1
|
Liu J, Zhang Y, Dai L. Relationship between serum level of miR-338-3p and miR-105-3p and bone metabolic markers in patients with diabetes nephropathy. Ren Fail 2024; 46:2406390. [PMID: 39378116 PMCID: PMC11463021 DOI: 10.1080/0886022x.2024.2406390] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/28/2024] [Revised: 08/28/2024] [Accepted: 09/14/2024] [Indexed: 10/10/2024] Open
Abstract
OBJECTIVES Diabetic nephropathy (DN) is one of the most common and serious complications of diabetes. The purpose of this study was to explore the relationship between serum microRNA-338-3p (miR-338-3p) and miR-105-3p and bone metabolic markers in patients with DN at different stages. METHODS A total of 153 patients diagnosed and treated in the Department of Nephrology from July 2020 to October 2021 were selected as the study objects. According to the staging criteria of diabetic nephropathy and 24-h urinary albumin quantitative level, the patients were divided into control group (35 cases), microalbuminuria group (37 cases), clinical stage albuminuria group (27 cases) and renal failure group (54 cases). Gene expressions were measured by real-time fluorescence quantitative PCR. The correlation was analyzed by Spearman. Serum miR-338-3p and miR-150-5p in the prediction of renal failure in DN was analyzed by ROC curve. RESULTS The levels of urinary albumin and serum creatinine were markedly increased with the increase of DN stage (p < 0.05). Compared with the microalbuminuria group, the expression levels of serum miR-383-3p, serum miR-105-3p, 25(OH)-D, BGP and PINP were obviously decreased, but the expression of parathyroid hormone (PTH) and type I collagen (β-CTX) was largely increased in clinical proteinuria group (p < 0.05). Compared with the clinical proteinuria group, the expression levels of serum miR-383-3p, serum miR-105-3p, 25(OH)-D, BGP and PINP were largely decreased, but the expression of PTH and β-CTX was obviously increased in the renal failure group (p < 0.05). Spearman correlation results showed that serum expressions of miR-383-3p and miR-105-3p were negatively correlated with PTH and β-CTX, and positively correlated with 25(OH)-D, BGP and PINP (p < 0.05). ROC curve analysis showed that the AUC of serum miR-338-3p and miR-150-5p was 0.896 with the specificity and sensitivity of 96.66% and 73.47%, which had certain predictive value for the occurrence of renal failure in DN. CONCLUSIONS The expression levels of serum miR-383-3p and miR-105-3p were significantly correlated with bone metabolism markers. The combined test can provide new ideas and insights for the clinical treatment of osteoporosis in DN.
Collapse
Affiliation(s)
- Jinlan Liu
- Department of General Practice, Hubei NO.3 People’s Hospital of Jianghan University, Hubei Province, China
| | - Yi Zhang
- Department of Endocrinology, Hubei NO.3 People’s Hospital of Jianghan University, Hubei Province, China
| | - Lixing Dai
- Department of General Practice, Hubei NO.3 People’s Hospital of Jianghan University, Hubei Province, China
| |
Collapse
|
2
|
Zhou M, Li H, Gao B, Zhao Y. The prognostic impact of pathogenic stromal cell-associated genes in lung adenocarcinoma. Comput Biol Med 2024; 178:108692. [PMID: 38879932 DOI: 10.1016/j.compbiomed.2024.108692] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/25/2024] [Revised: 04/22/2024] [Accepted: 06/01/2024] [Indexed: 06/18/2024]
Abstract
BACKGROUND Lung adenocarcinoma (LUAD) stands as the most prevalent subtype among lung cancers. Interactions between stromal and cancer cells influence tumor growth, invasion, and metastasis. However, the regulatory mechanisms of stromal cells in the lung adenocarcinoma tumor microenvironment remain unclear. This study seeks to elucidate the regulatory connections among critical pathogenic genes and their associated expression variations within distinct stromal cell subtypes. METHOD Analysis and investigation were conducted on a total of 114,019 single-cell RNA data and 346 The Cancer Genome Atlas (TCGA) LUAD-related samples using bioinformatics and statistical algorithms. Differential gene expression analysis was performed for tumor samples and controls, followed by Kyoto Encyclopedia of Genes and Genomes (KEGG) pathway analysis. Differential genes between stromal cells and other cell clusters were identified and intersected with the differential genes from TCGA. We employed a combination of LASSO regression and multivariable Cox regression to identify the ultimate set of pathogenic gene. Survival models were trained to predict the relationship between patient survival and these pathogenic genes. Analysis of transcription factor (TF) cell specificity and pseudotime trajectories within stromal cell subpopulations revealed that vascular endothelial cells (ECs) and matrix cancer-associated fibroblasts (CAFs) are key in regulation of the prognosis-associated genes CAV2, COL1A1, TIMP1, ETS2, AKAP12, ID1 and COL1A2. RESULTS Seven pathogenic genes associated with LUAD in stromal cells were identified and used to develop a survival model. High expression of these genes is linked to a greater risk of poor survival. Stromal cells were categorized into eight subtypes and one unannotated cluster. Mesothelial cells, vascular endothelial cells (ECs), and matrix cancer-associated fibroblasts (CAFs) showed cell-specific regulation of the pathogenic genes. CONCLUSIONS The seven disease-causing genes in vascular ECs and matrix CAFs can be used to detect the survival status of LUAD patients, providing new directions for future targeted drug design.
