1
|
Cervia D, Zecchini S, Pincigher L, Roux-Biejat P, Zalambani C, Catalani E, Arcari A, Del Quondam S, Brunetti K, Ottria R, Casati S, Vanetti C, Barbalace MC, Prata C, Malaguti M, Casati SR, Lociuro L, Giovarelli M, Mocciaro E, Falcone S, Fenizia C, Moscheni C, Hrelia S, De Palma C, Clementi E, Perrotta C. Oral administration of plumbagin is beneficial in in vivo models of Duchenne muscular dystrophy through control of redox signaling. Free Radic Biol Med 2024; 225:193-207. [PMID: 39326684 DOI: 10.1016/j.freeradbiomed.2024.09.037] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 07/25/2024] [Revised: 09/12/2024] [Accepted: 09/23/2024] [Indexed: 09/28/2024]
Abstract
Duchenne muscular dystrophy (DMD) is a progressive muscle-wasting disease. Recently approved molecular/gene treatments do not solve the downstream inflammation-linked pathophysiological issues such that supportive therapies are required to improve therapeutic efficacy and patients' quality of life. Over the years, a plethora of bioactive natural compounds have been used for human healthcare. Among them, plumbagin, a plant-derived analog of vitamin K3, has shown interesting potential to counteract chronic inflammation with potential therapeutic significance. In this work we evaluated the effects of plumbagin on DMD by delivering it as an oral supplement within food to dystrophic mutant of the fruit fly Drosophila melanogaster and mdx mice. In both DMD models, plumbagin show no relevant adverse effect. In terms of efficacy plumbagin improved the climbing ability of the dystrophic flies and their muscle morphology also reducing oxidative stress in muscles. In mdx mice, plumbagin enhanced the running performance on the treadmill and the muscle strength along with muscle morphology. The molecular mechanism underpinning these actions was found to be the activation of nuclear factor erythroid 2-related factor 2 pathway, the re-establishment of redox homeostasis and the reduction of inflammation thus generating a more favorable environment for skeletal muscles regeneration after damage. Our data provide evidence that food supplementation with plumbagin modulates the main, evolutionary conserved, mechanistic pathophysiological hallmarks of dystrophy, thus improving muscle function in vivo; the use of plumbagin as a therapeutic in humans should thus be explored further.
Collapse
Affiliation(s)
- Davide Cervia
- Department for Innovation in Biological, Agro-Food and Forest Systems (DIBAF), Università Degli Studi Della Tuscia, Viterbo, 01100, Italy
| | - Silvia Zecchini
- Department of Biomedical and Clinical Sciences (DIBIC), Università Degli Studi di Milano, Milano, 20157, Italy
| | - Luca Pincigher
- Department of Pharmacy and Biotechnology (FABIT), Alma Mater Studiorum-Università di Bologna, Bologna, 40126, Italy
| | - Paulina Roux-Biejat
- Department of Biomedical and Clinical Sciences (DIBIC), Università Degli Studi di Milano, Milano, 20157, Italy
| | - Chiara Zalambani
- Department of Pharmacy and Biotechnology (FABIT), Alma Mater Studiorum-Università di Bologna, Bologna, 40126, Italy
| | - Elisabetta Catalani
- Department for Innovation in Biological, Agro-Food and Forest Systems (DIBAF), Università Degli Studi Della Tuscia, Viterbo, 01100, Italy
| | - Alessandro Arcari
- Department of Biomedical and Clinical Sciences (DIBIC), Università Degli Studi di Milano, Milano, 20157, Italy
| | - Simona Del Quondam
- Department for Innovation in Biological, Agro-Food and Forest Systems (DIBAF), Università Degli Studi Della Tuscia, Viterbo, 01100, Italy
| | - Kashi Brunetti
- Department for Innovation in Biological, Agro-Food and Forest Systems (DIBAF), Università Degli Studi Della Tuscia, Viterbo, 01100, Italy
| | - Roberta Ottria
- Department of Biomedical and Clinical Sciences (DIBIC), Università Degli Studi di Milano, Milano, 20157, Italy
| | - Sara Casati
- Department of Biomedical, Surgical, and Dental Science (DISBIOC), Università Degli Studi di Milano, Milano, 20133, Italy
| | - Claudia Vanetti
- Department of Biomedical and Clinical Sciences (DIBIC), Università Degli Studi di Milano, Milano, 20157, Italy; Department of Pathophysiology and Transplantation (DEPT), Università Degli Studi di Milano, Milano, 20122, Italy
| | - Maria Cristina Barbalace
- Department for Life Quality Studies, Alma Mater Studiorum-Università di Bologna, Rimini, 47921, Italy
| | - Cecilia Prata
- Department of Pharmacy and Biotechnology (FABIT), Alma Mater Studiorum-Università di Bologna, Bologna, 40126, Italy
| | - Marco Malaguti
- Department for Life Quality Studies, Alma Mater Studiorum-Università di Bologna, Rimini, 47921, Italy
| | - Silvia Rosanna Casati
- Department of Medical Biotechnology and Translational Medicine (BIOMETRA), Università Degli Studi di Milano, 20054, Segrate, Italy
| | - Laura Lociuro
- Department for Life Quality Studies, Alma Mater Studiorum-Università di Bologna, Rimini, 47921, Italy
| | - Matteo Giovarelli
- Department of Biomedical and Clinical Sciences (DIBIC), Università Degli Studi di Milano, Milano, 20157, Italy
| | - Emanuele Mocciaro
- Department of Biomedical and Clinical Sciences (DIBIC), Università Degli Studi di Milano, Milano, 20157, Italy; Gene Expression and Muscular Dystrophy Unit, Division of Genetics and Cell Biology, IRCCS Ospedale San Raffaele, Milano, 20132, Italy
| | - Sestina Falcone
- Sorbonne Université, INSERM, Institut de Myologie, Centre de Recherche en Myologie, Paris, F-75013, France
| | - Claudio Fenizia
- Department of Biomedical and Clinical Sciences (DIBIC), Università Degli Studi di Milano, Milano, 20157, Italy; Department of Pathophysiology and Transplantation (DEPT), Università Degli Studi di Milano, Milano, 20122, Italy
| | - Claudia Moscheni
- Department of Biomedical and Clinical Sciences (DIBIC), Università Degli Studi di Milano, Milano, 20157, Italy
| | - Silvana Hrelia
- Department for Life Quality Studies, Alma Mater Studiorum-Università di Bologna, Rimini, 47921, Italy
| | - Clara De Palma
- Department of Medical Biotechnology and Translational Medicine (BIOMETRA), Università Degli Studi di Milano, 20054, Segrate, Italy
| | - Emilio Clementi
- Department of Biomedical and Clinical Sciences (DIBIC), Università Degli Studi di Milano, Milano, 20157, Italy; IRCCS Eugenio Medea, Bosisio Parini, 23842, Italy
| | - Cristiana Perrotta
- Department of Biomedical and Clinical Sciences (DIBIC), Università Degli Studi di Milano, Milano, 20157, Italy.
