1
|
Wang C, Guo K, Deng Y, Geng Y. Design Strategy for the Synthesis of Self-Doped n-Type Molecules. Chempluschem 2024; 89:e202400286. [PMID: 38858773 DOI: 10.1002/cplu.202400286] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/22/2024] [Revised: 06/04/2024] [Accepted: 06/10/2024] [Indexed: 06/12/2024]
Abstract
n-Type organic conductive molecules play a significant role in organic electronics. Self-doping can increase the carrier concentration within the materials to improve the conductivity without the need for additional intentional dopants. This review focuses on the various strategies employed in the synthesis of self-doped n-type molecules, and provides an overview of the doping mechanisms. By elucidating these mechanisms, the review aims to establish the relationship between molecular structure and electronic properties. Furthermore, the review outlines the current applications of self-doped n-type molecules in the field of organic electronics, highlighting their performance and potential in various devices. It also offers insights into the future development of self-doped materials.
Collapse
Affiliation(s)
- Cheng Wang
- School of Materials Science and Engineering and Tianjin Key Laboratory of Molecular Optoelectronic Science, Tianjin University, Key Laboratory of Organic Integrated Circuits, Ministry of Education, and Collaborative Innovation Center of Chemical Science and Engineering (Tianjin), 300072, Tianjin, P. R. China
| | - Kai Guo
- Schools of Materials Science and Engineering, Shandong University of Technology, 255000, Zibo, China
| | - Yunfeng Deng
- School of Materials Science and Engineering and Tianjin Key Laboratory of Molecular Optoelectronic Science, Tianjin University, Key Laboratory of Organic Integrated Circuits, Ministry of Education, and Collaborative Innovation Center of Chemical Science and Engineering (Tianjin), 300072, Tianjin, P. R. China
- Joint School of National University of Singapore, Tianjin University, International Campus of Tianjin University, Binhai New City, 350207, Fuzhou, China
| | - Yanhou Geng
- School of Materials Science and Engineering and Tianjin Key Laboratory of Molecular Optoelectronic Science, Tianjin University, Key Laboratory of Organic Integrated Circuits, Ministry of Education, and Collaborative Innovation Center of Chemical Science and Engineering (Tianjin), 300072, Tianjin, P. R. China
- Joint School of National University of Singapore, Tianjin University, International Campus of Tianjin University, Binhai New City, 350207, Fuzhou, China
| |
Collapse
|
2
|
Wang C, Yang Y, Lin L, Xu B, Hou J, Deng Y, Geng Y. Self-Doped n-Type Quinoidal Compounds with Good Air Stability and High Electrical Conductivity for Organic Electronics. Angew Chem Int Ed Engl 2023; 62:e202307856. [PMID: 37402633 DOI: 10.1002/anie.202307856] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/04/2023] [Revised: 07/03/2023] [Accepted: 07/04/2023] [Indexed: 07/06/2023]
Abstract
Air stable n-type conductive molecules with high electrical conductivities and excellent device performance have important applications in organic electronics, but their synthesis remains challenging. Herein, we report three self-doped n-type conductive molecules, designated QnNs, with a closed-shell quinoidal backbone and alkyl amino chains of different lengths. The QnNs are self-doped by intermolecular electron transfer from the amino groups to the quinoidal backbone. This process is ascertained unambiguously by experiments and theoretical calculations. The use of a quinoidal structure effectively improves the self-doping level, and thus increases the electrical conductivity of self-doped n-type conductive molecules achieved by a closed-shell structure from<10-4 S cm-1 to>0.03 S cm-1 . Furthermore, the closed-shell quinoidal structure results in good air stability of the QnNs, with half-lives>73 days; and Q4N shows an electrical conductivity of 0.019 S cm-1 even after exposure to air for 120 days. When applying Q6N as the cathode interlayer in organic solar cells (OSCs), an outstanding power conversion efficiency of up to 18.2 % was obtained, which represents one the best results in binary OSCs.
