1
|
Yu E, Chen Z, Huang Y, Wu Y, Wang Z, Wang F, Wu M, Xu K, Peng W. A grooved conduit combined with decellularized tissues for peripheral nerve regeneration. JOURNAL OF MATERIALS SCIENCE. MATERIALS IN MEDICINE 2023; 34:35. [PMID: 37477830 PMCID: PMC10361901 DOI: 10.1007/s10856-023-06737-z] [Citation(s) in RCA: 3] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Subscribe] [Scholar Register] [Received: 08/17/2022] [Accepted: 07/01/2023] [Indexed: 07/22/2023]
Abstract
Peripheral nerve injury (PNI) is a common and severe clinical disease worldwide, which leads to a poor prognosis because of the complicated treatments and high morbidity. Autologous nerve grafting as the gold standard still cannot meet the needs of clinical nerve transplantation because of its low availability and limited size. The development of artificial nerve conduits was led to a novel direction for PNI treatment, while most of the currently developed artificial nerve conduits was lack biochemical cues to promote nerve regeneration. In this study, we designed a novel composite neural conduit by inserting decellularized the rat sciatic nerve or kidney in a poly (lactic-co-glycolic acid) (PLGA) grooved conduit. The nerve regeneration effect of all samples was analyzed using rat sciatic nerve defect model, where decellularized tissues and grooved PLGA conduit alone were used as controls. The degree of nerve regeneration was evaluated using the motor function, gastrocnemius recovery, and morphological and histological assessments suggested that the combination of a grooved conduit with decellularized tissues significantly promoted nerve regeneration compared with decellularized tissues and PLGA conduit alone. It is worth to note that the grooved conduits containing decellularized nerves have a promotive effect similar to that of autologous nerve grafting, suggesting that it could be an artificial nerve conduit used for clinical practice in the future.
Collapse
Affiliation(s)
- Enxing Yu
- Department of Plastic and reconstructive surgery, The First Affiliated Hospital, Ningbo University School of Medicine, Ningbo, Zhejiang, 315010, China
| | - Zhiwu Chen
- Department of Plastic and reconstructive surgery, The First Affiliated Hospital, Ningbo University School of Medicine, Ningbo, Zhejiang, 315010, China
| | - Yuye Huang
- Center for Medical and Engineering Innovation, Central Laboratory, The First Affiliated Hospital, Ningbo University School of Medicine, Ningbo, Zhejiang, 315010, China
| | - Yibing Wu
- Department of Plastic and reconstructive surgery, The First Affiliated Hospital, Ningbo University School of Medicine, Ningbo, Zhejiang, 315010, China
| | - Zonghuan Wang
- Central Laboratory, The First Affiliated Hospital, Ningbo University School of Medicine, Ningbo, Zhejiang, 315010, China
| | - Fangfang Wang
- Central Laboratory, The First Affiliated Hospital, Ningbo University School of Medicine, Ningbo, Zhejiang, 315010, China
| | - Miaoben Wu
- School of Medicine, Ningbo University, Ningbo, Zhejiang, 315211, China
| | - Kailei Xu
- Department of Plastic and reconstructive surgery, The First Affiliated Hospital, Ningbo University School of Medicine, Ningbo, Zhejiang, 315010, China.
- Center for Medical and Engineering Innovation, Central Laboratory, The First Affiliated Hospital, Ningbo University School of Medicine, Ningbo, Zhejiang, 315010, China.
- Key Laboratory of Precision Medicine for Atherosclerotic Diseases of Zhejiang Province, Ningbo, Zhejiang, 315010, China.
| | - Wei Peng
- Department of Plastic and reconstructive surgery, The First Affiliated Hospital, Ningbo University School of Medicine, Ningbo, Zhejiang, 315010, China.
