1
|
Pei Z, Guo X, Zheng F, Yang Z, Li T, Yu Z, Li X, Guo X, Chen Q, Fu C, Tang T, Feng D, Wang Y. Xuefu Zhuyu decoction promotes synaptic plasticity by targeting miR-191a-5p/BDNF-TrkB axis in severe traumatic brain injury. PHYTOMEDICINE : INTERNATIONAL JOURNAL OF PHYTOTHERAPY AND PHYTOPHARMACOLOGY 2024; 129:155566. [PMID: 38565001 DOI: 10.1016/j.phymed.2024.155566] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 10/12/2023] [Revised: 02/08/2024] [Accepted: 03/22/2024] [Indexed: 04/04/2024]
Abstract
BACKGROUND Xuefu Zhuyu decoction (XFZYD) is a traditional Chinese herbal formula known for its ability to eliminate blood stasis and improve blood circulation, providing neuroprotection against severe traumatic brain injury (sTBI). However, the underlying mechanism is still unclear. PURPOSE We aim to investigate the neuroprotective effects of XFZYD in sTBI from a novel mechanistic perspective of miRNA-mRNA. Additionally, we sought to elucidate a potential specific mechanism by integrating transcriptomics, bioinformatics, and conducting both in vitro and in vivo experiments. METHODS The sTBI rat model was established, and the rats were treated with XFZYD for 14 days. The neuroprotective effects of XFZYD were evaluated using a modified neurological severity score, hematoxylin and eosin staining, as well as Nissl staining. The anti-inflammatory effects of XFZYD were explored using quantitative real-time PCR (qRT-PCR), Western blot analysis, and immunofluorescence. Next, miRNA sequencing of the hippocampus was performed to determine which miRNAs were differentially expressed. Subsequently, qRT-PCR was used to validate the differentially expressed miRNAs. Target core mRNAs were determined using various methods, including miRNA prediction targets, mRNA sequencing, miRNA-mRNA network, and protein-protein interaction (PPI) analysis. The miRNA/mRNA regulatory axis were verified through qRT-PCR or Western blot analysis. Finally, morphological changes in the neural synapses were observed using transmission electron microscopy and immunofluorescence. RESULTS XFZYD exhibited significant neuroprotective and anti-inflammatory effects on subacute sTBI rats' hippocampus. The analyses of miRNA/mRNA sequences combined with the PPI network revealed that the therapeutic effects of XFZYD on sTBI were associated with the regulation of the rno-miR-191a-5p/BDNF axis. Subsequently, qRT-PCR and Western blot analysis confirmed XFZYD reversed the decrease of BDNF and TrkB in the hippocampus caused by sTBI. Additionally, XFZYD treatment potentially increased the number of synaptic connections, and the expression of the synapse-related protein PSD95, axon-related protein GAP43 and neuron-specific protein TUBB3. CONCLUSIONS XFZYD exerts neuroprotective effects by promoting hippocampal synaptic remodeling and improving cognition during the subacute phase of sTBI through downregulating of rno-miR-191a-5p/BDNF axis, further activating BDNF-TrkB signaling.
