1
|
Tekulapally KR, Lee JY, Kim DS, Rahman MM, Park CK, Kim YH. Dual role of transient receptor potential ankyrin 1 in respiratory and gastrointestinal physiology: From molecular mechanisms to therapeutic targets. Front Physiol 2024; 15:1413902. [PMID: 39022308 PMCID: PMC11251976 DOI: 10.3389/fphys.2024.1413902] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/08/2024] [Accepted: 06/10/2024] [Indexed: 07/20/2024] Open
Abstract
The transient receptor potential ankyrin 1 (TRPA1) channel plays a pivotal role in the respiratory and gastrointestinal tracts. Within the respiratory system, TRPA1 exhibits diverse distribution patterns across key cell types, including epithelial cells, sensory nerves, and immune cells. Its activation serves as a frontline sensor for inhaled irritants, triggering immediate protective responses, and influencing airway integrity. Furthermore, TRPA1 has been implicated in airway tissue injury, inflammation, and the transition of fibroblasts, thereby posing challenges in conditions, such as severe asthma and fibrosis. In sensory nerves, TRPA1 contributes to nociception, the cough reflex, and bronchoconstriction, highlighting its role in both immediate defense mechanisms and long-term respiratory reflex arcs. In immune cells, TRPA1 may modulate the release of pro-inflammatory mediators, shaping the overall inflammatory landscape. In the gastrointestinal tract, the dynamic expression of TRPA1 in enteric neurons, epithelial cells, and immune cells underscores its multifaceted involvement. It plays a crucial role in gut motility, visceral pain perception, and mucosal defense mechanisms. Dysregulation of TRPA1 in both tracts is associated with various disorders such as asthma, Chronic Obstructive Pulmonary Disease, Irritable Bowel Syndrome, and Inflammatory Bowel Disease. This review emphasizes the potential of TRPA1 as a therapeutic target and discusses the efficacy of TRPA1 antagonists in preclinical studies and their promise for addressing respiratory and gastrointestinal conditions. Understanding the intricate interactions and cross-talk of TRPA1 across different cell types provides insight into its versatile role in maintaining homeostasis in vital physiological systems, offering a foundation for targeted therapeutic interventions.
Collapse
Affiliation(s)
- Kavya Reddy Tekulapally
- Gachon Pain Center and Department of Physiology, Gachon University College of Medicine, Incheon, Republic of Korea
| | - Ji Yeon Lee
- Department of Anesthesiology and Pain Medicine, Gachon University, Gil Medical Center, Incheon, Republic of Korea
| | - Dong Seop Kim
- Department of Anesthesiology and Pain Medicine, Gachon University, Gil Medical Center, Incheon, Republic of Korea
| | - Md. Mahbubur Rahman
- Gachon Pain Center and Department of Physiology, Gachon University College of Medicine, Incheon, Republic of Korea
| | - Chul-Kyu Park
- Gachon Pain Center and Department of Physiology, Gachon University College of Medicine, Incheon, Republic of Korea
| | - Yong Ho Kim
- Gachon Pain Center and Department of Physiology, Gachon University College of Medicine, Incheon, Republic of Korea
| |
Collapse
|
2
|
Fang Q, Yu L, Tian F, Zhang H, Chen W, Zhai Q. Effects of dietary irritants on intestinal homeostasis and the intervention strategies. Food Chem 2023; 409:135280. [PMID: 36587512 DOI: 10.1016/j.foodchem.2022.135280] [Citation(s) in RCA: 7] [Impact Index Per Article: 7.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/08/2022] [Revised: 12/11/2022] [Accepted: 12/19/2022] [Indexed: 12/24/2022]
Abstract
Abundant diet components are unexplored as vital factors in intestinal homeostasis. Dietary irritants stimulate the nervous system and provoke somatosensory responses, further inducing diarrhea, gut microbiota disorder, intestinal barrier damage or even severe gastrointestinal disease. We depicted the effects of food with piquancy, high fat, low pH, high-refined carbohydrates, and indigestible texture. The mechanism of dietary irritants on intestinal homeostasis were comprehensively summarized. Somatosensory responses to dietary irritants are palpable and have specific chemical and neural mechanisms. In contrast, even low-dose exposure to dietary irritants can involve multiple intestinal barriers. Their mechanisms in intestinal homeostasis are often overlapping and dose-dependent. Therefore, treating symptoms caused by dietary irritants requires personalized nutritional advice. The reprocessing of stimulant foods, additional supplementation with probiotics or prebiotics, and enhancement of the intestinal barrier are effective intervention strategies. This review provides promising preliminary guidelines for the treatment of symptoms and gastrointestinal injury caused by dietary irritants.