| |
Collapse
|
2
|
Sharma B, Dhiman C, Hasan GM, Shamsi A, Hassan MI. Pharmacological Features and Therapeutic Implications of Plumbagin in Cancer and Metabolic Disorders: A Narrative Review. Nutrients 2024; 16:3033. [PMID: 39275349 PMCID: PMC11397539 DOI: 10.3390/nu16173033] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/16/2024] [Revised: 08/30/2024] [Accepted: 09/06/2024] [Indexed: 09/16/2024] Open
Abstract
Plumbagin (PLB) is a naphthoquinone extracted from Plumbago indica. In recent times, there has been a growing body of evidence suggesting the potential importance of naphthoquinones, both natural and artificial, in the pharmacological world. Numerous studies have indicated that PLB plays a vital role in combating cancers and other disorders. There is substantial evidence indicating that PLB may have a significant role in the treatment of breast cancer, brain tumours, lung cancer, hepatocellular carcinoma, and other conditions. Moreover, its potent anti-oxidant and anti-inflammatory properties offer promising avenues for the treatment of neurodegenerative and cardiovascular diseases. A number of studies have identified various pathways that may be responsible for the therapeutic efficacy of PLB. These include cell cycle regulation, apoptotic pathways, ROS induction pathways, inflammatory pathways, and signal transduction pathways such as PI3K/AKT/mTOR, STAT3/PLK1/AKT, and others. This review aims to provide a comprehensive analysis of the diverse pharmacological roles of PLB, examining the mechanisms through which it operates and exploring its potential applications in various medical conditions. In addition, we have conducted a review of the various formulations that have been reported in the literature with the objective of enhancing the efficacy of the compound. However, the majority of the reviewed data are based on in vitro and in vivo studies. To gain a comprehensive understanding of the safety and efficacy of PLB in humans and to ascertain its potential integration into therapeutic regimens for cancer and chronic diseases, rigorous clinical trials are essential. Finally, by synthesizing current research and identifying gaps in knowledge, this review seeks to enhance our understanding of PLB and its therapeutic prospects, paving the way for future studies and clinical applications.
Collapse
Affiliation(s)
- Bhoomika Sharma
- Department of Biosciences, Jamia Millia Islamia, Jamia Nagar, New Delhi 110025, India
| | - Chitra Dhiman
- Department of Biosciences, Jamia Millia Islamia, Jamia Nagar, New Delhi 110025, India
| | - Gulam Mustafa Hasan
- Department of Basic Medical Science, College of Medicine, Prince Sattam Bin Abdulaziz University, Al-Kharj 11942, Saudi Arabia
| | - Anas Shamsi
- Centre of Medical and Bio-Allied Health Sciences Research, Ajman University, Ajman P.O. Box 346, United Arab Emirates
| | - Md Imtiyaz Hassan
- Centre for Interdisciplinary Research in Basic Sciences, Jamia Millia Islamia, Jamia Nagar, New Delhi 110025, India
| |
Collapse
|
3
|
Petrocelli G, Marrazzo P, Bonsi L, Facchin F, Alviano F, Canaider S. Plumbagin, a Natural Compound with Several Biological Effects and Anti-Inflammatory Properties. Life (Basel) 2023; 13:1303. [PMID: 37374085 DOI: 10.3390/life13061303] [Citation(s) in RCA: 9] [Impact Index Per Article: 9.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/02/2023] [Revised: 05/23/2023] [Accepted: 05/29/2023] [Indexed: 06/29/2023] Open
Abstract
Phytochemicals from various medicinal plants are well known for their antioxidant properties and anti-cancer effects. Many of these bioactive compounds or natural products have demonstrated effects against inflammation, while some showed a role that is only approximately described as anti-inflammatory. In particular, naphthoquinones are naturally-occurring compounds with different pharmacological activities and allow easy scaffold modification for drug design approaches. Among this class of compounds, Plumbagin, a plant-derived product, has shown interesting counteracting effects in many inflammation models. However, scientific knowledge about the beneficial effect of Plumbagin should be comprehensively reported before candidating this natural molecule into a future drug against specific human diseases. In this review, the most relevant mechanisms in which Plumbagin plays a role in the process of inflammation were summarized. Other relevant bioactive effects were reviewed to provide a complete and compact scenario of Plumbagin's potential therapeutic significance.