Collapse
Affiliation(s)
- Zhuan Pei
- Institute of Integrative Medicine, Department of Integrated Traditional Chinese and Western Medicine, Xiangya Hospital, Central South University, Changsha 410008, PR China; National Clinical Research Center for Geriatric Disorders, Xiangya Hospital, Central South University, Changsha 410008, PR China; NATCM Key Laboratory of TCM Gan, Xiangya Hospital, Central South University, Changsha 410008, PR China
| | - Xiaohang Guo
- School of Medicine, Hunan University of Chinese Medicine, Changsha 410208, PR China
| | - Fei Zheng
- The College of Integrated Traditional Chinese and Western Medicine, Hunan University of Chinese Medicine, Changsha 410208, PR China
| | - Zhaoyu Yang
- Institute of Integrative Medicine, Department of Integrated Traditional Chinese and Western Medicine, Xiangya Hospital, Central South University, Changsha 410008, PR China; National Clinical Research Center for Geriatric Disorders, Xiangya Hospital, Central South University, Changsha 410008, PR China; NATCM Key Laboratory of TCM Gan, Xiangya Hospital, Central South University, Changsha 410008, PR China; Xiangya Hospital, Central South University, Jiangxi, Nanchang 330004, PR China
| | - Teng Li
- Institute of Integrative Medicine, Department of Integrated Traditional Chinese and Western Medicine, Xiangya Hospital, Central South University, Changsha 410008, PR China; National Clinical Research Center for Geriatric Disorders, Xiangya Hospital, Central South University, Changsha 410008, PR China; NATCM Key Laboratory of TCM Gan, Xiangya Hospital, Central South University, Changsha 410008, PR China; Xiangya Hospital, Central South University, Jiangxi, Nanchang 330004, PR China
| | - Zhe Yu
- Institute of Integrative Medicine, Department of Integrated Traditional Chinese and Western Medicine, Xiangya Hospital, Central South University, Changsha 410008, PR China; National Clinical Research Center for Geriatric Disorders, Xiangya Hospital, Central South University, Changsha 410008, PR China; NATCM Key Laboratory of TCM Gan, Xiangya Hospital, Central South University, Changsha 410008, PR China
| | - Xuexuan Li
- Institute of Integrative Medicine, Department of Integrated Traditional Chinese and Western Medicine, Xiangya Hospital, Central South University, Changsha 410008, PR China; National Clinical Research Center for Geriatric Disorders, Xiangya Hospital, Central South University, Changsha 410008, PR China; NATCM Key Laboratory of TCM Gan, Xiangya Hospital, Central South University, Changsha 410008, PR China
| | - Xin Guo
- The First Affiliated Hospital, Department of Child Healthcare, Hengyang Medical School, University of South China, Hengyang, Hunan 421001, PR China
| | - Quan Chen
- Institute of Integrative Medicine, Department of Integrated Traditional Chinese and Western Medicine, Xiangya Hospital, Central South University, Changsha 410008, PR China; National Clinical Research Center for Geriatric Disorders, Xiangya Hospital, Central South University, Changsha 410008, PR China; NATCM Key Laboratory of TCM Gan, Xiangya Hospital, Central South University, Changsha 410008, PR China
| | - Chunyan Fu
- College of Pharmacy, Shaoyang University, Shaoyang 422100, PR China
| | - Tao Tang
- Institute of Integrative Medicine, Department of Integrated Traditional Chinese and Western Medicine, Xiangya Hospital, Central South University, Changsha 410008, PR China; National Clinical Research Center for Geriatric Disorders, Xiangya Hospital, Central South University, Changsha 410008, PR China; NATCM Key Laboratory of TCM Gan, Xiangya Hospital, Central South University, Changsha 410008, PR China; Xiangya Hospital, Central South University, Jiangxi, Nanchang 330004, PR China
| | - Dandan Feng
- Institute of Integrative Medicine, Department of Integrated Traditional Chinese and Western Medicine, Xiangya Hospital, Central South University, Changsha 410008, PR China; National Clinical Research Center for Geriatric Disorders, Xiangya Hospital, Central South University, Changsha 410008, PR China; NATCM Key Laboratory of TCM Gan, Xiangya Hospital, Central South University, Changsha 410008, PR China; Xiangya Hospital, Central South University, Jiangxi, Nanchang 330004, PR China.
| | - Yang Wang
- Institute of Integrative Medicine, Department of Integrated Traditional Chinese and Western Medicine, Xiangya Hospital, Central South University, Changsha 410008, PR China; National Clinical Research Center for Geriatric Disorders, Xiangya Hospital, Central South University, Changsha 410008, PR China; NATCM Key Laboratory of TCM Gan, Xiangya Hospital, Central South University, Changsha 410008, PR China; Xiangya Hospital, Central South University, Jiangxi, Nanchang 330004, PR China.