Collapse
Affiliation(s)
- Qingying Fang
- State Key Laboratory of Food Science and Technology, Jiangnan University, Wuxi, Jiangsu 214122, PR China; School of Food Science and Technology, Jiangnan University, Wuxi, Jiangsu 214122, PR China
| | - Leilei Yu
- State Key Laboratory of Food Science and Technology, Jiangnan University, Wuxi, Jiangsu 214122, PR China; School of Food Science and Technology, Jiangnan University, Wuxi, Jiangsu 214122, PR China
| | - Fengwei Tian
- State Key Laboratory of Food Science and Technology, Jiangnan University, Wuxi, Jiangsu 214122, PR China; School of Food Science and Technology, Jiangnan University, Wuxi, Jiangsu 214122, PR China; Institute of Food Biotechnology, Jiangnan University, Yangzhou 225004, PR China
| | - Hao Zhang
- State Key Laboratory of Food Science and Technology, Jiangnan University, Wuxi, Jiangsu 214122, PR China; School of Food Science and Technology, Jiangnan University, Wuxi, Jiangsu 214122, PR China; National Engineering Research Center for Functional Food, Jiangnan University, Wuxi, Jiangsu 214122, PR China; Wuxi Translational Medicine Research Center and Jiangsu Translational Medicine Research Institute, Wuxi Branch, PR China; Institute of Food Biotechnology, Jiangnan University, Yangzhou 225004, PR China
| | - Wei Chen
- State Key Laboratory of Food Science and Technology, Jiangnan University, Wuxi, Jiangsu 214122, PR China; School of Food Science and Technology, Jiangnan University, Wuxi, Jiangsu 214122, PR China; National Engineering Research Center for Functional Food, Jiangnan University, Wuxi, Jiangsu 214122, PR China
| | - Qixiao Zhai
- State Key Laboratory of Food Science and Technology, Jiangnan University, Wuxi, Jiangsu 214122, PR China; School of Food Science and Technology, Jiangnan University, Wuxi, Jiangsu 214122, PR China; Institute of Food Biotechnology, Jiangnan University, Yangzhou 225004, PR China.
| |
Collapse
|
3
|
Sugino S, Inoue K, Kobayashi R, Hirose R, Doi T, Harusato A, Dohi O, Yoshida N, Uchiyama K, Ishikawa T, Takagi T, Yasuda H, Konishi H, Hirai Y, Mizushima K, Naito Y, Tsuji T, Okuda T, Kagawa K, Tominaga M, Itoh Y. Association Between the Cool Temperature-dependent Suppression of Colonic Peristalsis and Transient Receptor Potential Melastatin 8 Activation in Both a Randomized Clinical Trial and an Animal Model. J Neurogastroenterol Motil 2022; 28:693-705. [PMID: 36250375 PMCID: PMC9577569 DOI: 10.5056/jnm21198] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 10/05/2021] [Revised: 12/29/2021] [Accepted: 02/20/2022] [Indexed: 12/04/2022] Open
Abstract
Background/Aims Several studies have assessed the effect of cool temperature on colonic peristalsis. Transient receptor potential melastatin 8 (TRPM8) is a temperature-sensitive ion channel activated by mild cooling expressed in the colon. We examined the antispasmodic effect of cool temperature on colonic peristalsis in a prospective, randomized, single-blind trial and based on the video imaging and intraluminal pressure of the proximal colon in rats and TRPM8-deficient mice. Methods In the clinical trial, we randomly assigned a total of 94 patients scheduled to undergo colonoscopy to 2 groups: the mildly cool water (n = 47) and control (n = 47) groups. We used 20 mL of 15°C water for the mildly cool water. The primary outcome was the proportion of subjects with improved peristalsis after treatment. In the rodent proximal colon, we evaluated the intraluminal pressure and performed video imaging of the rodent proximal colon with cool water administration into the colonic lumen. Clinical trial registry website (Trial No. UMIN-CTR; UMIN000030725). Results In the randomized controlled trial, after treatment, the proportion of subjects with no peristalsis with cool water was significantly higher than that in the placebo group (44.7% vs 23.4%; P < 0.05). In the rodent colon model, cool temperature water was associated with a significant decrease in colonic peristalsis through its suppression of the ratio of peak frequency (P < 0.05). Cool temperature-treated TRPM8-deficient mice did not show a reduction in colonic peristalsis compared with wild-type mice. Conclusion For the first time, this study demonstrates that cool temperature-dependent suppression of colonic peristalsis may be associated with TRPM8 activation.
