1
|
Gu L, Sun R, Wang W, Xia Q. Nanostructured lipid carriers for the encapsulation of phloretin: preparation and in vitro characterization studies. Chem Phys Lipids 2021; 242:105150. [PMID: 34673008 DOI: 10.1016/j.chemphyslip.2021.105150] [Citation(s) in RCA: 20] [Impact Index Per Article: 6.7] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/16/2021] [Revised: 10/05/2021] [Accepted: 10/15/2021] [Indexed: 01/06/2023]
Abstract
Phloretin is a powerful antioxidant with many effects, such as anti-cancer, anti-inflammatory, promoting cell renewal, delaying aging and so on. However, the application of phloretin was limited by its low water solubility, low absorption in vivo and unstable properties. A phloretin-loaded nanostructured lipid carrier was designed with a high-pressure homogenization technique. The mean particle size of phloretin NLC was 137.40 ± 3.27 nm, and the Polydispersity index (PdI) value was 0.237 ± 0.005. The encapsulation efficiency was 96.68% ± 0.06%. Transmission electron microscopy images showed that the phloretin-loaded nanostructured lipid carriers were spherical. Phloretin in NLC showed a sustained release pattern in vitro. The results showed that phloretin NLC is more suitable for absorption than phloretin ethanol solution, and NLC can be a promising carrier for phloretin in the food industry.
Collapse
Affiliation(s)
- Liyuan Gu
- School of Biological Science and Medical Engineering, State Key Laboratory of Bioelectronics, Southeast University, Nanjing 210096, China; National Demonstration Center for Experimental Biomedical Engineering Education, Southeast University, Nanjing 210096, China; Collaborative Innovation Center of Suzhou Nano Science and Technology, Suzhou 215123, China
| | - Rui Sun
- School of Biological Science and Medical Engineering, State Key Laboratory of Bioelectronics, Southeast University, Nanjing 210096, China; National Demonstration Center for Experimental Biomedical Engineering Education, Southeast University, Nanjing 210096, China; Collaborative Innovation Center of Suzhou Nano Science and Technology, Suzhou 215123, China
| | - Wenjuan Wang
- School of Biological Science and Medical Engineering, State Key Laboratory of Bioelectronics, Southeast University, Nanjing 210096, China; National Demonstration Center for Experimental Biomedical Engineering Education, Southeast University, Nanjing 210096, China; Collaborative Innovation Center of Suzhou Nano Science and Technology, Suzhou 215123, China
| | - Qiang Xia
- School of Biological Science and Medical Engineering, State Key Laboratory of Bioelectronics, Southeast University, Nanjing 210096, China; National Demonstration Center for Experimental Biomedical Engineering Education, Southeast University, Nanjing 210096, China; Collaborative Innovation Center of Suzhou Nano Science and Technology, Suzhou 215123, China.
| |
Collapse
|
2
|
Cawthon CR, de La Serre CB. The critical role of CCK in the regulation of food intake and diet-induced obesity. Peptides 2021; 138:170492. [PMID: 33422646 DOI: 10.1016/j.peptides.2020.170492] [Citation(s) in RCA: 32] [Impact Index Per Article: 10.7] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 02/13/2020] [Revised: 12/16/2020] [Accepted: 12/23/2020] [Indexed: 12/17/2022]
Abstract
In 1973, Gibbs, Young, and Smith showed that exogenous cholecystokinin (CCK) administration reduces food intake in rats. This initial report has led to thousands of studies investigating the physiological role of CCK in regulating feeding behavior. CCK is released from enteroendocrine I cells present along the gastrointestinal (GI) tract. CCK binding to its receptor CCK1R leads to vagal afferent activation providing post-ingestive feedback to the hindbrain. Vagal afferent neurons' (VAN) sensitivity to CCK is modulated by energy status while CCK signaling regulates gene expression of other feeding related signals and receptors expressed by VAN. In addition to its satiation effects, CCK acts all along the GI tract to optimize digestion and nutrient absorption. Diet-induced obesity (DIO) is characterized by reduced sensitivity to CCK and every part of the CCK system is negatively affected by chronic intake of energy-dense foods. EEC have recently been shown to adapt to diet, CCK1R is affected by dietary fats consumption, and the VAN phenotypic flexibility is lost in DIO. Altered endocannabinoid tone, changes in gut microbiota composition, and chronic inflammation are currently being explored as potential mechanisms for diet driven loss in CCK signaling. This review discusses our current understanding of how CCK controls food intake in conditions of leanness and how control is lost in chronic energy excess and obesity, potentially perpetuating excessive intake.