Collapse
Affiliation(s)
- Cheng Wang
- School of Materials Science and Engineering and Tianjin Key Laboratory of Molecular Optoelectronic Science, Tianjin University, Collaborative Innovation Center of Chemical Science and Engineering (Tianjin), Tianjin, 300072, P. R. China
| | - Yi Yang
- State Key Laboratory of Polymer Physics and Chemistry Institute of Chemistry, Chinese Academy of Sciences, Beijing, 100190, P. R. China
| | - Linlin Lin
- School of Materials Science and Engineering and Tianjin Key Laboratory of Molecular Optoelectronic Science, Tianjin University, Collaborative Innovation Center of Chemical Science and Engineering (Tianjin), Tianjin, 300072, P. R. China
| | - Bowei Xu
- State Key Laboratory of Chemical Resource Engineering, College of Materials Science and Engineering, Beijing University of Chemical Technology, Beijing, 100029, P. R. China
| | - Jianhui Hou
- State Key Laboratory of Polymer Physics and Chemistry Institute of Chemistry, Chinese Academy of Sciences, Beijing, 100190, P. R. China
| | - Yunfeng Deng
- School of Materials Science and Engineering and Tianjin Key Laboratory of Molecular Optoelectronic Science, Tianjin University, Collaborative Innovation Center of Chemical Science and Engineering (Tianjin), Tianjin, 300072, P. R. China
- Joint School of National University of Singapore and Tianjin University, International Campus of Tianjin University, Binhai New City, Fuzhou, 350207, China
| | - Yanhou Geng
- School of Materials Science and Engineering and Tianjin Key Laboratory of Molecular Optoelectronic Science, Tianjin University, Collaborative Innovation Center of Chemical Science and Engineering (Tianjin), Tianjin, 300072, P. R. China
- Joint School of National University of Singapore and Tianjin University, International Campus of Tianjin University, Binhai New City, Fuzhou, 350207, China
| |
Collapse
|
3
|
Li T, Hu G, Tao L, Jiang J, Xin J, Li Y, Ma W, Shen L, Fang Y, Lin Y. Sensitive photodetection below silicon bandgap using quinoid-capped organic semiconductors. SCIENCE ADVANCES 2023; 9:eadf6152. [PMID: 36989368 PMCID: PMC10058242 DOI: 10.1126/sciadv.adf6152] [Citation(s) in RCA: 9] [Impact Index Per Article: 4.5] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Figures] [Subscribe] [Scholar Register] [Received: 11/02/2022] [Accepted: 02/24/2023] [Indexed: 06/19/2023]
Abstract
High-sensitivity organic photodetectors (OPDs) with strong near-infrared (NIR) photoresponse have attracted enormous attention due to potential applications in emerging technologies. However, few organic semiconductors have been reported with photoelectric response beyond ~1.1 μm, the detection limit of silicon detectors. Here, we extend the absorption of organic small-molecule semiconductors to below silicon bandgap, and even to 0.77 eV, through introducing the newly designed quinoid-terminals with high Mulliken-electronegativity (5.62 eV). The fabricated photodiode-type NIR OPDs exhibit detectivity (D*) over 1012 Jones in 0.41 to 1.2 μm under zero bias with a maximum of 2.9 × 1012 Jones at 1.02 μm, which is the highest D* for reported OPDs in photovoltaic-mode with response spectra beyond 1.1 μm. The high D* in 0.9 to 1.2 μm is comparable to those of commercial InGaAs photodetectors, despite the detection limit of our OPDs is shorter than InGaAs (~1.7 μm). A spectrometer prototype with a wide measurable region (0.4 to 1.25 μm) and NIR imaging under 1.2-μm illumination are demonstrated successfully in OPDs.