Collapse
Affiliation(s)
- Murong Zhou
- College of Computer and Control Engineering, Northeast Forestry University, Harbin, 150040, China; College of Life Science, Northeast Forestry University, Harbin, 150040, China
| | - Hongfei Li
- College of Computer and Control Engineering, Northeast Forestry University, Harbin, 150040, China; College of Life Science, Northeast Forestry University, Harbin, 150040, China
| | - Bo Gao
- Department of Radiology, The Second Affiliated Hospital, Harbin Medical University, Harbin, 150040, China
| | - Yuming Zhao
- College of Computer and Control Engineering, Northeast Forestry University, Harbin, 150040, China.
| |
Collapse
|
3
|
Guo K, Qu Z, Yu Y, Zou C. Identification of an 11-miRNA-regulated and surface-protein genes signature predicts the prognosis of lung adenocarcinoma based on multi-omics study. Am J Transl Res 2024; 16:1568-1586. [PMID: 38883394 PMCID: PMC11170602 DOI: 10.62347/cwmt4815] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/27/2024] [Accepted: 04/23/2024] [Indexed: 06/18/2024]
Abstract
Lung adenocarcinoma (LUAD) is one of the most prevalent and lethal cancers worldwide, signifying a critical need for improved prognostic tools. A growing number of studies have highlighted the role of microRNAs (miRNAs) and their regulatory functions in tumorigenesis and cancer progression. In this context, we performed an extensive analysis of bulk RNA- and miRNA-sequencing to identify LUAD-associated prognostic genes. A risk score system based on 11 miRNA-regulated and surface-protein genes was developed, which was later validated by internally and externally using the Cancer Genome Atlas (TCGA) and Gene Expression Omnibus (GEO), respectively. Further single-cell RNA sequencing analysis revealed significant interactions between various cellular subpopulations within the tumor microenvironment, with the most pronounced differences observed between endothelial and epithelial cells. The mutational analysis highlighted TP53 as a key signaling pathway associated with the risk score. The study underscores that immune suppression, indicated by a positive association with regulatory T cells (Tregs) and an inverse correlation with M1-type macrophages, is prevalent in high-risk LUAD patients. These findings provide a promising prognostic tool for clinical outcomes of LUAD patients, facilitating future development of therapeutic strategies and enhancing our understanding of the regulatory function of miRNAs in LUAD.