Collapse
Affiliation(s)
- Carolina R Cawthon
- Department of Foods and Nutrition, University of Georgia, Athens, GA, USA
| | | |
Collapse
|
3
|
Modvig IM, Christiansen CB, Rehfeld JF, Holst JJ, Veedfald S. CCK-1 and CCK-2 receptor agonism do not stimulate GLP-1 and neurotensin secretion in the isolated perfused rat small intestine or GLP-1 and PYY secretion in the rat colon. Physiol Rep 2020; 8:e14352. [PMID: 31984675 PMCID: PMC6983481 DOI: 10.14814/phy2.14352] [Citation(s) in RCA: 4] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/03/2019] [Revised: 12/21/2019] [Accepted: 12/24/2019] [Indexed: 12/30/2022] Open
Abstract
Gastrin and cholecystokinin (CCK) are hormones released from endocrine cells in the antral stomach (gastrin), the duodenum, and the jejunum (CCK). Recent reports, based on secretion experiments in an enteroendocrine cell line (NCI-H716) and gastrin receptor expression in proglucagon-expressing cells from the rat colon, suggested that gastrin could be a regulator of glucagon-like peptide-1 (GLP-1) secretion. To investigate these findings, we studied the acute effects of CCK-8 (a CCK1/CCK2 (gastrin) receptor agonist) and gastrin-17 (a CCK2(gastrin) receptor agonist) in robust ex vivo models: the isolated perfused rat small intestine and the isolated perfused rat colon. Small intestines from Wistar rats (n = 6), were perfused intraarterially over 80 min. During the perfusion, CCK (1 nmol/L) and gastrin (1 nmol/L) were infused over 10-min periods separated by washout/baseline periods. Colons from Wistar rats (n = 6) were perfused intraarterially over 100 min. During the perfusion, CCK (1 nmol/L), vasoactive intestinal peptide (VIP) (10 nmol/L), and glucose-dependent insulinotropic polypeptide (GIP) (1 nmol/L) were infused over 10-min periods separated by washout/baseline periods. In the perfused rat small intestines neither CCK nor gastrin stimulated the release of GLP-1 or neurotensin. In the perfused rat colon, neither CCK or VIP stimulated GLP-1 or peptide YY (PYY) release, but GIP stimulated both GLP-1 and PYY release. In both sets of experiments, bombesin, a gastrin-releasing peptide analog, served as a positive control. Our findings do not support the suggestion that gastrin or CCK participate in the acute regulation of intestinal GLP-1 secretion, but that GIP may play a role in the regulation of hormone secretion from the colon.
Collapse
Affiliation(s)
- Ida M. Modvig
- Department of Biomedical SciencesThe Panum InstituteFaculty of Health and Medical SciencesUniversity of CopenhagenCopenhagenDenmark
- Translational Metabolic PhysiologyNNF Center for Basic Metabolic ResearchThe Panum InstituteFaculty of Health and Medical SciencesUniversity of CopenhagenCopenhagenDenmark
| | - Charlotte B. Christiansen
- Department of Biomedical SciencesThe Panum InstituteFaculty of Health and Medical SciencesUniversity of CopenhagenCopenhagenDenmark
- Translational Metabolic PhysiologyNNF Center for Basic Metabolic ResearchThe Panum InstituteFaculty of Health and Medical SciencesUniversity of CopenhagenCopenhagenDenmark
| | - Jens F. Rehfeld
- Department of Clinical BiochemistryRigshospitaletCopenhagenDenmark
| | - Jens J. Holst
- Department of Biomedical SciencesThe Panum InstituteFaculty of Health and Medical SciencesUniversity of CopenhagenCopenhagenDenmark
- Translational Metabolic PhysiologyNNF Center for Basic Metabolic ResearchThe Panum InstituteFaculty of Health and Medical SciencesUniversity of CopenhagenCopenhagenDenmark
| | - Simon Veedfald
- Department of Biomedical SciencesThe Panum InstituteFaculty of Health and Medical SciencesUniversity of CopenhagenCopenhagenDenmark
| |
Collapse
|
4
|
Christiansen CB, Trammell SAJ, Wewer Albrechtsen NJ, Schoonjans K, Albrechtsen R, Gillum MP, Kuhre RE, Holst JJ. Bile acids drive colonic secretion of glucagon-like-peptide 1 and peptide-YY in rodents. Am J Physiol Gastrointest Liver Physiol 2019; 316:G574-G584. [PMID: 30767682 DOI: 10.1152/ajpgi.00010.2019] [Citation(s) in RCA: 39] [Impact Index Per Article: 7.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Indexed: 01/31/2023]
Abstract