Collapse
Affiliation(s)
- Tengfei Li
- Beijing National Laboratory for Molecular Sciences, CAS Key Laboratory of Organic Solids, Institute of Chemistry, Chinese Academy of Sciences, Beijing, China
| | - Gangjian Hu
- State Key Laboratory of Integrated Optoelectronics, College of Electronic Science and Engineering, International Center of Future Science, Jilin University, Changchun, China
| | - Liting Tao
- State Key Laboratory of Silicon Materials, School of Materials Science and Engineering, Zhejiang University, Hangzhou, China
| | - Jizhong Jiang
- State Key Laboratory of Integrated Optoelectronics, College of Electronic Science and Engineering, International Center of Future Science, Jilin University, Changchun, China
| | - Jingming Xin
- State Key Laboratory for Mechanical Behavior of Materials, Xi’an Jiaotong University, Xi’an, China
| | - Yawen Li
- Beijing National Laboratory for Molecular Sciences, CAS Key Laboratory of Organic Solids, Institute of Chemistry, Chinese Academy of Sciences, Beijing, China
- University of Chinese Academy of Sciences, Beijing, China
| | - Wei Ma
- State Key Laboratory for Mechanical Behavior of Materials, Xi’an Jiaotong University, Xi’an, China
| | - Liang Shen
- State Key Laboratory of Integrated Optoelectronics, College of Electronic Science and Engineering, International Center of Future Science, Jilin University, Changchun, China
| | - Yanjun Fang
- State Key Laboratory of Silicon Materials, School of Materials Science and Engineering, Zhejiang University, Hangzhou, China
| | - Yuze Lin
- Beijing National Laboratory for Molecular Sciences, CAS Key Laboratory of Organic Solids, Institute of Chemistry, Chinese Academy of Sciences, Beijing, China
- University of Chinese Academy of Sciences, Beijing, China
| |
Collapse
|
4
|
Ren S, Yassar A. Recent Research Progress in Indophenine-Based-Functional Materials: Design, Synthesis, and Optoelectronic Applications. MATERIALS (BASEL, SWITZERLAND) 2023; 16:2474. [PMID: 36984354 PMCID: PMC10056103 DOI: 10.3390/ma16062474] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Subscribe] [Scholar Register] [Received: 02/17/2023] [Revised: 03/15/2023] [Accepted: 03/18/2023] [Indexed: 06/18/2023]
Abstract
This review highlights selected examples, published in the last three to four years, of recent advance in the design, synthesis, properties, and device performance of quinoidal π-conjugated materials. A particular emphasis is placed on emerging materials, such as indophenine dyes that have the potential to enable high-performance devices. We specifically discuss the recent advances and design guidelines of π-conjugated quinoidal molecules from a chemical standpoint. To the best of the authors' knowledge, this review is the first compilation of literature on indophenine-based semiconducting materials covering their scope, limitations, and applications. In the first section, we briefly introduce some of the organic electronic devices that are the basic building blocks for certain applications involving organic semiconductors (OSCs). We introduce the definition of key performance parameters of three organic devices: organic field effect transistors (OFET), organic photovoltaics (OPV), and organic thermoelectric generators (TE). In section two, we review recent progress towards the synthesis of quinoidal semiconducting materials. Our focus will be on indophenine family that has never been reviewed. We discuss the relationship between structural properties and energy levels in this family of molecules. The last section reports the effect of structural modifications on the performance of devices: OFET, OPV and TE. In this review, we provide a general insight into the association between the molecular structure and electronic properties in quinoidal materials, encompassing both small molecules and polymers. We also believe that this review offers benefits to the organic electronics and photovoltaic communities, by shedding light on current trends in the synthesis and progression of promising novel building blocks. This can provide guidance for synthesizing new generations of quinoidal or diradical materials with tunable optoelectronic properties and more outstanding charge carrier mobility.
Collapse
Affiliation(s)
- Shiwei Ren
- Zhuhai Fudan Innovation Institution, Guangdong-Macao In-Depth Cooperation Zone in Hengqin, Guangdong 519000, China;
| | - Abderrahim Yassar
- LPICM, Ecole Polytechnique, CNRS, Institut Polytechnique de Paris, 91128 Palaiseau, France
| |
Collapse
|
5
|
Lin L, Wang C, Deng Y, Geng Y. Isomerically Pure Oxindole-Terminated Quinoids for n-Type Organic Thin-Film Transistors Enabled by the Chlorination of Quinoidal Core. Chemistry 2023; 29:e202203336. [PMID: 36456528 DOI: 10.1002/chem.202203336] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/15/2022] [Revised: 11/30/2022] [Accepted: 12/01/2022] [Indexed: 12/03/2022]
Abstract
Quinoidal compounds have great potential utility as high-performance organic semiconducting materials because of their rigid planar structures and extended π-conjugation. However, the existence of E and Z isomers adversely affects the charge-transport properties of quinoidal compounds. In this study, three isomerically pure oxindole-terminated quinoids were developed by introducing chlorine atoms in the quinoidal core. The synthesized quinoids were confirmed to have a Z,Z configuration by means of 1 H NMR spectroscopy, density functional theory calculations, and single-crystal X-ray analysis. Importantly, the strategy of chlorination allowed to maintain low-lying frontier molecular orbital energy levels and ensure favorable intermolecular packing. Consequently, all three quinoidal compounds showed n-type transport characteristics in organic thin-film transistors, with electron mobilities up to 0.35 cm2 V-1 s-1 , which is the highest value reported to date for oxindole-terminated quinoids. Our study can provide new guidelines for the design of isomerically pure quinoids with high electron mobilities.