Collapse
Affiliation(s)
- Kunyu Guo
- The First Affiliated Hospital of Harbin Medical University Harbin 150000, Heilongjiang, China
| | - Zhenbo Qu
- The First Affiliated Hospital of Harbin Medical University Harbin 150000, Heilongjiang, China
| | - Yibo Yu
- The First Affiliated Hospital of Harbin Medical University Harbin 150000, Heilongjiang, China
| | - Chendan Zou
- Department of Biochemistry and Molecular Biology, Harbin Medical University Harbin 150000, Heilongjiang, China
| |
Collapse
|
4
|
Xu P, Cheng S, Wang X, Jiang S, He X, Tang L, Wu N, Yang Z. The hsa_circ_0039857/miR-338-3p/RAB32 axis promotes the malignant progression of colorectal cancer. BMC Gastroenterol 2022; 22:530. [PMID: 36539702 PMCID: PMC9764720 DOI: 10.1186/s12876-022-02622-1] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 05/19/2022] [Accepted: 12/15/2022] [Indexed: 12/24/2022] Open
Abstract
BACKGROUND Colorectal cancer (CRC) is a prevalent malignancy of the gastrointestinal. Circular RNAs (circRNAs) act as important roles in CRC malignant progression. However, the role of circ_0039857 in CRC is still unclear. Therefore, this study aimed to explore the function and mechanism of hsa_circ_0039857 in the CRC. METHODS The mRNA and protein expression were measured via RT-qPCR. RNase R assay and Actinomycin D were employed to evaluate the stability of circ_0039857. Functional experiments, such as proliferation and apoptosis, were applied to study the function of circ_0039857 in CRC cells. The underlying mechanisms of circ_0039857 were then analyzed by bioinformatics, dual-luciferase reporter gene assay, RNA pull-down and rescue experiments. RESULTS We revealed that circ_0039857 was significantly enhanced in CRC. Circ_0039857 was stabler than linear RNA in cells and valuable for the disease diagnosis. In addition, circ_0039857 knockdown inhibited proliferation and promoted apoptosis. Mechanistically, circ_0039857 positively regulated the expression of RAB32 via sponging miR-338-3p. CONCLUSION This study demonstrated that circ_0039857 knockdown suppressed CRC malignant progression through miR-338-3p/RAB32 axis. Most importantly, this will help us to better understand the circRNA network in CRC, and may find potential biomarkers and targets for CRC clinical treatment.
Collapse
Affiliation(s)
- Pei Xu
- Department of Pathology, People’s Hospital of De Yang City, No. 173, Section 1 of North Taishan Road, Jingyang District, Deyang, 618000 Sichuan China
| | - Siying Cheng
- Department of Pathology, People’s Hospital of De Yang City, No. 173, Section 1 of North Taishan Road, Jingyang District, Deyang, 618000 Sichuan China
| | - Xianwei Wang
- Department of Pathology, People’s Hospital of De Yang City, No. 173, Section 1 of North Taishan Road, Jingyang District, Deyang, 618000 Sichuan China
| | - Shuming Jiang
- Department of Pathology, People’s Hospital of De Yang City, No. 173, Section 1 of North Taishan Road, Jingyang District, Deyang, 618000 Sichuan China
| | - Xiaoyan He
- Department of Pathology, People’s Hospital of De Yang City, No. 173, Section 1 of North Taishan Road, Jingyang District, Deyang, 618000 Sichuan China
| | - Lina Tang
- Department of Pathology, People’s Hospital of De Yang City, No. 173, Section 1 of North Taishan Road, Jingyang District, Deyang, 618000 Sichuan China
| | - Ning Wu
- Department of Pathology, People’s Hospital of De Yang City, No. 173, Section 1 of North Taishan Road, Jingyang District, Deyang, 618000 Sichuan China
| | - Zhirong Yang
- Department of Pathology, People’s Hospital of De Yang City, No. 173, Section 1 of North Taishan Road, Jingyang District, Deyang, 618000 Sichuan China
| |
Collapse
|
5
|
Liang Q, Peng J, Xu Z, Li Z, Jiang F, Ouyang L, Wu S, Fu C, Liu Y, Liu Y, Yan Y. Pan-cancer analysis of the prognosis and immunological role of AKAP12: A potential biomarker for resistance to anti-VEGF inhibitors. Front Genet 2022; 13:943006. [PMID: 36110213 PMCID: PMC9468827 DOI: 10.3389/fgene.2022.943006] [Citation(s) in RCA: 7] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/16/2022] [Accepted: 08/01/2022] [Indexed: 11/13/2022] Open
Abstract
The primary or acquired resistance to anti-VEGF inhibitors remains a common problem in cancer treatment. Therefore, identifying potential biomarkers enables a better understanding of the precise mechanism. Through the GEO database, three profiles associated with bevacizumab (BV) resistance to ovarian cancer, glioma, and non-small-cell lung carcinoma, respectively, were collected for the screening process, and two genes were found. A-kinase anchor protein 12 (AKAP12), one of these two genes, correlates with tumorigenesis of some cancers. However, the role of AKAP12 in pan-cancer remains poorly defined. The present study first systematically analyzed the association of AKAP12 with anti-VEGF inhibitors’ sensitivity, clinical prognosis, DNA methylation, protein phosphorylation, and