A large number of glucagon-like-peptide-1 (GLP-1)- and peptide-YY (PYY)-producing L cells are located in the colon, but little is known about their contribution to whole body metabolism. Since bile acids (BAs) increase GLP-1 and PYY release, and since BAs spill over from the ileum to the colon, we decided to investigate the ability of BAs to stimulate colonic GLP-1 and PYY secretion. Using isolated perfused rat/mouse colon as well as stimulation of the rat colon in vivo, we demonstrate that BAs significantly enhance secretion of GLP-1 and PYY from the colon with average increases of 3.5- and 2.9-fold, respectively. Furthermore, we find that responses depend on BA absorption followed by basolateral activation of the BA-receptor Takeda-G protein-coupled-receptor 5. Surprisingly, the apical sodium-dependent BA transporter, which serves to absorb conjugated BAs, was not required for colonic conjugated BA absorption or conjugated BA-induced peptide secretion. In conclusion, we demonstrate that BAs represent a major physiological stimulus for colonic L-cell secretion. NEW & NOTEWORTHY By the use of isolated perfused rodent colon preparations we show that bile acids are potent and direct promoters of colonic glucagon-like-peptide 1 and peptide-YY secretion. The study provides convincing evidence that basolateral Takeda-G protein-coupled-receptor 5 activation is mediating the effects of bile acids in the colon and thus add to the existing literature described for L cells in the ileum.
Collapse
Affiliation(s)
- Charlotte Bayer Christiansen
- Novo Nordic Foundation Center for Basic Metabolic Research, Faculty of Health and Medical Sciences, University of Copenhagen , Copenhagen , Denmark.,Department of Biomedical Sciences, Faculty of Health and Medical Sciences, University of Copenhagen , Copenhagen , Denmark
| | - Samuel Addison Jack Trammell
- Novo Nordic Foundation Center for Basic Metabolic Research, Faculty of Health and Medical Sciences, University of Copenhagen , Copenhagen , Denmark.,Department of Biomedical Sciences, Faculty of Health and Medical Sciences, University of Copenhagen , Copenhagen , Denmark
| | - Nicolai Jacob Wewer Albrechtsen
- Novo Nordic Foundation Center for Basic Metabolic Research, Faculty of Health and Medical Sciences, University of Copenhagen , Copenhagen , Denmark.,Department of Biomedical Sciences, Faculty of Health and Medical Sciences, University of Copenhagen , Copenhagen , Denmark.,Department of Clinical Biochemistry, Rigshospitalet, Copenhagen , Denmark.,Clinical Proteomics, Novo Nordic Foundation Center for Protein Research, Faculty of Health and Medical Sciences, University of Copenhagen , Copenhagen , Denmark
| | - Kristina Schoonjans
- Institute of Bioengineering, Ecole Polytechnique Fédérale de Lausanne, Lausanne , Switzerland
| | - Reidar Albrechtsen
- Biotech Research and Innovation Centre, Faculty of Health and Medical Sciences, University of Copenhagen , Copenhagen , Denmark
| | - Matthew Paul Gillum
- Novo Nordic Foundation Center for Basic Metabolic Research, Faculty of Health and Medical Sciences, University of Copenhagen , Copenhagen , Denmark.,Department of Biomedical Sciences, Faculty of Health and Medical Sciences, University of Copenhagen , Copenhagen , Denmark
| | - Rune Ehrenreich Kuhre
- Novo Nordic Foundation Center for Basic Metabolic Research, Faculty of Health and Medical Sciences, University of Copenhagen , Copenhagen , Denmark.,Department of Biomedical Sciences, Faculty of Health and Medical Sciences, University of Copenhagen , Copenhagen , Denmark
| | - Jens Juul Holst
- Novo Nordic Foundation Center for Basic Metabolic Research, Faculty of Health and Medical Sciences, University of Copenhagen , Copenhagen , Denmark.,Department of Biomedical Sciences, Faculty of Health and Medical Sciences, University of Copenhagen , Copenhagen , Denmark
| |
Collapse
|
5
|
Hsu LT, Hung KY, Wu HW, Liu WW, She MP, Lee TC, Sun CH, Yu WH, Buret AG, Yu LCH. Gut-derived cholecystokinin contributes to visceral hypersensitivity via nerve growth factor-dependent neurite outgrowth. J Gastroenterol Hepatol 2016; 31:1594-603. [PMID: 26773283 DOI: 10.1111/jgh.13296] [Citation(s) in RCA: 7] [Impact Index Per Article: 0.9] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 09/17/2015] [Revised: 01/04/2016] [Accepted: 01/12/2016] [Indexed: 12/20/2022]
Abstract