| |
Collapse
|
2
|
Kencebay Manas C, Derin N, Arican RY, Tanriover G, Dilmac S, Ozcanli H. Comparison of the therapeutic effects of erythropoietin and acetyl-l-carnitine on sciatic nerve injury in rats. Neurol Res 2022; 44:659-666. [DOI: 10.1080/01616412.2022.2029293] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 10/19/2022]
Affiliation(s)
- Ceren Kencebay Manas
- Faculty of Health Sciences, Department of Physiotherapy and Rehabilitation, Akdeniz University, Antalya, Turkey
| | - Narin Derin
- Faculty of Medicine, Department of Biophysics, Akdeniz University, Antalya, Turkey
| | - Ramazan Yavuz Arican
- Faculty of Health Sciences, Department of Midwifery, Balikesir University, Balikesir, Turkey
| | - Gamze Tanriover
- Faculty of Medicine, Department of Histology and Embryology, Akdeniz University, Antalya, Turkey
| | - Sayra Dilmac
- Faculty of Medicine, Department of Histology and Embryology, Akdeniz University, Antalya, Turkey
| | - Haluk Ozcanli
- Faculty of Medicine, Department of Orthopedics, Akdeniz University, Antalya, Turkey
| |
Collapse
|
3
|
Slavin BR, Sarhane KA, von Guionneau N, Hanwright PJ, Qiu C, Mao HQ, Höke A, Tuffaha SH. Insulin-Like Growth Factor-1: A Promising Therapeutic Target for Peripheral Nerve Injury. Front Bioeng Biotechnol 2021; 9:695850. [PMID: 34249891 PMCID: PMC8264584 DOI: 10.3389/fbioe.2021.695850] [Citation(s) in RCA: 18] [Impact Index Per Article: 6.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/15/2021] [Accepted: 06/02/2021] [Indexed: 01/27/2023] Open
Abstract
Patients who sustain peripheral nerve injuries (PNIs) are often left with debilitating sensory and motor loss. Presently, there is a lack of clinically available therapeutics that can be given as an adjunct to surgical repair to enhance the regenerative process. Insulin-like growth factor-1 (IGF-1) represents a promising therapeutic target to meet this need, given its well-described trophic and anti-apoptotic effects on neurons, Schwann cells (SCs), and myocytes. Here, we review the literature regarding the therapeutic potential of IGF-1 in PNI. We appraised the literature for the various approaches of IGF-1 administration with the aim of identifying which are the most promising in offering a pathway toward clinical application. We also sought to determine the optimal reported dosage ranges for the various delivery approaches that have been investigated.
Collapse
Affiliation(s)
- Benjamin R Slavin
- Department of Plastic and Reconstructive Surgery, School of Medicine, Johns Hopkins University, Baltimore, MD, United States.,Division of Plastic and Reconstructive Surgery, University of Miami Miller School of Medicine, Miami, FL, United States
| | - Karim A Sarhane
- Department of Plastic and Reconstructive Surgery, School of Medicine, Johns Hopkins University, Baltimore, MD, United States
| | - Nicholas von Guionneau
- Department of Plastic and Reconstructive Surgery, School of Medicine, Johns Hopkins University, Baltimore, MD, United States
| | - Phillip J Hanwright
- Department of Plastic and Reconstructive Surgery, School of Medicine, Johns Hopkins University, Baltimore, MD, United States
| | - Chenhu Qiu
- Department of Materials Science and Engineering, Whiting School of Engineering, Johns Hopkins University, Baltimore, MD, United States.,Institute for Nanobiotechnology, Johns Hopkins University, Baltimore, MD, United States
| | - Hai-Quan Mao
- Department of Materials Science and Engineering, Whiting School of Engineering, Johns Hopkins University, Baltimore, MD, United States.,Institute for Nanobiotechnology, Johns Hopkins University, Baltimore, MD, United States.,Department of Biomedical Engineering, School of Medicine, Johns Hopkins University, Baltimore, MD, United States.,Translational Tissue Engineering Center, School of Medicine, Johns Hopkins University, Baltimore, MD, United States
| | - Ahmet Höke
- Department of Neurology, School of Medicine, Johns Hopkins University, Baltimore, MD, United States.,Department of Neuroscience, School of Medicine, Johns Hopkins University, Baltimore, MD, United States
| | - Sami H Tuffaha
- Department of Plastic and Reconstructive Surgery, School of Medicine, Johns Hopkins University, Baltimore, MD, United States
| |
Collapse
|
4
|
Castilla-Cortázar I, Aguirre GA, Femat-Roldán G, Martín-Estal I, Espinosa L. Is insulin-like growth factor-1 involved in Parkinson's disease development? J Transl Med 2020; 18:70. [PMID: 32046737 PMCID: PMC7014772 DOI: 10.1186/s12967-020-02223-0] [Citation(s) in RCA: 28] [Impact Index Per Article: 7.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/23/2019] [Accepted: 01/10/2020] [Indexed: 02/09/2023] Open
Abstract
Parkinson's disease (PD) is a neurodegenerative disorder that results in the death of dopaminergic neurons within the substantia nigra pars compacta and the reduction in dopaminergic control over striatal output neurons, leading to a movement disorder most commonly characterized by akinesia or bradykinesia, rigidity and tremor. Also, PD is less frequently depicted by sensory symptoms (pain and tingling), hyposmia, sleep alterations, depression and anxiety, and abnormal executive and working memory related functions. On the other hand, insulin-like growth factor 1 (IGF-1) is an endocrine, paracrine and autocrine hormone with several functions including tissue growth and development, insulin-like activity, proliferation, pro-survival, anti-aging, antioxidant and neuroprotection, among others. Herein this review tries to summarize all experimental and clinical data to understand the pathophysiology and development of PD, as well as its clear association with IGF-1, supported by several lines of evidence: (1) IGF-1 decreases with age, while aging is the major risk for PD establishment and development; (2) numerous basic and translational data have appointed direct protective and homeostasis IGF-1 roles in all brain cells; (3) estrogens seem to confer women strong protection to PD via IGF-1; and (4) clinical correlations in PD cohorts have confirmed elevated IGF-1 levels at the onset of the disease, suggesting an ongoing compensatory or "fight-to-injury" mechanism.