| |
Collapse
|
2
|
Veroni C, Olla S, Brignone MS, Siguri C, Formato A, Marra M, Manzoli R, Macario MC, Ambrosini E, Moro E, Agresti C. The Antioxidant Drug Edaravone Binds to the Aryl Hydrocarbon Receptor (AHR) and Promotes the Downstream Signaling Pathway Activation. Biomolecules 2024; 14:443. [PMID: 38672460 PMCID: PMC11047889 DOI: 10.3390/biom14040443] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/17/2024] [Revised: 03/27/2024] [Accepted: 03/29/2024] [Indexed: 04/28/2024] Open
Abstract
A considerable effort has been spent in the past decades to develop targeted therapies for the treatment of demyelinating diseases, such as multiple sclerosis (MS). Among drugs with free radical scavenging activity and oligodendrocyte protecting effects, Edaravone (Radicava) has recently received increasing attention because of being able to enhance remyelination in experimental in vitro and in vivo disease models. While its beneficial effects are greatly supported by experimental evidence, there is a current paucity of information regarding its mechanism of action and main molecular targets. By using high-throughput RNA-seq and biochemical experiments in murine oligodendrocyte progenitors and SH-SY5Y neuroblastoma cells combined with molecular docking and molecular dynamics simulation, we here provide evidence that Edaravone triggers the activation of aryl hydrocarbon receptor (AHR) signaling by eliciting AHR nuclear translocation and the transcriptional-mediated induction of key cytoprotective gene expression. We also show that an Edaravone-dependent AHR signaling transduction occurs in the zebrafish experimental model, associated with a downstream upregulation of the NRF2 signaling pathway. We finally demonstrate that its rapid cytoprotective and antioxidant actions boost increased expression of the promyelinating Olig2 protein as well as of an Olig2:GFP transgene in vivo. We therefore shed light on a still undescribed potential mechanism of action for this drug, providing further support to its therapeutic potential in the context of debilitating demyelinating conditions.
Collapse
Affiliation(s)
- Caterina Veroni
- Department of Neuroscience, Istituto Superiore di Sanità, 00161 Rome, Italy; (C.V.); (M.S.B.); (E.A.)
| | - Stefania Olla
- Institute for Genetic and Biomedical Research (IRGB), The National Research Council (CNR), Monserrato, 09042 Cagliari, Italy; (S.O.); (C.S.)
| | - Maria Stefania Brignone
- Department of Neuroscience, Istituto Superiore di Sanità, 00161 Rome, Italy; (C.V.); (M.S.B.); (E.A.)
| | - Chiara Siguri
- Institute for Genetic and Biomedical Research (IRGB), The National Research Council (CNR), Monserrato, 09042 Cagliari, Italy; (S.O.); (C.S.)
| | - Alessia Formato
- Institute of Biochemistry and Cell Biology, IBBC-CNR, Campus Adriano Buzzati Traverso, Monterotondo Scalo, 00015 Rome, Italy;
| | - Manuela Marra
- Core Facilities Technical-Scientific Service, Istituto Superiore di Sanità, 00161 Rome, Italy;
| | - Rosa Manzoli
- Department of Molecular Medicine, University of Padova, 35121 Padova, Italy; (R.M.); (M.C.M.)
| | - Maria Carla Macario
- Department of Molecular Medicine, University of Padova, 35121 Padova, Italy; (R.M.); (M.C.M.)
- Department of Biology, University of Padova, 35121 Padova, Italy
| | - Elena Ambrosini
- Department of Neuroscience, Istituto Superiore di Sanità, 00161 Rome, Italy; (C.V.); (M.S.B.); (E.A.)
| | - Enrico Moro
- Department of Molecular Medicine, University of Padova, 35121 Padova, Italy; (R.M.); (M.C.M.)
| | - Cristina Agresti
- Department of Neuroscience, Istituto Superiore di Sanità, 00161 Rome, Italy; (C.V.); (M.S.B.); (E.A.)