BACKGROUND AND AIM Irritable bowel syndrome is characterized by abdominal pain and altered bowel habits and may occur following stressful events or infectious gastroenteritis such as giardiasis. Recent findings revealed a link between cholecystokinin (CCK), neurotrophin synthesis, and intestinal hyperalgesia. The aim was to investigate the role of CCK in visceral hypersensitivity using mouse models challenged with a bout of infection with Giardia lamblia or psychological stress, either alone or in combination. METHODS Abdominal pain was evaluated by visceromoter response to colorectal distension. Nerve fibers in intestinal tissues were stained using immunohistochemistry (PGP9.5). Human neuroblastoma SH-SY5Y cells incubated with bacterial-free mouse gut supernatant or recombinant CCK-8S were assessed for neurite outgrowth and nerve growth factor (NGF) production. RESULTS Intestinal hypersensitivity was induced by either stress or Giardia infection, and a trend of increased pain was seen following dual stimuli. Increased CCK levels and PGP9.5 immunoreactivity were found in colonic mucosa of mice following stress and/or infection. Inhibitors to the CCK-A receptor (L-364718) or CCK-B receptor (L-365260) blocked visceral hypersensitivity caused by stress, but not when induced by giardiasis. Nerve fiber elongation and NGF synthesis were observed in SH-SY5Y cells after incubation with colonic supernatants from mice given the dual stimuli, or after treatment with CCK-8S. Increased nerve fiber length by colonic supernatant and CCK-8S was attenuated by L-365260 or neutralizing anti-NGF. CONCLUSIONS This new model successfully recapitulates intestinal hypernociception induced by stress or Giardia. Colonic CCK contributes to visceral hypersensitivity caused by stress, but not by Giardia, partly via NGF-dependent neurite outgrowth.
Collapse
Affiliation(s)
- Luo-Ting Hsu
- Graduate Institute of Physiology, National Taiwan University College of Medicine, Taipei, Taiwan
| | - Kuan-Yang Hung
- Graduate Institute of Physiology, National Taiwan University College of Medicine, Taipei, Taiwan
| | - Hsiu-Wei Wu
- Graduate Institute of Physiology, National Taiwan University College of Medicine, Taipei, Taiwan
| | - Wei-Wen Liu
- Graduate Institute of Physiology, National Taiwan University College of Medicine, Taipei, Taiwan
| | - Meng-Ping She
- Graduate Institute of Physiology, National Taiwan University College of Medicine, Taipei, Taiwan
| | - Tsung-Chun Lee
- Graduate Institute of Physiology, National Taiwan University College of Medicine, Taipei, Taiwan.,Department of Internal Medicine, National Taiwan University Hospital, Taipei, Taiwan
| | - Chin-Hung Sun
- Graduate Institute of Parasitology, National Taiwan University College of Medicine, Taipei, Taiwan
| | - Wei-Hsuan Yu
- Graduate Institute of Biochemistry and Molecular Biology, National Taiwan University College of Medicine, Taipei, Taiwan
| | - Andre G Buret
- Department of Biological Sciences, Inflammation Research Network, University of Calgary, Calgary, Alberta, Canada
| | - Linda Chia-Hui Yu
- Graduate Institute of Physiology, National Taiwan University College of Medicine, Taipei, Taiwan.
| |
Collapse
|
6
|
Abstract
As obesity continues to be a global epidemic, research into the mechanisms of hunger and satiety and how those signals act to regulate energy homeostasis persists. Peptide YY (PYY) is an acute satiety signal released upon nutrient ingestion and has been shown to decrease food intake when administered exogenously. More recently, investigators have studied how different factors influence PYY release and circulating levels in humans. Some of these factors include exercise, macronutrient composition of the diet, body-weight status, adiposity levels, sex, race and ageing. The present article provides a succinct and comprehensive review of the recent literature published on the different factors that influence PYY release and circulating levels in humans. Where human data are insufficient, evidence in animal or cell models is summarised. Additionally, the present review explores the recent findings on PYY responses to different dietary fatty acids and how this new line of research will make an impact on future studies on PYY. Human demographics, such as sex and age, do not appear to influence PYY levels. Conversely, adiposity or BMI, race and acute exercise all influence circulating PYY levels. Both dietary fat and protein strongly stimulate PYY release. Furthermore, MUFA appear to result in a smaller PYY response compared with SFA and PUFA. PYY levels appear to be affected by acute exercise, macronutrient composition, adiposity, race and the composition of fatty acids from dietary fat.
Collapse
|