1111/xen.12628] [Citation(s) in RCA: 7] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/23/2020] [Revised: 05/21/2020] [Accepted: 06/14/2020] [Indexed: 11/28/2022]
Abstract
BACKGROUND Due to the unique features of xenografts including large supply from donors, minimal risk of human disease transmission, and the lower cost of preparation and production compared to autografts and allografts, they are considered as attractive alternatives to traditional bone grafts. The animal source accessibility and production process have a direct correlation with the cost and quality of the final product. To evaluate whether the animal source of the bone has any effect on the physicochemical and histological properties of the final xenograft, three deproteinized bone grafts were prepared from sources that are easily available in Iran, including the bovine (DBB), camel (DCB), and ostrich (DOB). METHODS In the current study, three bone substitute materials intended to serve as bone xenografts were derived from the cow, camel, and ostrich using the thermochemical processing procedure. The physicochemical properties, in vitro cytocompatibility and in vivo bone regeneration capability of the prepared deproteinized bone grafts, were assessed and compared with OCS-B as an approved product in the global market. RESULTS The physical tests confirmed the hydroxyapatite nature of the final products. SEM and BET analysis showed morphological and structural differences between the products due to differences in the animal sources. In vitro studies showed the prepared deproteinized bone was free of processing chemicals and was biocompatible with mouse fibroblast and myoblast cell lines. In vivo studies revealed that the bone formation capability of the DBB, DCB, and DOB has no significant difference with one another and with OCS-B despite their structural differences. The DCB showed the highest graft residue after two month. No signs of immunogenicity were observed in the study groups compared to the blank group. CONCLUSION DBB, DCB, and DOB may offer a favorable cell response and bone regeneration similar to those of commercial bovine bone material.
Collapse
Affiliation(s)
- Fatemeh Gashtasbi
- Nova Teb Research Laboratory, Dental Equipment and Biomaterials Incubation Center, Tehran University of Medical Sciences, Tehran, Iran
| | - Shahriar Hasannia
- Nova Teb Research Laboratory, Dental Equipment and Biomaterials Incubation Center, Tehran University of Medical Sciences, Tehran, Iran
| | - Sadegh Hasannia
- Nova Teb Research Laboratory, Dental Equipment and Biomaterials Incubation Center, Tehran University of Medical Sciences, Tehran, Iran.,Department of Biochemistry, Faculty of Biological Sciences, Tarbiat Modares University, Tehran, Iran
| | - Mohammad Mahdi Dehghan
- Department of Surgery and Radiology, Faculty of Veterinary Medicine, University of Tehran, Tehran, Iran
| | - Farzin Sarkarat
- Department of Oral and Maxillofacial Surgery, Craniomaxillofacial Research Center, Dentistry Branch of Islamic Azad University of Medical Sciences, Tehran, Iran
| | - Abbas Shali
- Nova Teb Research Laboratory, Dental Equipment and Biomaterials Incubation Center, Tehran University of Medical Sciences, Tehran, Iran
| |
Collapse
|
42
|
Sivolella S, Botticelli D, Prasad S, Ricci S, Bressan E, Prasad H. Evaluation and comparison of histologic changes and implant survival in extraction sites immediately grafted with two different xenografts: A randomized clinical pilot study. Clin Oral Implants Res 2020; 31:825-835. [DOI: 10.1111/clr.13626] [Citation(s) in RCA: 4] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/10/2019] [Revised: 04/10/2020] [Accepted: 05/13/2020] [Indexed: 12/15/2022]
Affiliation(s)
- Stefano Sivolella
- Department of Neurosciences Dentistry Section University of Padova Padova Italy
| | | | - Sanjana Prasad
- Hard Tissue Research Laboratory, Biological and Diagnostic Sciences School of Dentistry University of Minnesota Minneapolis MN USA
| | - Sara Ricci
- Department of Neurosciences Dentistry Section University of Padova Padova Italy
| | - Eriberto Bressan
- Department of Neurosciences Dentistry Section University of Padova Padova Italy
| | - Hari Prasad
- Hard Tissue Research Laboratory, Biological and Diagnostic Sciences School of Dentistry University of Minnesota Minneapolis MN USA
| |
Collapse
|
43
|
Godehardt AW, Tönjes RR. Xenotransplantation of decellularized pig heart valves—Regulatory aspects in Europe. Xenotransplantation 2020; 27:e12609. [DOI: 10.1111/xen.12609] [Citation(s) in RCA: 6] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/05/2020] [Accepted: 05/05/2020] [Indexed: 01/04/2023]
Affiliation(s)
| | - Ralf R. Tönjes