| |
Collapse
|
3
|
Zhang L, Lu RR, Xu RH, Wang HH, Feng WS, Zheng XK. Naringenin and apigenin ameliorates corticosterone-induced depressive behaviors. Heliyon 2023; 9:e15618. [PMID: 37215924 PMCID: PMC10192682 DOI: 10.1016/j.heliyon.2023.e15618] [Citation(s) in RCA: 9] [Impact Index Per Article: 9.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/19/2022] [Revised: 04/14/2023] [Accepted: 04/18/2023] [Indexed: 05/24/2023] Open
Abstract
Background Depression is a common kind of mental illness, and it becomes the main health burden in the world. Purpose The aim of this study was to investigate the antidepressant effects of naringin and apigenin isolated from Chrysanthemum morifolium Ramatis. Methods Firstly, 20 mg/kg corticosterone (CORT) was injected into mice to establish an in vivo model of depression. After treated with different dosages of naringenin and apigenin for 3 weeks, the mice underwent a series of behavioral experiments. Following this, all mice were sacrificed and biochemical analyses were performed. Subsequently, CORT (500 μM) induced PC12 cells was used as an in vitro model of depression, and lipopolysaccharide (LPS) (1 μg ml-1) induced N9 microglia cells was used as an in vitro model of neuroinflammation in N9 microglia cells, to investigate the neuroprotective mechanisms of naringenin and apigenin. Results Results showed that the naringenin and apigenin treatment ameliorated CORT-induced sucrose preference decrease and immobility time increase, elevated the 5-hydroxytryptamine(5-HT), dopamine (DA) and norepinephrine (NE) levels, and enhanced the cAMP-response element binding protein (CREB) and brain derived neurotrophic factor (BDNF) protein expressions in the hippocampus. The results showed that the naringenin and apigenin treatment improved the PC-12 cell viability through reducing apoptosis rate induced by CORT. Furthermore, naringenin and apigenin were able to inhibit the activation of N9 cells after LPS induction, and shift microglia from proinflammatory M1 microglia toward anti-inflammatory M2 microglia, as evidenced by the decreased ratio of M1 type microglia marker CD86 and M2 type microglia marker CD86. Conclusion These results suggested that naringenin and apigenin may improve depressive behaviors through promoting BDNF and inhibiting neuroinflammation and neuronal apoptosis.
Collapse
Affiliation(s)
- Li Zhang
- School of Pharmacy, Henan University of Chinese Medicine, Zhengzhou 450046, China
- Co-construction Collaborative Innovation Center for Chinese Medicine and Respiratory Diseases by Henan & Education Ministry of PR China, Zhengzhou 450046, China
| | - Ren-Rui Lu
- School of Pharmacy, Henan University of Chinese Medicine, Zhengzhou 450046, China
| | - Rui-Hao Xu
- School of Pharmacy, Henan University of Chinese Medicine, Zhengzhou 450046, China
| | - Hui-Hui Wang
- School of Pharmacy, Henan University of Chinese Medicine, Zhengzhou 450046, China
| | - Wei-Sheng Feng
- School of Pharmacy, Henan University of Chinese Medicine, Zhengzhou 450046, China
- Co-construction Collaborative Innovation Center for Chinese Medicine and Respiratory Diseases by Henan & Education Ministry of PR China, Zhengzhou 450046, China
| | - Xiao-Ke Zheng
- School of Pharmacy, Henan University of Chinese Medicine, Zhengzhou 450046, China
- Co-construction Collaborative Innovation Center for Chinese Medicine and Respiratory Diseases by Henan & Education Ministry of PR China, Zhengzhou 450046, China
| |
Collapse
|
4
|
Shi Y, Fan C, Li K, Yuan M, Shi T, Qian S, Wu H. Fish oil fat emulsion alleviates traumatic brain injury in mice by regulation of microglia polarization. Neurosci Lett 2023; 804:137217. [PMID: 36997019 DOI: 10.1016/j.neulet.2023.137217] [Citation(s) in RCA: 3] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/01/2022] [Revised: 02/22/2023] [Accepted: 03/27/2023] [Indexed: 03/30/2023]
Abstract
Microglia activation, a hallmark of brain neuroinflammation, contributes to the secondary damage following traumatic brain injury (TBI). To explore the potential roles of different fat emulsions-long chain triglyceride (LCT) / medium chain triglyceride (MCT) and fish oil (FO) fat emulsion in neuroprotection and neuroinflammation in TBI, in this study, we first generated the controlled cortical impact (CCI) model of TBI mice. Then either LCT/MCT or FO fat emulsion treated mice were studied by Nissl staining to assess the lesion volume. Sham and TBI mice treated with 0.9% saline were used as controls. The fatty acid composition in different TBI mouse brains was further evaluated by gas chromatography. Immunofluorescent staining and quantitative RT-PCR both demonstrated the suppression of pro-inflammatory microglia and upregulated anti-inflammatory microglia in FO fat emulsion treated TBI brain or primary microglia induced by lipopolysaccharide (LPS) in vitro. Furthermore, motor and cognitive behavioral tests showed FO fat emulsion could partially improve the motor function in TBI mice. Together, our results indicate that FO fat emulsion significantly alleviates the TBI injury and neuroinflammation probably by regulating microglia polarization.