immune cell infiltration across various cancers via bioinformatic tools. We found that AKAP12 was upregulated in anti-VEGF therapy-resistant cancers, including ovarian cancer (OV), glioblastoma (GBM), lung cancer, and colorectal cancer (CRC). A high AKAP12 expression revealed dismal prognoses in OV, GBM, and CRC patients receiving anti-VEGF inhibitors. Moreover, AKAP12 expression was negatively correlated with cancer sensitivity towards anti-VEGF therapy. Clinical prognosis analysis showed that AKAP12 expression predicted worse prognoses of various cancer types encompassing colon adenocarcinoma (COAD), OV, GBM, and lung squamous cell carcinoma (LUSC). Gene mutation status may be a critical cause for the involvement of AKAP12 in resistance. Furthermore, lower expression of AKAP12 was detected in nearly all cancer types, and hypermethylation may explain its decreased expression. A decreased phosphorylation of T1760 was observed in breast cancer, clear-cell renal cell carcinoma, and lung adenocarcinoma. For the immunologic significance, AKAP12 was positively related to the abundance of pro-tumor cancer-associated fibroblasts (CAFs) in various types of cancer. The results of Gene Ontology (GO) and Kyoto Encyclopedia of Genes and Genomes (KEGG) pathway analysis suggested that “cell junction organization” and “MAPK pathway” participated in the effect of AKAP12. Importantly, we discovered that AKAP12 expression was greatly associated with metastasis of lung adenocarcinoma as well as differential and angiogenesis of retinoblastoma through investigating the single-cell sequencing data. Our study showed that the dual role of AKAP12 in various cancers and AKAP12 could serve as a biomarker of anti-VEGF resistance in OV, GBM, LUSC, and COAD.
Collapse
Affiliation(s)
- Qiuju Liang
- Department of Pharmacy, Xiangya Hospital, Central South University, Changsha, China
- National Clinical Research Center for Geriatric Disorders, Institute for Rational and Safe Medication Practices, Xiangya Hospital, Central South University, Changsha, China
| | - Jinwu Peng
- Department of Pathology, Xiangya Hospital, Central South University, Changsha, China
- Department of Pathology, Xiangya Changde Hospital, Changde, China
| | - Zhijie Xu
- Department of Pathology, Xiangya Hospital, Central South University, Changsha, China
| | - Zhilan Li
- Department of Pathology, Xiangya Changde Hospital, Changde, China
| | - Feng Jiang
- Department of Pathology, Xiangya Changde Hospital, Changde, China
| | - Lingzi Ouyang
- Department of Pathology, Xiangya Changde Hospital, Changde, China
| | - Shangjun Wu
- Department of Pathology, Xiangya Changde Hospital, Changde, China
| | - Chencheng Fu
- Department of Pathology, Xiangya Changde Hospital, Changde, China
| | - Ying Liu
- Department of Pathology, Xiangya Changde Hospital, Changde, China
| | - Yuanhong Liu
- Department of Pharmacy, Xiangya Hospital, Central South University, Changsha, China
- National Clinical Research Center for Geriatric Disorders, Institute for Rational and Safe Medication Practices, Xiangya Hospital, Central South University, Changsha, China
| | - Yuanliang Yan
- Department of Pharmacy, Xiangya Hospital, Central South University, Changsha, China
- National Clinical Research Center for Geriatric Disorders, Institute for Rational and Safe Medication Practices, Xiangya Hospital, Central South University, Changsha, China
- *Correspondence: Yuanliang Yan,
| |
Collapse
|
6
|
Li H. Physiologic and pathophysiologic roles of AKAP12. Sci Prog 2022; 105:368504221109212. [PMID: 35775596 PMCID: PMC10450473 DOI: 10.1177/00368504221109212] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/16/2022]
Abstract
A kinase anchoring protein (AKAP) 12 is a scaffolding protein that improves the specificity and efficiency of spatiotemporal signal through assembling intracellular signal proteins into a specific complex. AKAP12 is a negative mitogenic regulator that plays an important role in controlling cytoskeletal architecture, maintaining endothelial integrity, regulating glial function and forming blood-brain barrier (BBB) and blood retinal barrier (BRB). Moreover, elevated or reduced AKAP12 contributes to a variety of diseases. Complex connections between AKAP12 and various diseases including chronic liver diseases (CLDs), inflammatory diseases and a series of cancers will be tried to delineate in this paper. We first describe the expression, distribution and physiological function of AKAP12. Then we summarize the current knowledge of different connections between AKAP12 expression and various diseases. Some research groups have found paradoxical roles of AKAP12 in different diseases and further confirmation is needed. This paper aims to assess the role of AKAP12 in physiology and diseases to help lay the foundation for the design of small molecules for specific AKAP12 to correct the pathological signal defects.