Collapse
Affiliation(s)
| | - Pasquale Marrazzo
- Department of Medical and Surgical Sciences, University of Bologna, 40126 Bologna, BO, Italy
| | - Laura Bonsi
- Department of Medical and Surgical Sciences, University of Bologna, 40126 Bologna, BO, Italy
| | - Federica Facchin
- Department of Medical and Surgical Sciences, University of Bologna, 40126 Bologna, BO, Italy
| | - Francesco Alviano
- Department of Biomedical and Neuromotor Science, University of Bologna, 40126 Bologna, BO, Italy
| | - Silvia Canaider
- Department of Medical and Surgical Sciences, University of Bologna, 40126 Bologna, BO, Italy
| |
Collapse
|
4
|
Pan PH, Wang YY, Lin SY, Liao SL, Chen YF, Huang WC, Chen CJ, Chen WY. Plumbagin ameliorates bile duct ligation-induced cholestatic liver injury in rats. Biomed Pharmacother 2022; 151:113133. [PMID: 35594710 DOI: 10.1016/j.biopha.2022.113133] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/02/2022] [Revised: 05/04/2022] [Accepted: 05/15/2022] [Indexed: 11/17/2022] Open
Abstract
Plumbagin, a natural bicyclic naphthoquinone, has diverse pharmacological properties and biological benefits against a number of disorders, including liver disease. Though plumbagin's hepatoprotective potential attracts attention, currently no experimental evidence exists on its effectiveness against cholestatic liver injury. The present study investigated its hepatoprotection in the rat model of extrahepatic cholestasis using Bile Duct Ligation (BDL). We found that daily plumbagin supplementation protected the liver from cholestatic damage. Hepatoprotective actions of plumbagin were accompanied by reduction of Transforming Growth Factor β1 (TGF-β1)/Smad, High Mobility Group Box-1 (HMGB1)/Toll-Like Receptor-4 (TLR4), Hypoxia-Inducible Factor-1α (HIF-1α), Aryl Hydrocarbon Receptor (AhR), Heat Shock Protein 90 (HSP90), caveolin-1, NF-κB/AP-1, Dynamin Related Protein-1 (Drp1), malondialdehyde level, Interleukin-1β (IL-1β), p62/SQSTM1, and caspase 3 as well as increase of Farnesoid X Receptor (FXR), bile acid efflux transporters, glutathione, LC3-II, Beclin1, and nuclear NF-E2-Related Factor-2 (Nrf2) and Transcription Factor EB (TFEB). The activation of nuclear Nrf2 caused by plumbagin correlated well with the improvement in bile acid retention, liver histology, serum biochemical, ductular reaction, mitochondrial dysfunction, oxidative stress, inflammation, apoptosis, impaired autophagy, and fibrosis, involving interplay of multiple intracellular signaling pathways. Plumbagin is likely a candidate drug to protect the liver from cholestatic damages. Despite the promising findings from this study, translational implication of plumbagin on cholestatic liver injury warrants further investigation.
Collapse
Affiliation(s)
- Pin-Ho Pan
- Department of Veterinary Medicine, National Chung Hsing University, Taichung City 402, Taiwan; Department of Pediatrics, Tungs' Taichung MetroHarbor Hospital, Taichung City 435, Taiwan.
| | - Ya-Yu Wang
- Department of Family Medicine, Taichung Veterans General Hospital, Taichung City 407, Taiwan.
| | - Shih-Yi Lin
- Center for Geriatrics and Gerontology, Taichung Veterans General Hospital, Taichung City 407, Taiwan; Institute of Clinical Medicine, National Yang-Ming Chiao Tung University, Taipei City 112, Taiwan.
| | - Su-Lan Liao
- Department of Medical Research, Taichung Veterans General Hospital, Taichung City 407, Taiwan.
| | - Yu-Fang Chen
- Department of Medical Laboratory Science, I-Shou University, Kaohsiung City 840, Taiwan.
| | - Wei-Chi Huang
- Department of Veterinary Medicine, National Chung Hsing University, Taichung City 402, Taiwan.
| | - Chun-Jung Chen
- Department of Medical Research, Taichung Veterans General Hospital, Taichung City 407, Taiwan; Department of Medical Laboratory Science and Biotechnology, China Medical University, Taichung City 404, Taiwan.
| | - Wen-Ying Chen
- Department of Veterinary Medicine, National Chung Hsing University, Taichung City 402, Taiwan.
| |
Collapse
|
5
|
Valente PM, Valente VMM, Silva MC, dos Reis LB, Silva FD, Praça-Fontes MM. Phytotoxicity and cytogenotoxicity of Dionaea muscipula Ellis extracts and its major compound against Lactuca sativa and Allium cepa. Biologia (Bratisl) 2022. [DOI: 10.1007/s11756-022-01153-0] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/02/2022]
|
6
|
Shu C, Chen J, Lv M, Xi Y, Zheng J, Xu X. Plumbagin relieves rheumatoid arthritis through nuclear factor kappa-B (NF-κB) pathway. Bioengineered 2022; 13:13632-13642. [PMID: 35653787 PMCID: PMC9276045 DOI: 10.1080/21655979.2022.2081756] [Citation(s) in RCA: 10] [Impact Index Per Article: 5.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/17/2022] Open
Abstract
This study aimed to explore the effects of plumbagin on rheumatoid arthritis (RA) and its mechanism. The RA cell model was simulated following the treatment of interleukin-1β (IL-1β). After the treatment of various concentrations of plumbagin, the impact of plumbagin on the cell viability was examined by 3-(4,5-Dimethylthiazol-2-yl)-2,5-diphenyltetrazolium bromide (MTT) assay. The collagen-induced arthritis (CIA) model was established using the solution of bovine type II collagen. Hematoxylin-eosin staining was used to observe the changes of ankle joint tissue, while enzyme-linked immunosorbent assay and western blot were applied to detect the level of inflammatory cytokines. Plumbagin inhibited the viability of human fibroblast-like synoviocytes (HFLS) at the concentration of 1 ~ 3.5 μM. The inhibitory effect of 1 μM plumbagin on cell proliferation was similar to that of methotrexate, the drug used as the positive control. Plumbagin downregulated the levels of inflammatory cytokines and matrix metalloproteinases (MMPs) in IL-1β-treated HFLS, and suppressed the activation of IκB and nuclear factor kappa-B (NF-κB) as well as the entry of p65 into the nucleus. It was also demonstrated in animal experiments that plumbagin inhibited the activation of NF-κB pathway, down-regulated the levels of tumor necrosis factor-α (TNF-α), interleukin-6 (IL-6) and MMPs, and alleviated joint damage in CIA-modeled mice. Collectively speaking, plumbagin might down-regulate the levels of inflammatory cytokines and MMPs through inhibiting the activation of the NF-κB pathway, thereby attenuating RA-induced damage to cells and joints. Abbreviations: CIA: Collagen-induced arthritis; ELISA: Enzyme-linked immuno sorbent assay; HFLS: Human fibroblast-like synoviocytes; IL-6: Interleukin-6; IL-1β: Interleukin-1β; NF-κB: nuclear factor kappa-B; MTT: 3-(4,5-Dimethylthiazol-2-yl)-2,5-diphenyltetrazolium bromide; MMPs: Matrix metalloproteinase; OD: Optical density; RA: Rheumatoid arthritis; SDS: Sodium dodecyl sulfate; SD: Standard deviation; TNF-α: Tumor necrosis factor-α; PVDF: Polyvinylidene fluoride.