- Division of Medical Biotechnology Paul‐Ehrlich‐Institut Langen Germany
| |
Collapse
|
44
|
Lee JH, Kim DH, Jeong SN. Adjunctive use of enamel matrix derivatives to porcine-derived xenograft for the treatment of one-wall intrabony defects: Two-year longitudinal results of a randomized controlled clinical trial. J Periodontol 2019; 91:880-889. [PMID: 31811645 PMCID: PMC7497188 DOI: 10.1002/jper.19-0432] [Citation(s) in RCA: 16] [Impact Index Per Article: 3.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/25/2019] [Revised: 10/24/2019] [Accepted: 10/25/2019] [Indexed: 12/12/2022]
Abstract
Background The purpose of this study was to evaluate the potential advantages of adjunctive use of enamel matrix protein derivative (EMD) in combination with demineralized porcine bone matrix (DPBM) for the treatment of one‐wall intrabony defects in the molar regions, in comparison with the use of DPBM alone, through a randomized controlled clinical trial. Methods Forty‐two participants were randomly assigned to two groups: one where DPBM with the adjunctive use of EMD (test group, n = 20) was applied and the other without EMD (control group, n = 22). Changes in the clinical and radiographic parameters from baseline at 6, 12, and 24 months were measured (probing pocket depth, clinical attachment loss, defect depth, and defect width). Postoperative discomfort (severity/duration of pain and swelling) and early soft tissue wound healing (dehiscence/fenestration, persistent swelling, spontaneous bleeding, and ulceration) were also assessed. Results Both treatment modalities, with and without EMD, resulted in significant improvement of clinical and radiographic outcomes without any severe adverse events. However, no statistically significant differences in any of the measured parameters were found when the two groups were compared. Early wound healing outcomes and the severity of swelling did not differ between the groups, but the severity of pain (P = 0.046), duration (P = 0.033), and swelling (P = 0.022) were significantly lower in the test group. Conclusions DPBM has been verified for biocompatibility and can be used as a scaffold to enhance the clinical and radiographic outcomes of periodontal regeneration of one‐wall intrabony defects. In particular, the adjunctive use of EMD significantly reduced the postoperative discomfort.
Collapse
Affiliation(s)
- Jae-Hong Lee
- Department of Periodontology, Daejeon Dental Hospital, Institute of Wonkwang Dental Research, Wonkwang University College of Dentistry, Daejeon, Korea
| | - Do-Hyung Kim
- Department of Periodontology, Daejeon Dental Hospital, Institute of Wonkwang Dental Research, Wonkwang University College of Dentistry, Daejeon, Korea
| | - Seong-Nyum Jeong
- Department of Periodontology, Daejeon Dental Hospital, Institute of Wonkwang Dental Research, Wonkwang University College of Dentistry, Daejeon, Korea
| |
Collapse
|
45
|
Titsinides S, Agrogiannis G, Karatzas T. Bone grafting materials in dentoalveolar reconstruction: A comprehensive review. JAPANESE DENTAL SCIENCE REVIEW 2019; 55:26-32. [PMID: 30733842 PMCID: PMC6354279 DOI: 10.1016/j.jdsr.2018.09.003] [Citation(s) in RCA: 99] [Impact Index Per Article: 19.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/03/2018] [Accepted: 09/10/2018] [Indexed: 12/11/2022] Open
Abstract
Bone deficits of the jaws are often attributed to accidents, surgical removal of benign lesions or malignant neoplasms, congenital abnormalities, periodontal inflammation, tooth abscess or extraction and finally jaw atrophy due to advanced age or general disease. These bone defects require rehabilitation for a variety of reasons, e.g. maintaining the normal anatomic outline, eliminating empty space, aesthetic restoration and placing dental implants. Today, several techniques have been developed to eliminate these bone deformities including bone grafting, guided bone regeneration, distraction osteogenesis, use of growth factors and stem cells. Bone grafts consist of materials of natural or synthetic origin, implanted into the bone defect site, documented to possess bone healing properties. Currently, a variety of bone restorative materials with different characteristics are available, possesing different properties. Despite years of effort the 'perfect' bone reconstruction material has not yet been developed, a further effort is required to make this objective feasible. The aim of this article is to provide a contemporary and comprehensive overview of the grafting materials that can be applied in dentoalveolar reconstruction, discussing their properties, advantages and disadvantages, enlightening the present and the future perspectives in the field of bone regeneration.