Collapse
Affiliation(s)
- Inma Castilla-Cortázar
- Tecnologico de Monterrey, Escuela de Medicina y Ciencias de la Salud, Ave. Morones Prieto 3000, 64710, Monterrey, N.L., Mexico.
- Fundación de Investigación HM Hospitales, Madrid, Spain.
| | - Gabriel A Aguirre
- Centre for Tumour Biology, Barts Cancer Institute, Barts and The London School of Medicine and Dentistry, Queen Mary University of London, London, UK
| | - Giovana Femat-Roldán
- Tecnologico de Monterrey, Escuela de Medicina y Ciencias de la Salud, Ave. Morones Prieto 3000, 64710, Monterrey, N.L., Mexico
- Neurocenter, Monterrey, Nuevo Leon, Mexico
| | - Irene Martín-Estal
- Tecnologico de Monterrey, Escuela de Medicina y Ciencias de la Salud, Ave. Morones Prieto 3000, 64710, Monterrey, N.L., Mexico
| | - Luis Espinosa
- Tecnologico de Monterrey, Escuela de Medicina y Ciencias de la Salud, Ave. Morones Prieto 3000, 64710, Monterrey, N.L., Mexico
| |
Collapse
|
5
|
El-Azab NEE, El-Mahalaway AM, Mostafa O, Sabry D. Histological and immunohistochemical study of the potential therapeutic impacts of bone marrow mesenchymal stem cells and exosomes for sciatic nerve crush injury model in rats. J Histotechnol 2018. [DOI: 10.1080/01478885.2018.1505205] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/14/2023]
Affiliation(s)
- Nahla El-Eraky El-Azab
- Benha Faculty of Medicine, Department of Histology and Cell Biology, Benha University, Benha, Egypt
| | - Abeer M. El-Mahalaway
- Benha Faculty of Medicine, Department of Histology and Cell Biology, Benha University, Benha, Egypt
| | - Ola Mostafa
- Benha Faculty of Medicine, Department of Histology and Cell Biology, Benha University, Benha, Egypt
| | - Dina Sabry
- Faculty of Medicine, Department of Medical Biochemistry and molecular biology, Cairo University, Cairo, Egypt
| |
Collapse
|
6
|
Türedi S, Yuluğ E, Alver A, Bodur A, İnce İ. A morphological and biochemical evaluation of the effects of quercetin on experimental sciatic nerve damage in rats. Exp Ther Med 2018; 15:3215-3224. [PMID: 29545838 PMCID: PMC5841083 DOI: 10.3892/etm.2018.5824] [Citation(s) in RCA: 13] [Impact Index Per Article: 2.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/22/2017] [Accepted: 11/03/2017] [Indexed: 12/28/2022] Open
Abstract
The present study evaluated the neuroprotective and antioxidant effects of quercetin in a rat model of sciatic nerve crush injury using histopathological, morphometric and biochemical methods. A total of 48 male Sprague Dawley rats, aged 10-12 weeks old were randomly divided into eight groups, consisting of two sham groups (S-7, S-28), three quercetin-treated groups (Q-7, Q-28; 200 mg/kg/7 days), trauma (T-7, T-28; 1 min sciatic nerve crush injury) and three trauma+quercetin groups (T+Q-7, T+Q-28; trauma+quercetin 200 mg/kg/7 days). Rats were sacrificed on day 7 or 28. Oxidant-antioxidant biochemical parameters in nerve tissues from all groups were analyzed using histopathological staining with toluidine blue and Masson's trichrome. DNA fragmentations were identified using terminal deoxynucleotidyl transferase deoxyuridine triphosphate nick-end labeling in cells from each tissue sample. Degeneration of the axons and myelin sheath, the breakdown of the concentric lamellar structure of the myelin sheath and axonal swelling were observed in groups T-7 and T-28. Myelin sheath thicknesses, nerve fiber diameters and the number of myelinated nerve fibers decreased, while the apoptotic index (AI) increased in the T-7 and T-28 groups. However, it was observed that nerve regeneration began in the T+Q-7 and T+Q-28 groups compared with the sham groups, together with the healing of cellular damage and axonal structure and a decrease in the AI. Malondialdehyde and superoxide dismutase activity did not differ significantly between the T-7 and S-7 groups. However, catalase activity significantly decreased in the T-28 group when compared with the sham 7 day group. Tissue malondialdehyde levels significantly increased, while serum catalase activity increased in the T+Q-7 group compared with the T-7 group. These results suggest that quercetin has beneficial effects on nerve regeneration and may shorten the healing period in crush-type sciatic nerve injuries.