Collapse
Affiliation(s)
- Chang Shu
- Department of Orthopaedic, The First People's Hospital of Yongkang, Yongkang, Zhejiang, China
| | - Jun Chen
- Department of Pharmacy, The First People's Hospital of Yongkang, Yongkang, Zhejiang, China
| | - Meiyan Lv
- Department of Clinical Laboratory, The First People's Hospital of Yongkang, Yongkang, Zhejiang, China
| | - Yiyuan Xi
- School of Pharmaceutical Sciences, Wenzhou Medical University, Wenzhou, Zhejiang, China
| | - Jujia Zheng
- School of Pharmaceutical Sciences, Wenzhou Medical University, Wenzhou, Zhejiang, China
| | - Xiangwei Xu
- Department of Pharmacy, The First People's Hospital of Yongkang, Yongkang, Zhejiang, China
| |
Collapse
|
7
|
Singh AP, Sharma A. Structural Insights and Pharmaceutical Relevance of Plumbagin in Parasitic Disorders: A Comprehensive Review. RECENT ADVANCES IN ANTI-INFECTIVE DRUG DISCOVERY 2022; 17:187-198. [PMID: 36065920 DOI: 10.2174/2772434417666220905121531] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 03/04/2022] [Revised: 06/15/2022] [Accepted: 06/23/2022] [Indexed: 06/15/2023]
Abstract
Recently, natural products have been became the center of attraction for the scientific society and exploration of their biologically abilities is proceeding continuously. In search for novel antiparasitic agents with an objective of protecting humans from parasitic infections, the present work was focused on naphthoquinones possessing antiparasitic activity. Among naphthoquinones, plumbagin is one of the secondary metabolites exhibiting diverse biological properties such as antibacterial, antimalarial, antiinflammatory, insecticidal and antiparasitic. Plumbagin is reported to have antischistosomiasis, anti-haemonchosis, anti-fascioliasis, antiotoacariasis, anti-leishmaniasis, antimalaria, antiallergic and anthelmintic activities. Besides, various methods of extraction of plumbagin from different methods, their effectiveness against different parasites, and the structure-activity relationship reported by different researchers. This work highlight on recent advancements in the phytochemistry of plumbagin, studies associated with various biological activities. The structure-activity relationship studies have also been summarized. To conclude, present review could be beneficial for the scientific community to get better insight into medicinal research of plumbagin and may provide a new horizon for the rational design of plumbagin based compounds.
Collapse
Affiliation(s)
| | - Alok Sharma
- ISF College of Pharmacy, Moga, 142001, Punjab, India
| |
Collapse
|
8
|
Jiang ZB, Xu C, Wang W, Zhang YZ, Huang JM, Xie YJ, Wang QQ, Fan XX, Yao XJ, Xie C, Wang XR, Yan PY, Ma YP, Wu QB, Leung ELH. Plumbagin suppresses non-small cell lung cancer progression through downregulating ARF1 and by elevating CD8 + T cells. Pharmacol Res 2021; 169:105656. [PMID: 33964470 DOI: 10.1016/j.phrs.2021.105656] [Citation(s) in RCA: 12] [Impact Index Per Article: 4.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 03/09/2021] [Revised: 04/21/2021] [Accepted: 04/22/2021] [Indexed: 12/11/2022]
Abstract
Non-small cell lung cancer (NSCLC) is one of the most frequently diagnosed cancers and the leading causes of cancer death worldwide. Therefore, new therapeutic agents are urgently needed to improve patient outcomes. Plumbagin (PLB), a natural sesquiterpene present in many Chinese herbal medicines, has been reported for its anti-cancer activity in various cancer cells. In this study, the effects and underlying mechanisms of PLB on the tumorigenesis of NSCLC were investigated. PLB dose-dependently inhibited the growth of NSCLC cell lines. PLB promoted ROS production, activated the endoplasmic reticulum (ER) stress pathway, and induced cell apoptosis, accompanied by the decreased expression level of ADP-ribosylation factor 1 (ARF1) in NSCLC cancer cells, and those effects of PLB could be reversed by the pretreatment with N-acetyl-L-cysteine (NAC). More importantly, the calcium chelator (BM) significantly reversed PLB-induced cell apoptosis. Furthermore, PLB significantly inhibited the growth of both H1975 xenograft and LLC1 tumors and exhibited antitumor activity by enhancing the number and the effector function of CD8+ T cells in KRASLA2 mice model and the LLC1 xenograft. Our findings suggest that PLB exerts potent antitumor activity against NSCLC in vitro and in vivo through ARF1 downregulation and induction of antitumor immune response, indicating that PLB is a new novel therapeutic candidate for the treatment of patients with NSCLC.