Collapse
Affiliation(s)
- S. Titsinides
- Department of Oral Medicine and Pathology, Dental School, University of Athens, Athens, Greece
| | - G. Agrogiannis
- 1st Department of Pathology, Medical School, University of Athens, Athens, Greece
| | - T. Karatzas
- 2nd Department of Propedeutic Surgery, Laiko General Hospital, Medical School, University of Athens, Athens, Greece
| |
Collapse
|
46
|
Bae EB, Kim HJ, Ahn JJ, Bae HY, Kim HJ, Huh JB. Comparison of Bone Regeneration between Porcine-Derived and Bovine-Derived Xenografts in Rat Calvarial Defects: A Non-Inferiority Study. MATERIALS (BASEL, SWITZERLAND) 2019; 12:E3412. [PMID: 31635277 PMCID: PMC6829332 DOI: 10.3390/ma12203412] [Citation(s) in RCA: 9] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 09/26/2019] [Revised: 10/15/2019] [Accepted: 10/16/2019] [Indexed: 11/16/2022]
Abstract
The present study aimed to compare the bone-regeneration capacity of porcine-derived xenografts to bovine-derived xenografts in the rat calvarial defect model. The observation of surface morphology and in vitro cell studies were conducted prior to the animal study. Defects with a diameter of 8 mm were created in calvaria of 20 rats. The rats were randomly treated with porcine-derived (Bone-XP group) or bovine-derived xenografts (Bio-Oss group) and sacrificed at 4 and 8 weeks after surgery. The new bone regeneration was evaluated by micro-computed tomography (μCT) and histomorphometric analyses. In the cell study, the extracts of Bone-XP and Bio-Oss showed a positive effect on the regulation of osteogenic differentiation of human mesenchymal stem cells (hMSCs) without cytotoxicity. The new bone volume of Bone-XP (17.52 ± 3.78% at 4 weeks and 32.09 ± 3.51% at 8 weeks) was similar to that of Bio-Oss (11.6 ± 3.88% at 4 weeks and 25.89 ± 7.43% at 8 weeks) (p > 0.05). In the results of new bone area, there was no significant difference between Bone-XP (9.08 ± 5.47% at 4 weeks and 25.22 ± 13.56% at 8 weeks) and Bio-Oss groups (5.83 ± 2.56% at 4 weeks and 21.68 ± 11.11% at 8 weeks) (p > 0.05). It can be concluded that the porcine-derived bone substitute may offer a favorable cell response and bone regeneration similar to those of commercial bovine bone mineral.
Collapse
Affiliation(s)
- Eun-Bin Bae
- Department of Prosthodontics, Dental Research Institute, Dental and Life Science Institute, BK21 PLUS Project, School of Dentistry, Pusan National University, Yangsan 50612, Korea.
| | - Ha-Jin Kim
- Department of Oral Physiology, Dental Research Institute, Dental and Life Science Institute, School of Dentistry, Pusan National University, Yangsan 50612, Korea.
| | - Jong-Ju Ahn
- Department of Prosthodontics, Dental Research Institute, Dental and Life Science Institute, BK21 PLUS Project, School of Dentistry, Pusan National University, Yangsan 50612, Korea.
| | - Hyun-Young Bae
- Department of Prosthodontics, Dental Research Institute, Dental and Life Science Institute, BK21 PLUS Project, School of Dentistry, Pusan National University, Yangsan 50612, Korea.
| | - Hyung-Joon Kim
- Department of Oral Physiology, Dental Research Institute, Dental and Life Science Institute, School of Dentistry, Pusan National University, Yangsan 50612, Korea.
| | - Jung-Bo Huh
- Department of Prosthodontics, Dental Research Institute, Dental and Life Science Institute, BK21 PLUS Project, School of Dentistry, Pusan National University, Yangsan 50612, Korea.