Collapse
Affiliation(s)
- Satoshi Sugino
- Department of Molecular Gastroenterology and Hepatology, Kyoto Prefectural University of Medicine Graduate School of Medical Science, Kyoto, Japan
| | - Ken Inoue
- Department of Molecular Gastroenterology and Hepatology, Kyoto Prefectural University of Medicine Graduate School of Medical Science, Kyoto, Japan
| | - Reo Kobayashi
- Department of Molecular Gastroenterology and Hepatology, Kyoto Prefectural University of Medicine Graduate School of Medical Science, Kyoto, Japan
| | - Ryohei Hirose
- Department of Molecular Gastroenterology and Hepatology, Kyoto Prefectural University of Medicine Graduate School of Medical Science, Kyoto, Japan
| | - Toshifumi Doi
- Department of Molecular Gastroenterology and Hepatology, Kyoto Prefectural University of Medicine Graduate School of Medical Science, Kyoto, Japan
| | - Akihito Harusato
- Department of Molecular Gastroenterology and Hepatology, Kyoto Prefectural University of Medicine Graduate School of Medical Science, Kyoto, Japan
| | - Osamu Dohi
- Department of Molecular Gastroenterology and Hepatology, Kyoto Prefectural University of Medicine Graduate School of Medical Science, Kyoto, Japan
| | - Naohisa Yoshida
- Department of Molecular Gastroenterology and Hepatology, Kyoto Prefectural University of Medicine Graduate School of Medical Science, Kyoto, Japan
| | - Kazuhiko Uchiyama
- Department of Molecular Gastroenterology and Hepatology, Kyoto Prefectural University of Medicine Graduate School of Medical Science, Kyoto, Japan
| | - Takeshi Ishikawa
- Department of Molecular Gastroenterology and Hepatology, Kyoto Prefectural University of Medicine Graduate School of Medical Science, Kyoto, Japan
| | - Tomohisa Takagi
- Department of Molecular Gastroenterology and Hepatology, Kyoto Prefectural University of Medicine Graduate School of Medical Science, Kyoto, Japan
| | - Hiroaki Yasuda
- Department of Molecular Gastroenterology and Hepatology, Kyoto Prefectural University of Medicine Graduate School of Medical Science, Kyoto, Japan
| | - Hideyuki Konishi
- Department of Molecular Gastroenterology and Hepatology, Kyoto Prefectural University of Medicine Graduate School of Medical Science, Kyoto, Japan
| | - Yasuko Hirai
- Department of Human Immunology and Nutrition Science, Kyoto Prefectural University of Medicine, Kyoto, Japan
| | - Katsura Mizushima
- Department of Human Immunology and Nutrition Science, Kyoto Prefectural University of Medicine, Kyoto, Japan
| | - Yuji Naito
- Department of Human Immunology and Nutrition Science, Kyoto Prefectural University of Medicine, Kyoto, Japan
| | - Toshifumi Tsuji
- Department of Gastroenterology and Hepatology, Fukuchiyama City Hospital, Kyoto, Japan
| | - Takashi Okuda
- Department of Gastroenterology and Hepatology, Fukuchiyama City Hospital, Kyoto, Japan
| | - Keizo Kagawa
- Department of Gastroenterology and Hepatology, Fukuchiyama City Hospital, Kyoto, Japan
| | - Makoto Tominaga
- Division of Cell Signaling National Institute for Physiological Sciences, National Institutes of Natural Sciences, Aichi, Japan
| | - Yoshito Itoh
- Department of Molecular Gastroenterology and Hepatology, Kyoto Prefectural University of Medicine Graduate School of Medical Science, Kyoto, Japan
| |
Collapse
|
4
|