Collapse
Affiliation(s)
- Linlin Lin
- School of Materials Science and Engineering and Tianjin Key Laboratory of Molecular Optoelectronic Science, and Collaborative Innovation Center of Chemical Science and Engineering (Tianjin), Tianjin University, Tianjin, 300072, P. R. China
| | - Cheng Wang
- School of Materials Science and Engineering and Tianjin Key Laboratory of Molecular Optoelectronic Science, and Collaborative Innovation Center of Chemical Science and Engineering (Tianjin), Tianjin University, Tianjin, 300072, P. R. China
| | - Yunfeng Deng
- School of Materials Science and Engineering and Tianjin Key Laboratory of Molecular Optoelectronic Science, and Collaborative Innovation Center of Chemical Science and Engineering (Tianjin), Tianjin University, Tianjin, 300072, P. R. China.,Joint School of National University of Singapore and Tianjin University, International Campus of Tianjin University Binhai New City, Fuzhou, 350207, China
| | - Yanhou Geng
- School of Materials Science and Engineering and Tianjin Key Laboratory of Molecular Optoelectronic Science, and Collaborative Innovation Center of Chemical Science and Engineering (Tianjin), Tianjin University, Tianjin, 300072, P. R. China.,Joint School of National University of Singapore and Tianjin University, International Campus of Tianjin University Binhai New City, Fuzhou, 350207, China
| |
Collapse
|
6
|
Wang W, Hanindita F, Tanaka Y, Ochiai K, Sato H, Li Y, Yasuda T, Ito S. π-Extended Pyrrole-Fused Heteropine: Synthesis, Properties, and Application in Organic Field-Effect Transistors. Angew Chem Int Ed Engl 2023; 62:e202218176. [PMID: 36575129 DOI: 10.1002/anie.202218176] [Citation(s) in RCA: 4] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/09/2022] [Revised: 12/22/2022] [Accepted: 12/27/2022] [Indexed: 12/29/2022]
Abstract
Sulfur-embedded polycyclic aromatic compounds have been used as building blocks for numerous organic semiconductors over the past few decades. While the success is based on thiophene-containing compounds, aromatic compounds that contain thiepine, a sulfur-containing seven-membered-ring arene, has been less well investigated. Here we report the synthesis and properties of π-extended pyrrole-fused heteropine compounds such as thiepine and oxepine. A π-extended pyrrole-fused thiepine exhibited a "pitched π-stacking" structure in the crystal, and exhibited a high charge carrier mobility of up to 1.0 cm2 V-1 s-1 in single-crystal field-effect transistors.
Collapse
Affiliation(s)
- Weifan Wang
- School of Chemistry, Chemical Engineering and Biotechnology, Nanyang Technological University, 21 Nanyang Link, Singapore, 637371, Singapore
| | - Fiona Hanindita
- School of Chemistry, Chemical Engineering and Biotechnology, Nanyang Technological University, 21 Nanyang Link, Singapore, 637371, Singapore
| | - Yusei Tanaka
- Institute for Advanced Study, Kyushu University, 744 Motooka, Nishi-ku, Fukuoka, 819-0395, Japan
| | - Kotaro Ochiai
- School of Chemistry, Chemical Engineering and Biotechnology, Nanyang Technological University, 21 Nanyang Link, Singapore, 637371, Singapore
| | - Hiroyasu Sato
- Rigaku Corporation, 3-9-12 Matsubara-Cho, Akishima, Tokyo, 196-8666, Japan
| | - Yongxin Li
- School of Chemistry, Chemical Engineering and Biotechnology, Nanyang Technological University, 21 Nanyang Link, Singapore, 637371, Singapore
| | - Takuma Yasuda
- Institute for Advanced Study, Kyushu University, 744 Motooka, Nishi-ku, Fukuoka, 819-0395, Japan
| | - Shingo Ito
- School of Chemistry, Chemical Engineering and Biotechnology, Nanyang Technological University, 21 Nanyang Link, Singapore, 637371, Singapore
| |
Collapse
|
7
|
Du T, Liu Y, Wang C, Deng Y, Geng Y. n-Type Conjugated Polymers Based on an Indandione-Terminated Quinoidal Building Block. Macromolecules 2022. [DOI: 10.1021/acs.macromol.2c01029] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/30/2022]
Affiliation(s)
- Tian Du
- School of Materials Science and Engineering and Tianjin Key Laboratory of Molecular Optoelectronic Science, Tianjin University, Tianjin 300072, China
| | - Yingying Liu
- School of Materials Science and Engineering and Tianjin Key Laboratory of Molecular Optoelectronic Science, Tianjin University, Tianjin 300072, China
| | - Cheng Wang