| |
Collapse
|
47
|
Diaz-Rodriguez P, López-Álvarez M, Serra J, González P, Landín M. Current Stage of Marine Ceramic Grafts for 3D Bone Tissue Regeneration. Mar Drugs 2019; 17:md17080471. [PMID: 31443166 PMCID: PMC6723791 DOI: 10.3390/md17080471] [Citation(s) in RCA: 13] [Impact Index Per Article: 2.6] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/11/2019] [Revised: 08/10/2019] [Accepted: 08/12/2019] [Indexed: 12/19/2022] Open
Abstract
Bioceramic scaffolds are crucial in tissue engineering for bone regeneration. They usually provide hierarchical porosity, bioactivity, and mechanical support supplying osteoconductive properties and allowing for 3D cell culture. In the case of age-related diseases such as osteoarthritis and osteoporosis, or other bone alterations as alveolar bone resorption or spinal fractures, functional tissue recovery usually requires the use of grafts. These bone grafts or bone void fillers are usually based on porous calcium phosphate grains which, once disposed into the bone defect, act as scaffolds by incorporating, to their own porosity, the intergranular one. Despite their routine use in traumatology and dental applications, specific graft requirements such as osteoinductivity or balanced dissolution rate are still not completely fulfilled. Marine origin bioceramics research opens the possibility to find new sources of bone grafts given the wide diversity of marine materials still largely unexplored. The interest in this field has also been urged by the limitations of synthetic or mammalian-derived grafts already in use and broadly investigated. The present review covers the current stage of major marine origin bioceramic grafts for bone tissue regeneration and their promising properties. Both products already available on the market and those in preclinical phases are included. To understand their clear contribution to the field, the main clinical requirements and the current available biological-derived ceramic grafts with their advantages and limitations have been collected.
Collapse
Affiliation(s)
- Patricia Diaz-Rodriguez
- R + D Pharma Group (GI-1645), Department of Pharmacology, Pharmacy and Pharmaceutical Technology, School of Pharmacy, Universidade de Santiago de Compostela, 15782 Santiago de Compostela, Spain.
- Department of Chemical Engineering and Pharmaceutical Technology, School of Sciences, Universidad de La Laguna (ULL), Campus de Anchieta, 38200 La Laguna (Tenerife), Spain.
| | - Miriam López-Álvarez
- New Materials Group, Department of Applied Physics, University of Vigo, IISGS, MTI-Campus Lagoas-Marcosende, Vigo 36310, Spain
| | - Julia Serra
- New Materials Group, Department of Applied Physics, University of Vigo, IISGS, MTI-Campus Lagoas-Marcosende, Vigo 36310, Spain
| | - Pío González
- New Materials Group, Department of Applied Physics, University of Vigo, IISGS, MTI-Campus Lagoas-Marcosende, Vigo 36310, Spain
| | - Mariana Landín
- R + D Pharma Group (GI-1645), Department of Pharmacology, Pharmacy and Pharmaceutical Technology, School of Pharmacy, Universidade de Santiago de Compostela, 15782 Santiago de Compostela, Spain
| |
Collapse
|
48
|
Pae HC, Kang JH, Cha JK, Lee JS, Paik JW, Jung UW, Choi SH. Bone regeneration using three-dimensional hexahedron channel structured BCP block in rabbit calvarial defects. J Biomed Mater Res B Appl Biomater 2019; 107:2254-2262. [PMID: 30675991 DOI: 10.1002/jbm.b.34317] [Citation(s) in RCA: 7] [Impact Index Per Article: 1.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/01/2018] [Revised: 12/21/2018] [Accepted: 12/27/2018] [Indexed: 11/10/2022]
Abstract
The purpose of this study is to evaluate the efficacy of bone regeneration and volume maintenance of the three-dimensional (3D) structured biphasic calcium phosphate (BCP) block with porous hexahedron channels in a rabbit calvarial model. In this work, four circular defects (diameter: 8 mm) in calvarium of rabbits were randomly assigned to (1) negative control (control), (2) 3D hexahedron channel structured BCP block, (3) deproteinized bovine bone mineral particle, and (4) deproteinized porcine bone mineral particle. Animals were euthanized at 2 (n = 5) and 8 weeks (n = 5). Outcome measures included micro-computed tomography (CT) and histomorphometrical analysis. Results indicated that in micro-CT, BCP group showed the highest new bone volume with significant difference compared to control (p = 0.008) at 8 weeks. Histomorphometrically, total augmented area of BCP group was the highest with significant difference compared to control (p = 0.008) at 8 weeks. BCP group also maintained total volume of the original defect without collapsing. BCP block with 3D hexahedron channel structure seems to have favorable osteogenic and volume maintaining ability and highly porous structure might attribute to new bone formation. Further studies regarding the optimal internal structure and porosity of the BCP block bone substitute are needed. © 2019 Wiley Periodicals, Inc. J Biomed Mater Res Part B: Appl Biomater 107B: 2254-2262, 2019.