Collapse
Affiliation(s)
- Yuan Shi
- Department of Neurobiology, Beijing Institute of Basic Medical Sciences, 100850 Beijing, China
| | - Chaonan Fan
- Pediatric Intensive Care Unit, Beijing Children's Hospital, Capital Medical University, National Center for Children's Health, 100045 Beijing, China
| | - Kechun Li
- Pediatric Intensive Care Unit, Beijing Children's Hospital, Capital Medical University, National Center for Children's Health, 100045 Beijing, China
| | - Mengqi Yuan
- Department of Neurobiology, Beijing Institute of Basic Medical Sciences, 100850 Beijing, China
| | - Taoxing Shi
- Department of Neurobiology, Beijing Institute of Basic Medical Sciences, 100850 Beijing, China
| | - Suyun Qian
- Pediatric Intensive Care Unit, Beijing Children's Hospital, Capital Medical University, National Center for Children's Health, 100045 Beijing, China.
| | - Haitao Wu
- Department of Neurobiology, Beijing Institute of Basic Medical Sciences, 100850 Beijing, China; Key Laboratory of Neuroregeneration, Co-innovation Center of Neuroregeneration, Nantong University, 226019 Nantong, China.
| |
Collapse
|
8
|
Edaravone Attenuated Particulate Matter-Induced Lung Inflammation by Inhibiting ROS-NF-κB Signaling Pathway. OXIDATIVE MEDICINE AND CELLULAR LONGEVITY 2022; 2022:6908884. [PMID: 35502210 PMCID: PMC9056219 DOI: 10.1155/2022/6908884] [Citation(s) in RCA: 20] [Impact Index Per Article: 10.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 10/30/2021] [Revised: 03/05/2022] [Accepted: 03/30/2022] [Indexed: 01/31/2023]
Abstract
Background Particulate matter (PM) exposure is related to mitochondria dysfunction and airway inflammation. Antioxidant drug edaravone (EDA) is reported to improve the occurrence and development of oxidative stress-related diseases. At present, there is no data on whether EDA can alleviate lung inflammation caused by PM. Methods The anti-inflammatory effects of EDA were investigated in urban PM-induced human bronchial epithelial cells (HBECs) and C57/BL6J mouse models. In vitro, its effects on the production of intracellular reactive oxygen species (ROS), mitochondrial membrane potential (MMP), and inflammatory cytokines were assessed by DCFH-DA staining, JC-1 assay, and real-time PCR, respectively. In vivo, the oxidant stress in lung tissues was assessed by dihydroethidium (DHE) staining and malondialdehyde (MDA) activity, and inflammatory cytokines in bronchoalveolar lavage fluid (BALF) were assessed by ELISA, respectively. Furthermore, the potential signaling pathways were studied by siRNA transfection and western blot. Results PM increased the expression of inflammatory cytokines and protein, including IL-6, IL-1α, IL-1β, and COX-2, while these alternations were significantly alleviated following EDA treatment in a dose-dependent manner. EDA treatment also alleviated the inflammatory responses in lung tissues of PM-exposed mice. We further showed mitochondrial dysfunction in PM-exposed HBECs and mice, which were reversed by EDA treatment. Moreover, the phosphorylation of NF-κB p65 in PM-exposed HBECs and mice was weakened by EDA. Transfection with NF-κB p65 siRNA further inhibited PM-induced inflammation in HBECs. Conclusion We demonstrated that EDA treatment had a protective role in PM-induced lung inflammation through maintaining mitochondrial balance and regulating the ROS-NF-κB p65 signaling pathway. This provided a new therapeutic method for PM-induced lung inflammation in the future.
Collapse
|