Jiang T, Niu R, Liu Q, Fu Y, Luo X, Zhang T, Wu B, Han J, Yang Y, Su X, Chen JDZ, Song G, Wei W. Wenshen-Jianpi prescription, a Chinese herbal medicine, improves visceral hypersensitivity in a rat model of IBS-D by regulating the MEK/ERK signal pathway. Front Pharmacol 2022; 13:955421. [PMID: 36210803 PMCID: PMC9540386 DOI: 10.3389/fphar.2022.955421] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/28/2022] [Accepted: 08/24/2022] [Indexed: 11/13/2022] Open
Abstract
The goal of the study was to analyze whether WJP can alleviate visceral hypersensitivity in IBS-D model rats. In this study, 36 Sprague–Dawley (SD) rats aged 4 weeks old were randomly divided into two groups: the model group (n = 27) and the control group (n = 9). The rat model of IBS-D was established by modified compound methods for 4 weeks. After the modification, IBS-D rats were randomly divided into three groups, namely, the IBS-D model group (n = 9), the positive drug group (n = 9), and the WJP group (n = 9), with different interventions, respectively. The control group was fed and allowed to drink water routinely. The Bristol stool scale scores were used to assess the severity of diarrhea. Abdominal withdrawal reflex (AWR) scores were used to assess visceral sensitivity. Expression of TNF-α was measured, and histopathological examinations were performed to assess colon inflammation in IBS-D model rats. Key factors of the MEK/ERK signal pathway in the tissue of the colon and hippocampus were measured to analyze the mechanism of WJP. Compared with the control group, the Bristol stool scale scores in the model group were significantly increased (p < 0.0001). The scores of the WJP group were significantly decreased compared with the model group (p = 0.0001). Compared with the control group, AWR scores in the model group at each pressure level were significantly increased (p = 0.0003, p < 0.0001, p = 0.0007, and p = 0.0009). AWR scores of the WJP group were significantly decreased compared with the model group (p = 0.0003, p = 0.0007, p = 0.0007, and p = 0.0009). Compared with the control group, the model group had significantly higher expression of TNF-α in the colon tissue (p < 0.0001). However, the WJP group had significantly lower level of TNF-α compared with the model group (p < 0.0001). Meanwhile, compared with the control group, the relative expression of the proteins of p-MEK1/2, p-ERK1, and p-ERK2 in the colon tissue was significantly increased in the model group (p < 0.0001). Compared with the model group, the relative expression of the proteins in the colon tissue were significantly decreased in the WJP group (p < 0.0001, p = 0.0019, and p = 0.0013). Compared with the control group, the relative expression of the proteins of p-MEK1/2, p-ERK1, and p-ERK2 in the hippocampus tissue were significantly increased in the model group (p < 0.0001). Compared with the model group, the relative expression of the proteins in the hippocampus tissue were significantly decreased in the WJP group (p = 0.0126, p = 0.0291, and p = 0.0145). The results indicated that WJP can alleviate visceral hypersensitivity in IBS-D model rats, possibly mediated by downregulating the expression of TNF-α, p-MEK1/2, p-ERK1, and p-ERK2 in the colon tissue. At the same time, WJP also affects downregulating the expression of p-MEK1/2, p-ERK1, and p-ERK2 in the hippocampus tissue.