- School of Materials Science and Engineering and Tianjin Key Laboratory of Molecular Optoelectronic Science, Tianjin University, Tianjin 300072, China
| | - Yunfeng Deng
- School of Materials Science and Engineering and Tianjin Key Laboratory of Molecular Optoelectronic Science, Tianjin University, Tianjin 300072, China
- Joint School of National University of Singapore and Tianjin University, International Campus of Tianjin University, Fuzhou 350207, China
| | - Yanhou Geng
- School of Materials Science and Engineering and Tianjin Key Laboratory of Molecular Optoelectronic Science, Tianjin University, Tianjin 300072, China
- Joint School of National University of Singapore and Tianjin University, International Campus of Tianjin University, Fuzhou 350207, China
| |
Collapse
|
8
|
Sun L, Du T, Wang C, Geng D, Li L, Han Y, Deng Y. Indandione-Terminated Quinoidal Compounds for Low-Bandgap Small Molecules with Strong Near-Infrared Absorption: Effect of Conjugation Length on the Properties. Chemistry 2021; 27:17437-17443. [PMID: 34626039 DOI: 10.1002/chem.202103227] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/06/2021] [Indexed: 01/04/2023]
Abstract
Low-bandgap organic semiconductors have attracted much attention for their multiple applications in optoelectronics. However, the realization of narrow bandgap is challenging particularly for small molecules. Herein, we have synthesized four quinoidal compounds, i. e., QSN3, QSN4, QSN5 and QSN6, with electron rich S,N-heteroacene as the quinoidal core and indandione as the end-groups. The optical bandgap of the quinoidal compounds is systematically decreased with the extension of quinoidal skeleton, while maintaining stable closed-shell ground state. QSN6 absorbs an intense absorption in the first and second near-infrared region in the solid state, and has extremely low optical bandgap of 0.74 eV. Cyclic voltammetry analyses reveal that the lowest unoccupied molecular orbital (LUMO) energy levels of the four quinoidal compounds all lie below -4.1 eV, resulting in good electron-transporting characteristics in organic thin-film transistors. These results demonstrated that the combination of π-extended quinoidal core and end-groups in quinoidal compounds is an effective strategy for the synthesis of low-bandgap small molecules with good stability.
Collapse
Affiliation(s)
- Lei Sun
- School of Materials Science and Engineering and, Tianjin Key Laboratory of Molecular Optoelectronic Science, Tianjin University, Tianjin, 300072, P. R. China
| | - Tian Du
- School of Materials Science and Engineering and, Tianjin Key Laboratory of Molecular Optoelectronic Science, Tianjin University, Tianjin, 300072, P. R. China
| | - Cheng Wang
- School of Materials Science and Engineering and, Tianjin Key Laboratory of Molecular Optoelectronic Science, Tianjin University, Tianjin, 300072, P. R. China
| | - Dongling Geng
- MIIT Key Laboratory of Advanced Display Materials and Devices, School of Materials Science and Engineering, Nanjing University of Science and Technology, Nanjing, 210094, P. R. China
| | - Lin Li
- Institute of Molecular Plus, Tianjin University, Tianjin, 300072, P. R. China
| | - Yang Han
- School of Materials Science and Engineering and, Tianjin Key Laboratory of Molecular Optoelectronic Science, Tianjin University, Tianjin, 300072, P. R. China
| | - Yunfeng Deng
- School of Materials Science and Engineering and, Tianjin Key Laboratory of Molecular Optoelectronic Science, Tianjin University, Tianjin, 300072, P. R. China
| |
Collapse
|
9
|
Wang C, Du T, Deng Y, Yao J, Li R, Zhao X, Jiang Y, Wei H, Dang Y, Li R, Geng Y. High-yield and sustainable synthesis of quinoidal compounds assisted by keto-enol tautomerism. Chem Sci 2021; 12:9366-9371. [PMID: 34349908 PMCID: PMC8278874 DOI: 10.1039/d1sc01685g] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/24/2021] [Accepted: 06/04/2021] [Indexed: 11/29/2022] Open
Abstract