Collapse
Affiliation(s)
- Hui Li
- Central Laboratory, Hospital of Chengdu University of Traditional Chinese Medicine, Chengdu, Sichuan Province, P. R. China
| |
Collapse
|
7
|
Wu Y, Fu L, Wang B, Li Z, Wei D, Wang H, Zhang C, Ma Z, Zhu T, Yu G. Construction of a prognostic risk assessment model for lung adenocarcinoma based on Integrin β family‐related genes. J Clin Lab Anal 2022; 36:e24419. [PMID: 35403268 PMCID: PMC9169214 DOI: 10.1002/jcla.24419] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/13/2022] [Revised: 03/25/2022] [Accepted: 03/27/2022] [Indexed: 12/13/2022] Open
Abstract
Background Integrin β (ITGB) superfamily plays an essential role in the intercellular connection and signal transmission. It was exhibited that overexpressing of ITGB family members promotes the malignant progression of lung adenocarcinoma (LUAD), but the relationship between ITGB superfamily and the LUAD prognosis remains unclear. Methods In this study, the samples were assigned to different subgroups utilizing non‐negative matrix factorization clustering according to the expression of ITGB family members in LUAD. Kaplan–Meier (K‐M) survival analysis revealed the significant differences in the prognosis between different ITGB subgroups. Subsequently, we screened differentially expressed genes among different subgroups and conducted univariate Cox analysis, random forest feature selection, and multivariate Cox analysis. 9‐feature genes (FAM83A, AKAP12, PKP2, CYP17A1, GJB3, TMPRSS11F, KRT81, MARCH4, and STC1) in the ITGB superfamily were selected to establish a prognostic assessment model for LAUD. Results In accordance with the median risk score, LUAD samples were divided into high‐ and low‐risk groups. The receiver operating characteristic (ROC) curve of LUAD patients’ survival was predicted via K‐M survival curve and principal component analysis dimensionality reduction. This model was found to have a favorable performance in LUAD prognostic assessment. Gene Ontology (GO) and Kyoto Encyclopedia of Genes and Genomes (KEGG) analyses of differentially expressed genes between groups and Gene Set Enrichment Analysis (GSEA) of intergroup samples confirmed that the high‐ and low‐risk groups had evident differences mainly in the function of extracellular matrix (ECM) interaction. Risk score and univariate and multivariate Cox regression analyses of clinical factors showed that the prognostic model could be applied as an independent prognostic factor for LUAD. Then, we draw the nomogram of 1‐, 3‐, and 5‐year survival of LUAD patients predicted with the risk score and clinical factors. Calibration curve and clinical decision curve proved the favorable predictive ability of nomogram. Conclusion We constructed a LUAD prognostic risk model based on the ITGB superfamily, which can provide guidance for clinicians on their prognostic judgment.