Collapse
Affiliation(s)
- Ze-Bo Jiang
- Dr. Neher's Biophysics Laboratory for Innovative Drug Discovery, Macau University of Science and Technology, Avenida Wai Long, Taipa, Macau (SAR), China; State Key Laboratory of Quality Research in Chinese Medicine, Macau University of Science and Technology, Avenida Wai Long, Taipa, Macau (SAR), China
| | - Cong Xu
- Dr. Neher's Biophysics Laboratory for Innovative Drug Discovery, Macau University of Science and Technology, Avenida Wai Long, Taipa, Macau (SAR), China; State Key Laboratory of Quality Research in Chinese Medicine, Macau University of Science and Technology, Avenida Wai Long, Taipa, Macau (SAR), China
| | - Wenjun Wang
- Dr. Neher's Biophysics Laboratory for Innovative Drug Discovery, Macau University of Science and Technology, Avenida Wai Long, Taipa, Macau (SAR), China; State Key Laboratory of Quality Research in Chinese Medicine, Macau University of Science and Technology, Avenida Wai Long, Taipa, Macau (SAR), China
| | - Yi-Zhong Zhang
- Dr. Neher's Biophysics Laboratory for Innovative Drug Discovery, Macau University of Science and Technology, Avenida Wai Long, Taipa, Macau (SAR), China; State Key Laboratory of Quality Research in Chinese Medicine, Macau University of Science and Technology, Avenida Wai Long, Taipa, Macau (SAR), China
| | - Ju-Min Huang
- Dr. Neher's Biophysics Laboratory for Innovative Drug Discovery, Macau University of Science and Technology, Avenida Wai Long, Taipa, Macau (SAR), China; State Key Laboratory of Quality Research in Chinese Medicine, Macau University of Science and Technology, Avenida Wai Long, Taipa, Macau (SAR), China
| | - Ya-Jia Xie
- Dr. Neher's Biophysics Laboratory for Innovative Drug Discovery, Macau University of Science and Technology, Avenida Wai Long, Taipa, Macau (SAR), China; State Key Laboratory of Quality Research in Chinese Medicine, Macau University of Science and Technology, Avenida Wai Long, Taipa, Macau (SAR), China
| | - Qian-Qian Wang
- Dr. Neher's Biophysics Laboratory for Innovative Drug Discovery, Macau University of Science and Technology, Avenida Wai Long, Taipa, Macau (SAR), China; State Key Laboratory of Quality Research in Chinese Medicine, Macau University of Science and Technology, Avenida Wai Long, Taipa, Macau (SAR), China
| | - Xing-Xing Fan
- Dr. Neher's Biophysics Laboratory for Innovative Drug Discovery, Macau University of Science and Technology, Avenida Wai Long, Taipa, Macau (SAR), China; State Key Laboratory of Quality Research in Chinese Medicine, Macau University of Science and Technology, Avenida Wai Long, Taipa, Macau (SAR), China
| | - Xiao-Jun Yao
- Dr. Neher's Biophysics Laboratory for Innovative Drug Discovery, Macau University of Science and Technology, Avenida Wai Long, Taipa, Macau (SAR), China; State Key Laboratory of Quality Research in Chinese Medicine, Macau University of Science and Technology, Avenida Wai Long, Taipa, Macau (SAR), China
| | - Chun Xie
- Dr. Neher's Biophysics Laboratory for Innovative Drug Discovery, Macau University of Science and Technology, Avenida Wai Long, Taipa, Macau (SAR), China; State Key Laboratory of Quality Research in Chinese Medicine, Macau University of Science and Technology, Avenida Wai Long, Taipa, Macau (SAR), China
| | - Xuan-Run Wang
- Dr. Neher's Biophysics Laboratory for Innovative Drug Discovery, Macau University of Science and Technology, Avenida Wai Long, Taipa, Macau (SAR), China; State Key Laboratory of Quality Research in Chinese Medicine, Macau University of Science and Technology, Avenida Wai Long, Taipa, Macau (SAR), China
| | - Pei-Yu Yan
- Dr. Neher's Biophysics Laboratory for Innovative Drug Discovery, Macau University of Science and Technology, Avenida Wai Long, Taipa, Macau (SAR), China; State Key Laboratory of Quality Research in Chinese Medicine, Macau University of Science and Technology, Avenida Wai Long, Taipa, Macau (SAR), China
| | - Yu-Po Ma
- Dr. Neher's Biophysics Laboratory for Innovative Drug Discovery, Macau University of Science and Technology, Avenida Wai Long, Taipa, Macau (SAR), China; State Key Laboratory of Quality Research in Chinese Medicine, Macau University of Science and Technology, Avenida Wai Long, Taipa, Macau (SAR), China; Department of Pathology, State University of New York at Stony Brook, Stony Brook, NY, USA.
| | - Qi-Biao Wu
- Dr. Neher's Biophysics Laboratory for Innovative Drug Discovery, Macau University of Science and Technology, Avenida Wai Long, Taipa, Macau (SAR), China; State Key Laboratory of Quality Research in Chinese Medicine, Macau University of Science and Technology, Avenida Wai Long, Taipa, Macau (SAR), China.
| | - Elaine Lai-Han Leung
- Dr. Neher's Biophysics Laboratory for Innovative Drug Discovery, Macau University of Science and Technology, Avenida Wai Long, Taipa, Macau (SAR), China; State Key Laboratory of Quality Research in Chinese Medicine, Macau University of Science and Technology, Avenida Wai Long, Taipa, Macau (SAR), China; Guangdong-Hong Kong-Macau Joint Lab on Chinese Medicine and Immune Disease Research, China.
| |
Collapse
|
9
|
Nádró B, Lőrincz H, Molnár Á, Szentpéteri A, Zöld E, Seres I, Páll D, Paragh G, Kempler P, Harangi M, Sztanek F. Effects of alpha-lipoic acid treatment on serum progranulin levels and inflammatory markers in diabetic neuropathy. J Int Med Res 2021; 49:3000605211012213. [PMID: 34041950 PMCID: PMC8165837 DOI: 10.1177/03000605211012213] [Citation(s) in RCA: 6] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/31/2022] Open
Abstract
Objectives Progranulin (PGRN) is a secreted growth factor that helps to regulate
neuronal survival by blocking tumor necrosis factor-alpha (TNFα) receptors.