Collapse
Affiliation(s)
- Tianyuan Jiang
- Wangjing Hospital, China Academy of Chinese Medical Sciences, Beijing, China
- Laboratory of Functional Gastrointestinal Disorders Diagnosis and Treatment of Traditional Chinese Medicine, Beijing, China
| | - Ran Niu
- Wangjing Hospital, China Academy of Chinese Medical Sciences, Beijing, China
- Laboratory of Functional Gastrointestinal Disorders Diagnosis and Treatment of Traditional Chinese Medicine, Beijing, China
| | - Qian Liu
- Wangjing Hospital, China Academy of Chinese Medical Sciences, Beijing, China
- Laboratory of Functional Gastrointestinal Disorders Diagnosis and Treatment of Traditional Chinese Medicine, Beijing, China
| | - Yuhan Fu
- Department of Internal Medicine, MetroHealth Medical Center/Case Western Reserve University, Cleveland, OH, United States
| | - Xiaoying Luo
- Wangjing Hospital, China Academy of Chinese Medical Sciences, Beijing, China
- Laboratory of Functional Gastrointestinal Disorders Diagnosis and Treatment of Traditional Chinese Medicine, Beijing, China
| | - Tao Zhang
- Wangjing Hospital, China Academy of Chinese Medical Sciences, Beijing, China
- Laboratory of Functional Gastrointestinal Disorders Diagnosis and Treatment of Traditional Chinese Medicine, Beijing, China
| | - Baoqi Wu
- Wangjing Hospital, China Academy of Chinese Medical Sciences, Beijing, China
- Laboratory of Functional Gastrointestinal Disorders Diagnosis and Treatment of Traditional Chinese Medicine, Beijing, China
| | - Juan Han
- Institute of Acupuncture and Moxibustion, China Academy of Chinese Medical Sciences, Beijing, China
| | - Yang Yang
- Wangjing Hospital, China Academy of Chinese Medical Sciences, Beijing, China
- Laboratory of Functional Gastrointestinal Disorders Diagnosis and Treatment of Traditional Chinese Medicine, Beijing, China
| | - Xiaolan Su
- Wangjing Hospital, China Academy of Chinese Medical Sciences, Beijing, China
- Laboratory of Functional Gastrointestinal Disorders Diagnosis and Treatment of Traditional Chinese Medicine, Beijing, China
| | - Jiande D. Z. Chen
- Division of Gastroenterology and Hepatology, Department of Internal Medicine, University of Michigan, Ann Arbor, MI, United States
| | - Gengqing Song
- Department of Gastroenterology and Hepatology, MetroHealth Medical Center/Case Western Reserve University, Cleveland, OH, United States
- *Correspondence: Gengqing Song, ; Wei Wei,
| | - Wei Wei
- Wangjing Hospital, China Academy of Chinese Medical Sciences, Beijing, China
- Laboratory of Functional Gastrointestinal Disorders Diagnosis and Treatment of Traditional Chinese Medicine, Beijing, China
- *Correspondence: Gengqing Song, ; Wei Wei,
| |
Collapse
|
5
|
Expression of TRP Channels in Colonic Mucosa of IBS-D Patients and Its Correlation with the Severity of the Disease. Gastroenterol Res Pract 2022; 2022:7294775. [PMID: 35677724 PMCID: PMC9168202 DOI: 10.1155/2022/7294775] [Citation(s) in RCA: 5] [Impact Index Per Article: 2.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 12/12/2021] [Revised: 05/10/2022] [Accepted: 05/17/2022] [Indexed: 11/18/2022] Open
Abstract
Aim Lots of researches have endeavored to elucidate the pathogenetic mechanism of visceral hypersensitivity in order to guide the therapy of diarrhea predominant-irritable bowel syndrome (IBS-D). Transient receptor potential (TRP) channels and their role in visceral nociception have been vastly investigated. We investigated the expression of TRP channels in IBS-D colonic biopsies and its correlation with the severity of the disease. Methods Sigmoid biopsies were obtained from 34 IBS-D patients and 28 healthy controls (HCs). IBS-D was diagnosed according to Rome IV criteria. Their clinical parameters were assessed through questionnaires. Expression of TRPV1, TRPV4, TRPA1, TRPM2, and TRPM8 was evaluated with immunohistology staining. Results Expression levels of TRPV1, TRPV4, and TRPA1 in the colonic mucosa of IBS-D patients were significantly higher than those in HCs (p < 0.05), while there was no obvious difference of TRPM2 and TRPM8 expression between IBS-D patients and HCs. In addition, the expression levels of TRPV1 and TRPA1, but TRPV4, in the colonic mucosa correlated positively with the severity of diseases (r = 0.6303 and 0.4506, respectively, p < 0.05). Conclusions Expression of TRPV1, TRPA1, and TRPV4 in the colonic mucosa was enhanced in IBS-D patients compared with HCs with the former two correlated with the severity of the disease. TRP channels might be promising biomarkers in the diagnosis and estimate of the severity in IBS-D.