The classical synthesis of quinoids, which involves Takahashi coupling and subsequent oxidation, often gives only low to medium yields. Herein, we disclose the keto–enol-tautomerism-assisted spontaneous air oxidation of the coupling products to quinoids. This allows for the synthesis of various indandione-terminated quinoids in high isolated yields (85–95%). The origin of the high yield and the mechanism of the spontaneous air oxidation were ascertained by experiments and theoretical calculations. All the quinoidal compounds displayed unipolar n-type transport behavior, and single crystal field-effect transistors based on the micro-wires of a representative quinoid delivered an electron mobility of up to 0.53 cm2 V−1 s−1, showing the potential of this type of quinoid as an organic semiconductor. Facilitated by the highly efficient Pd-catalyzed coupling and keto–enol-tautomerism-assisted spontaneous air oxidation, various indandione-terminated quinoidal compounds have been synthesized in isolated yields up to 95%.![]()
Collapse
Affiliation(s)
- Cheng Wang
- School of Materials Science and Engineering, Tianjin Key Laboratory of Molecular Optoelectronic Sciences, Tianjin University Tianjin 300072 China
| | - Tian Du
- School of Materials Science and Engineering, Tianjin Key Laboratory of Molecular Optoelectronic Sciences, Tianjin University Tianjin 300072 China
| | - Yunfeng Deng
- School of Materials Science and Engineering, Tianjin Key Laboratory of Molecular Optoelectronic Sciences, Tianjin University Tianjin 300072 China
| | - Jiarong Yao
- Tianjin Key Laboratory of Molecular Optoelectronic Sciences, Department of Chemistry, School of Science, Tianjin University Tianjin 300072 China
| | - Riqing Li
- Tianjin Key Laboratory of Molecular Optoelectronic Sciences, Department of Chemistry, School of Science, Tianjin University Tianjin 300072 China
| | - Xuxia Zhao
- School of Materials Science and Engineering, Tianjin Key Laboratory of Molecular Optoelectronic Sciences, Tianjin University Tianjin 300072 China
| | - Yu Jiang
- Joint School of National University of Singapore and Tianjin University, International Campus of Tianjin University Binhai New City Fuzhou 350207 China
| | - Haipeng Wei
- Joint School of National University of Singapore and Tianjin University, International Campus of Tianjin University Binhai New City Fuzhou 350207 China
| | - Yanfeng Dang
- Tianjin Key Laboratory of Molecular Optoelectronic Sciences, Department of Chemistry, School of Science, Tianjin University Tianjin 300072 China
| | - Rongjin Li
- Tianjin Key Laboratory of Molecular Optoelectronic Sciences, Department of Chemistry, School of Science, Tianjin University Tianjin 300072 China
| | - Yanhou Geng
- School of Materials Science and Engineering, Tianjin Key Laboratory of Molecular Optoelectronic Sciences, Tianjin University Tianjin 300072 China .,Joint School of National University of Singapore and Tianjin University, International Campus of Tianjin University Binhai New City Fuzhou 350207 China
| |
Collapse
|
10
|
Rausch R, Röhr MIS, Schmidt D, Krummenacher I, Braunschweig H, Würthner F. Tuning phenoxyl-substituted diketopyrrolopyrroles from quinoidal to biradical ground states through (hetero-)aromatic linkers. Chem Sci 2020; 12:793-802. [PMID: 34163813 PMCID: PMC8179021 DOI: 10.1039/d0sc05475e] [Citation(s) in RCA: 14] [Impact Index Per Article: 2.8] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/02/2020] [Accepted: 11/10/2020] [Indexed: 12/31/2022] Open
Abstract
Strongly fluorescent halochromic 2,6-di-tert-butyl-phenol-functionalised phenyl-, thienyl- and furyl-substituted diketopyrrolopyrrole (DPP) dyes were deprotonated and oxidised to give either phenylene-linked DPP1˙˙ biradical (y 0 = 0.75) with a singlet open shell ground state and a thermally populated triplet state (ΔE ST = 19 meV; 1.8 kJ mol-1; 0.43 kcal mol-1) or thienylene/furylene-linked DPP2q and DPP3q compounds with closed shell quinoidal ground states. Accordingly, we identified the aromaticity of the conjugated (hetero-)aromatic bridge to be key for modulating the electronic character of these biradicaloid compounds and achieved a spin crossover from closed shell quinones DPP2q and DPP3q to open shell biradical DPP1˙˙ as confirmed by optical and magnetic spectroscopic studies (UV/vis/NIR, NMR, EPR) as well as computational investigations (spin-flip TD-DFT calculations in combination with CASSCF(4,4) and harmonic oscillator model of aromaticity (HOMA) analysis). Spectroelectrochemical studies and comproportionation experiments further prove the reversible formation of mixed-valent radical anions for the DPP2q and DPP3q quinoidal compounds with absorption bands edging into the NIR spectral region.