The antioxidant alpha-lipoic acid (ALA) is used in diabetic neuropathy to
improve nerve conduction and relieve neuropathic pain, but its effects on
PGRN levels have not yet been elucidated. Methods In this prospective study, 54 patients with type 2 diabetes and peripheral
neuropathy received 600 mg of ALA daily for 6 months. Twenty-four patients
with diabetes without neuropathy were also included in the study. Serum PGRN
and TNFα levels were determined using enzyme-linked immunosorbent assays. In
addition, current perception threshold (CPT) testing was used to assess
sensory neuropathy. Results After ALA treatment, serum PGRN levels were significantly increased and CPT
values were significantly improved. Furthermore, there were significant
positive correlations among TNFα, ICAM-1, and PGRN levels both before and
after ALA treatment. A significant negative correlation was observed between
the improvements in CPT and the PGRN levels. Furthermore, ICAM-1 levels were
an independent predictor of PGRN levels. Conclusions Changes in serum PGRN levels indicate that ALA treatment may have beneficial
effects on endothelial function and neuronal inflammation.
Collapse
Affiliation(s)
- Bíborka Nádró
- Department of Internal Medicine, University of Debrecen Faculty of Medicine, Debrecen, Hungary
| | - Hajnalka Lőrincz
- Department of Internal Medicine, University of Debrecen Faculty of Medicine, Debrecen, Hungary
| | - Ágnes Molnár
- Department of Internal Medicine, University of Debrecen Faculty of Medicine, Debrecen, Hungary
| | - Anita Szentpéteri
- Department of Internal Medicine, University of Debrecen Faculty of Medicine, Debrecen, Hungary
| | - Eszter Zöld
- Department of Ophthalmology, University of Debrecen Faculty of Medicine, Debrecen, Hungary
| | - Ildikó Seres
- Department of Internal Medicine, University of Debrecen Faculty of Medicine, Debrecen, Hungary
| | - Dénes Páll
- Department of Internal Medicine, University of Debrecen Faculty of Medicine, Debrecen, Hungary
| | - György Paragh
- Department of Internal Medicine, University of Debrecen Faculty of Medicine, Debrecen, Hungary
| | - Péter Kempler
- First Department of Internal Medicine, Semmelweis University Faculty of Medicine, Budapest, Hungary
| | - Mariann Harangi
- Department of Internal Medicine, University of Debrecen Faculty of Medicine, Debrecen, Hungary
| | - Ferenc Sztanek
- Department of Internal Medicine, University of Debrecen Faculty of Medicine, Debrecen, Hungary
| |
Collapse
|
10
|
Bhandari R, Kaur J, Kaur S, Kuhad A. The Nrf2 pathway in psychiatric disorders: pathophysiological role and potential targeting. Expert Opin Ther Targets 2021; 25:115-139. [PMID: 33557652 DOI: 10.1080/14728222.2021.1887141] [Citation(s) in RCA: 4] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/26/2022]
Abstract
Introduction: All psychiatric disorders exhibit excitotoxicity, mitochondrial dysfunction, inflammation, oxidative stress, and neural damage as their common characteristic. The endogenous nuclear factor erythroid 2-related factor 2 (Nrf2) signaling pathway is implicated in the defense mechanism against oxidative stress and has a significant role in psychiatric disorders.Areas covered: We explore the role of Nrf2 pathway and its modulators in psychiatric disorders. The literature was searched utilizing various databases such as Embase, Medline, Web of Science, Pub-Med, and Google Scholar from 2010 to 2020. The search included research articles, clinical reports, systematic reviews, and meta-analyses.Expert opinion: Environmental factors and genetic predisposition can be a trigger for the development of psychiatric disorders. Nrf2 downregulates certain inflammatory pathways and upregulates various antioxidant enzymes to maintain a balance. However, its intricate balance with NF-Kβ (Nuclear factor kappa light chain enhancer of activated B cells) and its crosstalk with the transcription factor Nrf2 is critical in severe oxidative stress. Several Nrf2 modulators are now in clinical trials and can help reduce oxidative stress and neuroinflammation. There are immense potential opportunities for these modulators to become a novel therapeutic option.