Collapse
Affiliation(s)
- Sibel Türedi
- Department of Histology and Embryology, Faculty of Medicine, Karadeniz Technical University, Trabzon 61080, Turkey
| | - Esin Yuluğ
- Department of Histology and Embryology, Faculty of Medicine, Karadeniz Technical University, Trabzon 61080, Turkey
| | - Ahmet Alver
- Department of Medical Biochemistry, Faculty of Medicine, Karadeniz Technical University, Trabzon 61080, Turkey
| | - Akin Bodur
- Department of Medical Biochemistry, Faculty of Medicine, Karadeniz Technical University, Trabzon 61080, Turkey
| | - İmran İnce
- Department of Medical Biochemistry, Faculty of Medicine, Karadeniz Technical University, Trabzon 61080, Turkey
| |
Collapse
|
7
|
Zhang W, Zhou G, Gao Y, Zhou Y, Liu J, Zhang L, Long A, Zhang L, Tang P. A sequential delivery system employing the synergism of EPO and NGF promotes sciatic nerve repair. Colloids Surf B Biointerfaces 2017; 159:327-336. [DOI: 10.1016/j.colsurfb.2017.07.088] [Citation(s) in RCA: 17] [Impact Index Per Article: 2.4] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/06/2017] [Revised: 07/20/2017] [Accepted: 07/31/2017] [Indexed: 12/18/2022]
|
8
|
Gyetvai G, Hughes T, Wedmore F, Roe C, Heikal L, Ghezzi P, Mengozzi M. Erythropoietin Increases Myelination in Oligodendrocytes: Gene Expression Profiling Reveals Early Induction of Genes Involved in Lipid Transport and Metabolism. Front Immunol 2017; 8:1394. [PMID: 29123527 PMCID: PMC5662872 DOI: 10.3389/fimmu.2017.01394] [Citation(s) in RCA: 10] [Impact Index Per Article: 1.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/06/2017] [Accepted: 10/09/2017] [Indexed: 12/14/2022] Open
Abstract
Several studies have shown that erythropoietin (EPO) has neuroprotective or neuroreparative actions on diseases of the nervous system and that improves oligodendrocyte (OL) differentiation and myelination in vivo and in vitro. This study aims at investigating the early molecular mechanisms for the pro-myelinating action of EPO at the gene expression level. For this purpose, we used a differentiating OL precursor cell line, rat central glia-4 cells. Cells were differentiated or not, and then treated with EPO for 1 or 20 h. RNA was extracted and changes in the gene expression profile were assessed using microarray analysis. Experiments were performed in biological replicates of n = 4. Differentiation alone changed the expression of 11% of transcripts (2,663 out of 24,272), representing 2,436 genes, half of which were upregulated and half downregulated. At 20 h of treatment, EPO significantly affected the expression of 99 genes that were already regulated by differentiation and of 150 genes that were not influenced by differentiation alone. Analysis of the transcripts most upregulated by EPO identified several genes involved in lipid transport (e.g., Cd36) and lipid metabolism (Ppargc1a/Pgc1alpha, Lpin1, Pnlip, Lpin2, Ppard, Plin2) along with Igf1 and Igf2, growth factors known for their pro-myelinating action. All these genes were only induced by EPO and not by differentiation alone, except for Pnlip which was highly induced by differentiation and augmented by EPO. Results were validated by quantitative PCR. These findings suggest that EPO might increase remyelination by inducing insulin-like growth factors and increasing lipid metabolism.