Collapse
Affiliation(s)
- Hyung-Chul Pae
- Department of periodontology, Research institute of periodontal regeneration, Yonsei University College of Dentistry, Seoul, South Korea
| | - Joo-Hyun Kang
- Department of periodontology, Research institute of periodontal regeneration, Yonsei University College of Dentistry, Seoul, South Korea
| | - Jae-Kook Cha
- Department of periodontology, Research institute of periodontal regeneration, Yonsei University College of Dentistry, Seoul, South Korea
| | - Jung-Seok Lee
- Department of periodontology, Research institute of periodontal regeneration, Yonsei University College of Dentistry, Seoul, South Korea
| | - Jeong-Won Paik
- Department of periodontology, Research institute of periodontal regeneration, Yonsei University College of Dentistry, Seoul, South Korea
| | - Ui-Won Jung
- Department of periodontology, Research institute of periodontal regeneration, Yonsei University College of Dentistry, Seoul, South Korea
| | - Seong-Ho Choi
- Department of periodontology, Research institute of periodontal regeneration, Yonsei University College of Dentistry, Seoul, South Korea
| |
Collapse
|
49
|
Lee JW, Chae S, Oh S, Kim SH, Choi KH, Meeseepong M, Chang J, Kim N, Lee NE, Lee JH, Choi JY. Single-Chain Atomic Crystals as Extracellular Matrix-Mimicking Material with Exceptional Biocompatibility and Bioactivity. NANO LETTERS 2018; 18:7619-7627. [PMID: 30474985 DOI: 10.1021/acs.nanolett.8b03201] [Citation(s) in RCA: 11] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 06/09/2023]
Abstract
In this study, Mo3Se3- single-chain atomic crystals (SCACs) with atomically small chain diameters of ∼0.6 nm, large surface areas, and mechanical flexibility were synthesized and investigated as an extracellular matrix (ECM)-mimicking scaffold material for tissue engineering applications. The proliferation of L-929 and MC3T3-E1 cell lines increased up to 268.4 ± 24.4% and 396.2 ± 8.1%, respectively, after 48 h of culturing with Mo3Se3- SCACs. More importantly, this extremely high proliferation was observed when the cells were treated with 200 μg mL-1 of Mo3Se3- SCACs, which is above the cytotoxic concentration of most nanomaterials reported earlier. An ECM-mimicking scaffold film prepared by coating Mo3Se3- SCACs on a glass substrate enabled the cells to adhere to the surface in a highly stretched manner at the initial stage of cell adhesion. Most cells cultured on the ECM-mimicking scaffold film remained alive; in contrast, a substantial number of cells cultured on glass substrates without the Mo3Se3- SCAC coating did not survive. This work not only proves the exceptional biocompatible and bioactive characteristics of the Mo3Se3- SCACs but also suggests that, as an ECM-mimicking scaffold material, Mo3Se3- SCACs can overcome several critical limitations of most other nanomaterials.
Collapse
Affiliation(s)
- Jin Woong Lee
- School of Advanced Materials Science & Engineering , Sungkyunkwan University (SKKU) , Suwon 16419 , Republic of Korea
| | - Sudong Chae
- School of Advanced Materials Science & Engineering , Sungkyunkwan University (SKKU) , Suwon 16419 , Republic of Korea
| | - Seoungbae Oh
- School of Advanced Materials Science & Engineering , Sungkyunkwan University (SKKU) , Suwon 16419 , Republic of Korea
| | - Si Hyun Kim
- SKKU Advanced Institute of Nanotechnology (SAINT) , Sungkyunkwan University (SKKU) , Suwon 16419 , Republic of Korea
| | - Kyung Hwan Choi
- SKKU Advanced Institute of Nanotechnology (SAINT) , Sungkyunkwan University (SKKU) , Suwon 16419 , Republic of Korea
| | - Montri Meeseepong
- SKKU Advanced Institute of Nanotechnology (SAINT) , Sungkyunkwan University (SKKU) , Suwon 16419 , Republic of Korea
| | - Jongwha Chang
- School of Pharmacy , University of Texas , El Paso , Texas 79968 , United States
| | - Namsoo Kim
- Department of Metallurgical & Materials Engineering , The University of Texas , El Paso , Texas 79968 , United States
| | - Nae-Eung Lee
- School of Advanced Materials Science & Engineering , Sungkyunkwan University (SKKU) , Suwon 16419 , Republic of Korea