Collapse
Affiliation(s)
- Ranjana Bhandari
- Pharmacology Research Laboratory, University Institute of Pharmaceutical Sciences, UGC-Centre of Advanced Study, Panjab University, Chandigarh, India
| | - Japneet Kaur
- Pharmacology Research Laboratory, University Institute of Pharmaceutical Sciences, UGC-Centre of Advanced Study, Panjab University, Chandigarh, India
| | - Simerpreet Kaur
- Pharmacology Research Laboratory, University Institute of Pharmaceutical Sciences, UGC-Centre of Advanced Study, Panjab University, Chandigarh, India
| | - Anurag Kuhad
- Pharmacology Research Laboratory, University Institute of Pharmaceutical Sciences, UGC-Centre of Advanced Study, Panjab University, Chandigarh, India
| |
Collapse
|
11
|
Pradubyat N, Sakunrangsit N, Mutirangura A, Ketchart W. NADPH: Quinone oxidoreductase 1 (NQO1) mediated anti-cancer effects of plumbagin in endocrine resistant MCF7 breast cancer cells. PHYTOMEDICINE : INTERNATIONAL JOURNAL OF PHYTOTHERAPY AND PHYTOPHARMACOLOGY 2020; 66:153133. [PMID: 31790893 DOI: 10.1016/j.phymed.2019.153133] [Citation(s) in RCA: 10] [Impact Index Per Article: 2.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 01/22/2019] [Revised: 10/31/2019] [Accepted: 11/07/2019] [Indexed: 06/10/2023]
Abstract
BACKGROUND PLB is a natural naphthoquinone compound isolated from the roots of Plumbago indica plant. Our previous study reported the inhibitory effect of Plumbagin (PLB) on human endocrine resistant breast cancer cell growth and cell invasion. HYPOTHESIS/PURPOSE Since PLB is a naphthoquinone compound, it can be reduced by the cytosolic NADPH: quinone oxidoreductase 1 (NQO1) enzyme. NQO1 expression is upregulated in various types of aggressive cancer including breast cancer. This study investigated the impact of NQO1 on anti-cancer effects of PLB in endocrine-resistant breast cancer cells. STUDY DESIGN This study was an in vitro study using ER-positive cell line (MCF7) and endocrine-resistant cell lines (MCF7/LCC2 and MCF7/LCC9 cells). METHODS The roles of NQO1 in anti-cancer activity of PLB were investigated by using NQO1 knockdown cells, NQO1 inhibitor and NQO1 overexpressed cells. To study the impact of NQO1 on the effects of PLB on cell viability, apoptosis, invasion and generation of ROS, the following assays were used: MTT assays, annexin V-PE/7-ADD staining flow cytometry, matrigel invasion assays and DCFHDA assays. To study the mechanism of how NQO1 mediated PLB effects in tamoxifen response and apoptosis, we assessed the levels of mRNA expression by using qRT-PCR. RESULTS 1. In this study, NQO1 was upregulated in endocrine-resistant cells. 2. PLB did not change the expression of NQO1 but it was able to increase NQO1 activity. 3. The inhibitory effects of PLB on cell proliferation, cell invasion and expression of tamoxifen resistant gene were attenuated in NQO1 knockdown cells or in the presence of NQO1 inhibitor. 4. The effects of PLB to induce apoptosis and generate ROS were also decreased when NQO1 activity was inhibited or when the NQO1 expression was reduced. 5. The anti-cancer effects of PLB increased when NQO1 was upregulated. CONCLUSION The effects of PLB in endocrine-resistant breast cancer cells is dependent on NQO1's activity.
Collapse
Affiliation(s)
- Nalinee Pradubyat
- Overcoming cancer drug resistance research unit, Department of Pharmacology, Faculty of Medicine, Chulalongkorn University, Bangkok 10330, Thailand
| | - Nithidol Sakunrangsit
- Overcoming cancer drug resistance research unit, Department of Pharmacology, Faculty of Medicine, Chulalongkorn University, Bangkok 10330, Thailand
| | - Apiwat Mutirangura
- Center for Excellence in Molecular Genetics of Cancer and Human Diseases, Department of Anatomy, Faculty of Medicine, Chulalongkorn University, Bangkok 10330, Thailand
| | - Wannarasmi Ketchart
- Overcoming cancer drug resistance research unit, Department of Pharmacology, Faculty of Medicine, Chulalongkorn University, Bangkok 10330, Thailand.
| |
Collapse
|
12
|
Li X, Zhan J, Hou Y, Hou Y, Chen S, Luo D, Luan J, Wang L, Lin D. Coenzyme Q10 Regulation of Apoptosis and Oxidative Stress in H 2O 2 Induced BMSC Death by Modulating the Nrf-2/NQO-1 Signaling Pathway and Its Application in a Model of Spinal Cord Injury. OXIDATIVE MEDICINE AND CELLULAR LONGEVITY 2019; 2019:6493081. [PMID: 31915512 PMCID: PMC6930770 DOI: 10.1155/2019/6493081] [Citation(s) in RCA: 55] [Impact Index Per Article: 11.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 09/24/2019] [Accepted: 11/16/2019] [Indexed: 12/23/2022]
Abstract
Spinal cord injury (SCI) has always been considered to be a devastating problem that results in catastrophic dysfunction, high disability rate, low mortality rate, and huge cost for the patient. Stem cell-based therapy, especially using bone marrow mesenchymal stem cells (BMSCs), is a promising strategy for the treatment of SCI. However, SCI results in low rates of cell survival and a poor microenvironment, which limits the therapeutic efficiency of BMSC transplantation. Coenzyme Q10 (CoQ10) is known as a powerful antioxidant, which inhibits lipid peroxidation and scavenges free radicals, and its combined effect with BMSC transplantation has been shown to have a powerful impact on protecting the vitality of cells, as well as antioxidant and antiapoptotic compounds in SCI. Therefore, we aimed to evaluate whether CoQ10 could decrease oxidative stress against the apoptosis of BMSCs in vitro and explored its molecular mechanisms. Furthermore, we investigated the protective effect of CoQ10 combined with BMSCs transplanted into a SCI model to verify its ability. Our results demonstrate that CoQ10 treatment significantly decreases the expression of the proapoptotic proteins Bax and Caspase-3, as shown through TUNEL-positive staining and the products of oxidative stress (ROS), while increasing the expression of the antiapoptotic protein Bcl-2 and the products of antioxidation, such as glutathione (GSH), against apoptosis and oxidative stress, in a H2O2-induced model. We also identified consistent results from the CoQ10 treatment of BMSCs transplanted into SCI rats in vivo. Moreover, the Nrf-2 signaling pathway was also investigated in order to detail its molecular mechanism, and the results show that it plays an important role, both in vitro and in vivo. Thus, CoQ10 exerts an antiapoptotic and antioxidant effect, as well as improves the microenvironment in vitro and in vivo. It may also protect BMSCs from oxidative stress and enhance their therapeutic efficiency when transplanted for SCI treatment.