Collapse
Affiliation(s)
- Georgina Gyetvai
- Department of Clinical and Experimental Medicine, Brighton and Sussex Medical School, Brighton, United Kingdom
| | - Trisha Hughes
- Department of Clinical and Experimental Medicine, Brighton and Sussex Medical School, Brighton, United Kingdom
| | - Florence Wedmore
- Department of Clinical and Experimental Medicine, Brighton and Sussex Medical School, Brighton, United Kingdom
| | - Cieron Roe
- Department of Clinical and Experimental Medicine, Brighton and Sussex Medical School, Brighton, United Kingdom
| | - Lamia Heikal
- Department of Clinical and Experimental Medicine, Brighton and Sussex Medical School, Brighton, United Kingdom
| | - Pietro Ghezzi
- Department of Clinical and Experimental Medicine, Brighton and Sussex Medical School, Brighton, United Kingdom
| | - Manuela Mengozzi
- Department of Clinical and Experimental Medicine, Brighton and Sussex Medical School, Brighton, United Kingdom
| |
Collapse
|
9
|
Wu F, Jing Y, Tang X, Li D, Gong L, Zhao H, He L, Li Q, Li R. Anemia: an independent risk factor of diabetic peripheral neuropathy in type 2 diabetic patients. Acta Diabetol 2017; 54:925-931. [PMID: 28730568 DOI: 10.1007/s00592-017-1025-7] [Citation(s) in RCA: 17] [Impact Index Per Article: 2.4] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 04/06/2017] [Accepted: 07/03/2017] [Indexed: 12/12/2022]
Abstract
AIMS Recently, the association between anemia and diabetic microvascular complications has been studied. Diabetic peripheral neuropathy (DPN) is also a common complication of type 2 diabetes mellitus (T2DM), while the relationship between anemia and DPN is rarely investigated. The aim of this study is to evaluate the association between anemia and DPN in T2DM. METHODS In this cross-sectional study, 1134 T2DM inpatients were enrolled. The diagnosis of DPN was based on neuropathy system score (NSS) and neuropathy disability score (NDS). Logistic regression was conducted to analyze the association between anemia and DPN. RESULTS The proportions of anemia in DPN and non-DPN group were 25.4 and 15.2%, respectively. Compared with non-anemia group, the proportions of moderate/severe NSS (42.7 vs. 24.5%, P < 0.001) and moderate/severe NDS (51.5 vs. 38.0%, P < 0.001) were higher while the nerve conduction velocity (NCV) was lower in anemia group. Univariate logistic regression analysis showed patients with anemia possessed an increased risk of DPN [OR = 1.906, 95%CI: 1.416, 2.567, P < 0.001]. Multivariate logistic regression analysis suggested anemia was an independent risk factor of DPN in model 1 and model 2 [model 1: OR = 1.472, 95%CI: 1.047, 2.070, P = 0.026; model 2: OR = 1.448, 95%CI: 1.013, 2.071, P = 0.043]. CONCLUSIONS Anemia is an independent risk factor of DPN in T2DM patients.
Collapse
Affiliation(s)
- Fan Wu
- Department of Endocrinology, The First Affiliated Hospital of Chongqing Medical University, Youyi Road No. 1, Yuzhong District, Chongqing, 400016, China
| | - Yuanyuan Jing
- Department of Endocrinology, The First Affiliated Hospital of Chongqing Medical University, Youyi Road No. 1, Yuzhong District, Chongqing, 400016, China
| | - Xiaojun Tang
- School of Public Health and Management, Chongqing Medical University, Chongqing, 400016, China
| | - Dai Li
- Department of Endocrinology, The First Affiliated Hospital of Chongqing Medical University, Youyi Road No. 1, Yuzhong District, Chongqing, 400016, China
| | - Lilin Gong
- Department of Endocrinology, The First Affiliated Hospital of Chongqing Medical University, Youyi Road No. 1, Yuzhong District, Chongqing, 400016, China
| | - Hongyan Zhao
- Department of Endocrinology, The First Affiliated Hospital of Chongqing Medical University, Youyi Road No. 1, Yuzhong District, Chongqing, 400016, China
| | - Li He
- Department of Endocrinology, The First Affiliated Hospital of Chongqing Medical University, Youyi Road No. 1, Yuzhong District, Chongqing, 400016, China
| | - Qifu Li
- Department of Endocrinology, The First Affiliated Hospital of Chongqing Medical University, Youyi Road No. 1, Yuzhong District, Chongqing, 400016, China
| | - Rong Li
- Department of Endocrinology, The First Affiliated Hospital of Chongqing Medical University, Youyi Road No. 1, Yuzhong District, Chongqing, 400016, China.