Collapse
|
6
|
Luo Y, Ma H, Niu S, Li X, Nie L, Li G. Effects of norepinephrine on colonic tight junction protein expression during heat stress. Exp Ther Med 2021; 21:421. [PMID: 33747161 PMCID: PMC7967871 DOI: 10.3892/etm.2021.9865] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/12/2020] [Accepted: 01/19/2021] [Indexed: 12/18/2022] Open
Abstract
Stress induced by changes in the internal or external environment in humans and animals leads to intestinal epithelial damage, in a manner that is associated with impaired intestinal barrier function. However, the role of the stress hormone norepinephrine (NE) in impairments in barrier function remains poorly understood. In the present study, a rat heat-exposed model was used to observe changes in the tight junction proteins Occludin and zonula occludens-1 (ZO-1), in addition to those in protease-activated receptor 2 (PAR-2) and transient receptor potential ankyrin 1 channel (TRPA1) in colon. The levels of plasma NE were detected using an ELISA kit. Different concentrations of NE were used to culture the human colon cell line Caco-2 for 6 and 24 h to investigate the cell viability using Cell Counting Kit-8 assay, whilst the expression levels of Occludin, ZO-1, PAR-2 and TRPA1 were examined using western blotting and immunofluorescence in Caco-2 cells and immunohistrochemistry in rat colon tissues. Although there was no clear histological damage to the rat colonic mucosa, there were decreased expression levels of tight junction proteins Occludin and ZO-1 after heat exposure. In addition, PAR-2 expression was increased by heat exposure. It was found that TRPA1 expression was concentrated to the luminal surface of the colon in the heat exposed group compared with that in the control group. After the administration of increasing concentrations of NE for 6 h, treatment did not affect cell viability. Furthermore, after application of NE for 24 h, cell viability gradually increased as the NE concentration was elevated from 10 to 100 µM. However, no significant increase in viability was observed when the cells were treated with 120 and 160 µM NE. Occludin expression was decreased when 10 µM NE was applied for 6 or 24 h. By contrast, 60 µM NE significantly downregulated Occludin expression in the 6 h group, but caused an insignificant decrease in the 24 h group. It was found that ZO-1 expression was upregulated after treatment with 10 µM NE for 6 h, whilst downregulation was observed after treatment with 10 µM NE for 24 h. PAR-2 protein expression was increased after application of NE for both 6 and 24 h, but not after treatment with 60 µM NE. In addition, TRPA1 expression was not affected by the treatment of NE, but increased positive staining was observed on the luminal side of the mucosa, which appeared to be concentrated in the cells of the luminal side in the rat colon after heat exposure. Collectively, the present results suggested that expression of tight junction proteins Occludin and ZO-1, in addition to that of PAR-2, can be regulated by NE, which may contribute to impairments in barrier function observed during heat stress.
Collapse
Affiliation(s)
- Yan Luo
- Key Laboratory of Fertility Preservation and Maintenance of Ministry of Education, Ningxia Medical University, Yinchuan, Ningxia 750004, P.R China.,Institute of Basic Medical Sciences, Ningxia Medical University, Yinchuan, Ningxia 750004, P.R China
| | - Huiming Ma
- Key Laboratory of Fertility Preservation and Maintenance of Ministry of Education, Ningxia Medical University, Yinchuan, Ningxia 750004, P.R China
| | - Shibo Niu
- Institute of Basic Medical Sciences, Ningxia Medical University, Yinchuan, Ningxia 750004, P.R China
| | - Xu Li
- Institute of Basic Medical Sciences, Ningxia Medical University, Yinchuan, Ningxia 750004, P.R China.,People's Hospital of Ningxia Hui Autonomous Region, Yinchuan, Ningxia 750021, P.R China
| | - Lihong Nie
- Institute of Basic Medical Sciences, Ningxia Medical University, Yinchuan, Ningxia 750004, P.R China
| | - Guanghua Li
- Institute of Basic Medical Sciences, Ningxia Medical University, Yinchuan, Ningxia 750004, P.R China
| |
Collapse
|