Collapse
Affiliation(s)
- Xing Li
- Department of Orthopedic Surgery, The Second Affiliated Hospital of Guangzhou University of Chinese Medicine, No. 111 Dade Road, Guangzhou, Guangdong 510120, China
- Guangzhou University of Chinese Medicine, No. 12, Jichang Road, Baiyun District, Guangzhou 510405, China
- Lingnan Medical Research Center of Guangzhou University of Chinese Medicine, Guangzhou 510405, China
| | - Jiheng Zhan
- Department of Orthopedic Surgery, The Second Affiliated Hospital of Guangzhou University of Chinese Medicine, No. 111 Dade Road, Guangzhou, Guangdong 510120, China
- Guangzhou University of Chinese Medicine, No. 12, Jichang Road, Baiyun District, Guangzhou 510405, China
- Lingnan Medical Research Center of Guangzhou University of Chinese Medicine, Guangzhou 510405, China
| | - Yu Hou
- Department of Orthopedic Surgery, The Second Affiliated Hospital of Guangzhou University of Chinese Medicine, No. 111 Dade Road, Guangzhou, Guangdong 510120, China
- Guangzhou University of Chinese Medicine, No. 12, Jichang Road, Baiyun District, Guangzhou 510405, China
- Lingnan Medical Research Center of Guangzhou University of Chinese Medicine, Guangzhou 510405, China
| | - Yonghui Hou
- Department of Orthopedic Surgery, The Second Affiliated Hospital of Guangzhou University of Chinese Medicine, No. 111 Dade Road, Guangzhou, Guangdong 510120, China
- Guangzhou University of Chinese Medicine, No. 12, Jichang Road, Baiyun District, Guangzhou 510405, China
- Lingnan Medical Research Center of Guangzhou University of Chinese Medicine, Guangzhou 510405, China
| | - Shudong Chen
- Department of Orthopedic Surgery, The Second Affiliated Hospital of Guangzhou University of Chinese Medicine, No. 111 Dade Road, Guangzhou, Guangdong 510120, China
- Guangzhou University of Chinese Medicine, No. 12, Jichang Road, Baiyun District, Guangzhou 510405, China
- Lingnan Medical Research Center of Guangzhou University of Chinese Medicine, Guangzhou 510405, China
| | - Dan Luo
- Department of Orthopedic Surgery, The Second Affiliated Hospital of Guangzhou University of Chinese Medicine, No. 111 Dade Road, Guangzhou, Guangdong 510120, China
- Guangzhou University of Chinese Medicine, No. 12, Jichang Road, Baiyun District, Guangzhou 510405, China
- Lingnan Medical Research Center of Guangzhou University of Chinese Medicine, Guangzhou 510405, China
| | - Jiyao Luan
- Department of Orthopedic Surgery, The Second Affiliated Hospital of Guangzhou University of Chinese Medicine, No. 111 Dade Road, Guangzhou, Guangdong 510120, China
- Guangzhou University of Chinese Medicine, No. 12, Jichang Road, Baiyun District, Guangzhou 510405, China
- Lingnan Medical Research Center of Guangzhou University of Chinese Medicine, Guangzhou 510405, China
| | - Le Wang
- Department of Spine Surgery, The First Affiliated Hospital of Sun Yat-sen University, Guangzhou, China
| | - Dingkun Lin
- Department of Orthopedic Surgery, The Second Affiliated Hospital of Guangzhou University of Chinese Medicine, No. 111 Dade Road, Guangzhou, Guangdong 510120, China
- Guangzhou University of Chinese Medicine, No. 12, Jichang Road, Baiyun District, Guangzhou 510405, China
- Lingnan Medical Research Center of Guangzhou University of Chinese Medicine, Guangzhou 510405, China
| |
Collapse
|
13
|
Marrazzo P, Angeloni C, Hrelia S. Combined Treatment with Three Natural Antioxidants Enhances Neuroprotection in a SH-SY5Y 3D Culture Model. Antioxidants (Basel) 2019; 8:antiox8100420. [PMID: 31547034 PMCID: PMC6827135 DOI: 10.3390/antiox8100420] [Citation(s) in RCA: 23] [Impact Index Per Article: 4.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/19/2019] [Revised: 09/11/2019] [Accepted: 09/18/2019] [Indexed: 12/12/2022] Open
Abstract
Currently, the majority of cell-based studies on neurodegeneration are carried out on two-dimensional cultured cells that do not represent the cells residing in the complex microenvironment of the brain. Recent evidence has suggested that three-dimensional (3D) in vitro microenvironments may better model key features of brain tissues in order to study molecular mechanisms at the base of neurodegeneration. So far, no drugs have been discovered to prevent or halt the progression of neurodegenerative disorders. New therapeutic interventions can come from phytochemicals that have a broad spectrum of biological activities. On this basis, we evaluated the neuroprotective effect of three phytochemicals (sulforaphane, epigallocatechin gallate, and plumbagin) alone or in combination, focusing on their ability to counteract oxidative stress. The combined treatment was found to be more effective than the single treatments. In particular, the combined treatment increased cell viability and reduced glutathione (GSH) levels, upregulated antioxidant enzymes and insulin-degrading enzymes, and downregulated nicotinamide adenine dinucleotide phosphate (NADPH) oxidase 1 and 2 in respect to peroxide-treated cells. Our data suggest that a combination of different phytochemicals could be more effective than a single compound in counteracting neurodegeneration, probably thanks to a pleiotropic mechanism of action.
Collapse
Affiliation(s)
- Pasquale Marrazzo
- Department for Life Quality Studies, Alma Mater Studiorum, University of Bologna, 47921 Rimini, Italy.
| | | | - Silvana Hrelia
- School of Pharmacy, University of Camerino, 62032 Camerino, Italy.
| |
Collapse
|