| |
Collapse
|
10
|
Geary MB, Li H, Zingman A, Ketz J, Zuscik M, De Mesy Bentley KL, Noble M, Elfar JC. Erythropoietin accelerates functional recovery after moderate sciatic nerve crush injury. Muscle Nerve 2017; 56:143-151. [PMID: 28168703 DOI: 10.1002/mus.25459] [Citation(s) in RCA: 18] [Impact Index Per Article: 2.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/26/2015] [Revised: 10/29/2016] [Accepted: 11/02/2016] [Indexed: 12/14/2022]
Abstract
INTRODUCTION Erythropoietin (EPO) has been identified as a neuroregenerative agent. We hypothesize that it may accelerate recovery after crush injury and may vary with crush severity. METHODS Mice were randomized to mild, moderate, or severe crush of the sciatic nerve and were treated with EPO or vehicle control after injury. The sciatic function index (SFI) was monitored over the first week. Microstructural changes were analyzed by immunofluorescence for neurofilament (NF) and myelin (P0 ), and electron microscopy was used to assess ultrastructural changes. RESULTS In moderate crush injuries, EPO significantly improved SFI at 7 days post-injury, an effect not observed with other severity levels. Increases in the ratio of P0 to NF were observed after EPO treatment in moderate crush injuries. Electron microscopy demonstrated endothelial cell hypertrophy in the EPO group. CONCLUSIONS EPO accelerates recovery in moderately crushed nerves, which may be through effects on myelination and vascularization. Injury severity may influence the efficacy of EPO. Muscle Nerve 56: 143-151, 2017.
Collapse
Affiliation(s)
- Michael B Geary
- Center for Musculoskeletal Research, University of Rochester Medical Center, 601 Elmwood Avenue, Box 665, Rochester, New York, 14642, USA
| | - Haiyan Li
- Center for Musculoskeletal Research, University of Rochester Medical Center, 601 Elmwood Avenue, Box 665, Rochester, New York, 14642, USA
| | - Alissa Zingman
- Department of Orthopaedics and Rehabilitation, University of Rochester Medical Center, Rochester, New York, USA
| | - John Ketz
- Department of Orthopaedics and Rehabilitation, University of Rochester Medical Center, Rochester, New York, USA
| | - Michael Zuscik
- Center for Musculoskeletal Research, University of Rochester Medical Center, 601 Elmwood Avenue, Box 665, Rochester, New York, 14642, USA
| | - Karen L De Mesy Bentley
- Center for Musculoskeletal Research, University of Rochester Medical Center, 601 Elmwood Avenue, Box 665, Rochester, New York, 14642, USA.,Department of Pathology and Laboratory Medicine, University of Rochester Medical Center, Rochester, New York, USA
| | - Mark Noble
- Department of Biomedical Genetics, Stem Cell Regenerative Medicine Institute, University of Rochester Medical Center, Rochester, New York, USA
| | - John C Elfar
- Center for Musculoskeletal Research, University of Rochester Medical Center, 601 Elmwood Avenue, Box 665, Rochester, New York, 14642, USA.,Department of Orthopaedics and Rehabilitation, University of Rochester Medical Center, Rochester, New York, USA
| |
Collapse
|
11
|
Dyer AH, Vahdatpour C, Sanfeliu A, Tropea D. The role of Insulin-Like Growth Factor 1 (IGF-1) in brain development, maturation and neuroplasticity. Neuroscience 2016; 325:89-99. [DOI: 10.1016/j.neuroscience.2016.03.056] [Citation(s) in RCA: 192] [Impact Index Per Article: 24.0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/03/2015] [Revised: 02/29/2016] [Accepted: 03/24/2016] [Indexed: 02/07/2023]
|