- SKKU Advanced Institute of Nanotechnology (SAINT) , Sungkyunkwan University (SKKU) , Suwon 16419 , Republic of Korea
- Samsung Advanced Institute for Health Sciences & Technology (SAIHST) , Sungkyunkwan University (SKKU) , Suwon 16419 , Republic of Korea
- Biomedical Institute for Convergence at SKKU (BICS) , Sungkyunkwan University (SKKU) , Suwon 16419 , Republic of Korea
| | - Jung Heon Lee
- School of Advanced Materials Science & Engineering , Sungkyunkwan University (SKKU) , Suwon 16419 , Republic of Korea
- SKKU Advanced Institute of Nanotechnology (SAINT) , Sungkyunkwan University (SKKU) , Suwon 16419 , Republic of Korea
- Biomedical Institute for Convergence at SKKU (BICS) , Sungkyunkwan University (SKKU) , Suwon 16419 , Republic of Korea
| | - Jae-Young Choi
- School of Advanced Materials Science & Engineering , Sungkyunkwan University (SKKU) , Suwon 16419 , Republic of Korea
- SKKU Advanced Institute of Nanotechnology (SAINT) , Sungkyunkwan University (SKKU) , Suwon 16419 , Republic of Korea
| |
Collapse
|
50
|
Bracey DN, Seyler TM, Jinnah AH, Lively MO, Willey JS, Smith TL, Van Dyke ME, Whitlock PW. A Decellularized Porcine Xenograft-Derived Bone Scaffold for Clinical Use as a Bone Graft Substitute: A Critical Evaluation of Processing and Structure. J Funct Biomater 2018; 9:jfb9030045. [PMID: 30002336 PMCID: PMC6164666 DOI: 10.3390/jfb9030045] [Citation(s) in RCA: 37] [Impact Index Per Article: 6.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/08/2018] [Revised: 07/06/2018] [Accepted: 07/09/2018] [Indexed: 12/28/2022] Open
Abstract
BACKGROUND Bone grafts are used in approximately one half of all musculoskeletal surgeries. Autograft bone is the historic gold standard but is limited in supply and its harvest imparts significant morbidity to the patient. Alternative sources of bone graft include allografts, synthetics and, less commonly, xenografts which are taken from animal species. Xenografts are available in unlimited supply from healthy animal donors with controlled biology, avoiding the risk of human disease transmission, and may satisfy current demand for bone graft products. METHODS In the current study, cancellous bone was harvested from porcine femurs and subjected to a novel decellularization protocol to derive a bone scaffold. RESULTS The scaffold was devoid of donor cellular material on histology and DNA sampling (p < 0.01). Microarchitectural properties important for osteoconductive potential were preserved after decellularization as shown by high resolution imaging modalities. Proteomics data demonstrated similar profiles when comparing the porcine bone scaffold against commercially available human demineralized bone matrix approved for clinical use. CONCLUSION We are unaware of any porcine-derived bone graft products currently used in orthopaedic surgery practice. Results from the current study suggest that porcine-derived bone scaffolds warrant further consideration to serve as a potential bone graft substitute.
Collapse
Affiliation(s)
- Daniel N Bracey
- Department of Orthopaedic Surgery, Wake Forest School of Medicine, Winston-Salem, NC 27157, USA.
| | - Thorsten M Seyler
- Department of Orthopaedic Surgery, Duke University School of Medicine, Durham, NC 27710, USA.
| | - Alexander H Jinnah
- Department of Orthopaedic Surgery, Wake Forest School of Medicine, Winston-Salem, NC 27157, USA.
| | - Mark O Lively
- Department of Biochemistry, Wake Forest School of Medicine, Winston-Salem, NC 27157, USA.
| | - Jeffrey S Willey
- Department of Radiation Oncology, Wake Forest School of Medicine Comprehensive Cancer Center, Winston-Salem, NC 27157, USA.
| | - Thomas L Smith
- Department of Orthopaedic Surgery, Wake Forest School of Medicine, Winston-Salem, NC 27157, USA.
| | - Mark E Van Dyke
- Department of Biomedical Engineering and Mechanics, Virginia Polytechnic Institute and State University, Blacksburg, VA 24061, USA.
| | - Patrick W Whitlock
- Division of Orthopaedic Surgery, Cincinnati Children's Hospital Medical Center, Cincinnati, OH 45229, USA.
| |
Collapse
|