Collapse
Affiliation(s)
- Rodger Rausch
- Universität Würzburg, Institut für Organische Chemie Am Hubland 97074 Würzburg Germany
| | - Merle I S Röhr
- Universität Würzburg, Center for Nanosystems Chemistry (CNC) Theodor-Boveri-Weg 97074 Würzburg Germany
| | - David Schmidt
- Universität Würzburg, Institut für Organische Chemie Am Hubland 97074 Würzburg Germany
- Universität Würzburg, Center for Nanosystems Chemistry (CNC) Theodor-Boveri-Weg 97074 Würzburg Germany
| | - Ivo Krummenacher
- Universität Würzburg, Institut für Anorganische Chemie, Institute for Sustainable Chemistry and Catalysis with Boron Am Hubland 97074 Würzburg Germany
| | - Holger Braunschweig
- Universität Würzburg, Institut für Anorganische Chemie, Institute for Sustainable Chemistry and Catalysis with Boron Am Hubland 97074 Würzburg Germany
| | - Frank Würthner
- Universität Würzburg, Institut für Organische Chemie Am Hubland 97074 Würzburg Germany
- Universität Würzburg, Center for Nanosystems Chemistry (CNC) Theodor-Boveri-Weg 97074 Würzburg Germany
| |
Collapse
|
11
|
Kohara A, Hasegawa T, Ashizawa M, Hayashi Y, Kawauchi S, Masunaga H, Ohta N, Matsumoto H. Quinoidal bisthienoisatin based semiconductors: Synthesis, characterization, and carrier transport property. NANO SELECT 2020. [DOI: 10.1002/nano.202000053] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.2] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/12/2022] Open
Affiliation(s)
- Akihiro Kohara
- Department of Materials Science and Engineering Tokyo Institute of Technology Tokyo Japan
| | - Tsukasa Hasegawa
- Department of Materials Science and Engineering Tokyo Institute of Technology Tokyo Japan
| | - Minoru Ashizawa
- Department of Materials Science and Engineering Tokyo Institute of Technology Tokyo Japan
| | - Yoshihiro Hayashi
- Department of Chemical Science and Engineering Tokyo Institute of Technolog Tokyo Japan
| | - Susumu Kawauchi
- Department of Chemical Science and Engineering Tokyo Institute of Technolog Tokyo Japan
| | - Hiroyasu Masunaga
- Japan Synchrotron Radiation Research Institute (JASRI)/SPring‐8 Sayo Japan
| | - Noboru Ohta
- Japan Synchrotron Radiation Research Institute (JASRI)/SPring‐8 Sayo Japan
| | - Hidetoshi Matsumoto
- Department of Materials Science and Engineering Tokyo Institute of Technology Tokyo Japan
| |
Collapse
|
12
|
Asoh T, Kawabata K, Takimiya K. Carbonyl-Terminated Quinoidal Oligothiophenes as p-Type Organic Semiconductors. MATERIALS 2020; 13:ma13133020. [PMID: 32640695 PMCID: PMC7372439 DOI: 10.3390/ma13133020] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 06/02/2020] [Revised: 06/29/2020] [Accepted: 06/30/2020] [Indexed: 11/17/2022]
Abstract
A series of quinoidal oligothiophenes terminated with carbonyl groups (nTDs, n = 2–4) are studied as p-type organic semiconductors for the active materials in organic field-effect transistors (OFETs) both by the theoretical and experimental approaches. The theoretical calculations clearly show their high-lying highest occupied molecular orbital (HOMO) energy levels (EHOMOs), small reorganization energies for hole transport (λholes), and large contribution of sulfur atoms to HOMOs, all of which are desirable for p-type organic semiconductors. Thus, we synthesized nTDs from the corresponding aromatic oligothiophene precursors and then evaluated their physicochemical properties and structural properties. These experimental evaluations of nTDs nicely proved the theoretical predictions, and the largest 4TDs in the series (4,4′′′-dihexyl- and 3′,4,4″,4′′′-tetrahexyl-5H,5′′′H-[2,2′:5′,2″:5″,2′′′-quaterthiophene]-5,5′′′-dione) can afford solution-processed OFETs showing unipolar p-type behaviors and hole mobility as high as 0.026 cm2 V−1 s−1.
Collapse
Affiliation(s)
- Takato Asoh
- Department of Chemistry, Graduate School of Science, Tohoku University, Aoba-ku, Sendai, Miyagi 980–8578, Japan; (T.A.); (K.K.)
- RIKEN Center for Emergent Matter Science, Wako, Saitama 351–0198, Japan
| | - Kohsuke Kawabata
- Department of Chemistry, Graduate School of Science, Tohoku University, Aoba-ku, Sendai, Miyagi 980–8578, Japan; (T.A.); (K.K.)
- RIKEN Center for Emergent Matter Science, Wako, Saitama 351–0198, Japan
| | - Kazuo Takimiya
- Department of Chemistry, Graduate School of Science, Tohoku University, Aoba-ku, Sendai, Miyagi 980–8578, Japan; (T.A.); (K.K.)
- RIKEN Center for Emergent Matter Science, Wako, Saitama 351–0198, Japan
- Correspondence: ; Tel.: +81–48–467–9752
| |
Collapse
|
13
|
Du T, Gao R, Deng Y, Wang C, Zhou Q, Geng Y. Indandione‐Terminated Quinoids: Facile Synthesis by Alkoxide‐Mediated Rearrangement Reaction and Semiconducting Properties. Angew Chem Int Ed Engl 2019; 59:221-225. [DOI: 10.1002/anie.201911530] [Citation(s) in RCA: 21] [Impact Index Per Article: 3.5] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/09/2019] [Revised: 10/30/2019] [Indexed: 01/01/2023]
Affiliation(s)
- Tian Du
- School of Materials Science and Engineering Tianjin University Tianjin 300072 P. R. China
| | - Ruiheng Gao
- School of Materials Science and Engineering Tianjin University Tianjin 300072 P. R. China
| | - Yunfeng Deng
- School of Materials Science and Engineering Tianjin University Tianjin 300072 P. R. China
- Tianjin Key Laboratory of Molecular Optoelectronic Science Tianjin University and Collaborative Innovation Center of Chemical Science and Engineering (Tianjin) Tianjin 300072 P. R. China
| | - Cheng Wang
- School of Materials Science and Engineering Tianjin University Tianjin 300072 P. R. China
| | - Qian Zhou
- School of Materials Science and Engineering Tianjin University Tianjin 300072 P. R. China
| | - Yanhou Geng
- School of Materials Science and Engineering Tianjin University Tianjin 300072 P. R. China
- Tianjin Key Laboratory of Molecular Optoelectronic Science Tianjin University and Collaborative Innovation Center of Chemical Science and Engineering (Tianjin) Tianjin 300072 P. R. China
- Joint School of National University of Singapore and Tianjin University International Campus of Tianjin University Binhai New City Fuzhou 350207 China
| |
Collapse
|
14
|
Du T, Gao R, Deng Y, Wang C, Zhou Q, Geng Y. Indandione‐Terminated Quinoids: Facile Synthesis by Alkoxide‐Mediated Rearrangement Reaction and Semiconducting Properties. Angew Chem Int Ed Engl 2019. [DOI: 10.1002/ange.201911530] [Citation(s) in RCA: 5] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/12/2023]
Affiliation(s)
- Tian Du
- School of Materials Science and Engineering Tianjin University Tianjin 300072 P. R. China
| | - Ruiheng Gao
- School of Materials Science and Engineering Tianjin University Tianjin 300072 P. R. China
| | - Yunfeng Deng
- School of Materials Science and Engineering Tianjin University Tianjin 300072 P. R. China
- Tianjin Key Laboratory of Molecular Optoelectronic Science Tianjin University and Collaborative Innovation Center of Chemical Science and Engineering (Tianjin) Tianjin 300072 P. R. China
| | - Cheng Wang
- School of Materials Science and Engineering Tianjin University Tianjin 300072 P. R. China
| | - Qian Zhou
- School of Materials Science and Engineering Tianjin University Tianjin 300072 P. R. China
| | - Yanhou Geng
- School of Materials Science and Engineering Tianjin University Tianjin 300072 P. R. China
- Tianjin Key Laboratory of Molecular Optoelectronic Science Tianjin University and Collaborative Innovation Center of Chemical Science and Engineering (Tianjin) Tianjin 300072 P. R. China
- Joint School of National University of Singapore and Tianjin University International Campus of Tianjin University Binhai New City Fuzhou 350207 China
| |
Collapse
|