Collapse
Affiliation(s)
- Yuanlin Wu
- Department of Thoracic Surgery Shaoxing People's Hospital Shaoxing China
| | - Linhai Fu
- Department of Thoracic Surgery Shaoxing People's Hospital Shaoxing China
| | - Bin Wang
- Department of Thoracic Surgery Shaoxing People's Hospital Shaoxing China
| | - Zhupeng Li
- Department of Thoracic Surgery Shaoxing People's Hospital Shaoxing China
| | - Desheng Wei
- Department of Thoracic Surgery Shaoxing People's Hospital Shaoxing China
| | - Haiyong Wang
- Department of Thoracic Surgery Shaoxing People's Hospital Shaoxing China
| | - Chu Zhang
- Department of Thoracic Surgery Shaoxing People's Hospital Shaoxing China
| | - Zhifeng Ma
- Department of Thoracic Surgery Shaoxing People's Hospital Shaoxing China
| | - Ting Zhu
- Department of Thoracic Surgery Shaoxing People's Hospital Shaoxing China
| | - Guangmao Yu
- Department of Thoracic Surgery Shaoxing People's Hospital Shaoxing China
| |
Collapse
|
8
|
Bai Y, Yuan R, Luo Y, Kang Z, Zhu H, Qu L, Lan X, Song X. Exploration of Genetic Variants within the Goat A-Kinase Anchoring Protein 12 ( AKAP12) Gene and Their Effects on Growth Traits. Animals (Basel) 2021; 11:ani11072090. [PMID: 34359218 PMCID: PMC8300346 DOI: 10.3390/ani11072090] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/27/2021] [Revised: 07/09/2021] [Accepted: 07/09/2021] [Indexed: 12/18/2022] Open
Abstract
Simple Summary AKAP12, the family of A-kinase anchoring proteins (AKAPs), plays an important role in the regulation of growth and development. There have been no corresponding studies of the effect of the AKAP12 gene on growth traits in goats. In our previous study, 7 bp (intron 3) and 13 bp (3′UTR) indels within the AKAP12 gene significantly influenced AKAP12 gene expression. This study expected to identify the association between these two genetic variations and growth-related traits in 1405 Shaanbei white cashmere (SBWC) goats. The P1–7 bp indel locus was significantly correlated with height at hip cross (HHC; p < 0.05) and the P2–13 bp indel locus was associated with body weight, body length, chest depth, chest width, hip width, chest circumference and cannon (bone) circumference in SBWC goats (p < 0.05). These results prove that the AKAP12 gene plays an important role in the growth and development of goats. Abstract The A-kinase anchoring protein 12 gene (AKAP12) is a scaffold protein, which can target multiple signal transduction effectors, can promote mitosis and cytokinesis and plays an important role in the regulation of growth and development. In our previous study, P1–7 bp (intron 3) and P2–13 bp (3′UTR) indels within the AKAP12 gene significantly influenced AKAP12 gene expression. Therefore, this study aimed to identify the association between these two genetic variations and growth-related traits in Shaanbei white cashmere goats (SBWC) (n = 1405). Herein, we identified two non-linkage insertions/deletions (indels). Notably, we found that the P1–7 bp indel mutation was related to the height at hip cross (HHC; p < 0.05) and the P2–13 bp indel was associated with body weight, body length, chest depth, chest width, hip width, chest circumference and cannon (bone) circumference in SBWC goats (p < 0.05). Overall, the two indels’ mutations of AKAP12 affected growth traits in goats. Compared to the P1–7 bp indel, the P2–13 bp indel is more suitable for the breeding of goat growth traits.
Collapse
Affiliation(s)
- Yangyang Bai
- Shaanxi Provincial Engineering and Technology Research Center of Cashmere Goats, Yulin University, Yulin 719000, China; (Y.B.); (R.Y.); (H.Z.); (L.Q.)
- Key Laboratory of Animal Genetics, Breeding and Reproduction of Shaanxi Province, College of Animal Science and Technology, Northwest A&F University, Yangling 712100, China; (Y.L.); (Z.K.)
- Life Science Research Center, Yulin University, Yulin 719000, China
| | - Rongrong Yuan
- Shaanxi Provincial Engineering and Technology Research Center of Cashmere Goats, Yulin University, Yulin 719000, China; (Y.B.); (R.Y.); (H.Z.); (L.Q.)
- Life Science Research Center, Yulin University, Yulin 719000, China
| | - Yunyun Luo
- Key Laboratory of Animal Genetics, Breeding and Reproduction of Shaanxi Province, College of Animal Science and Technology, Northwest A&F University, Yangling 712100, China; (Y.L.); (Z.K.)
| | - Zihong Kang
- Key Laboratory of Animal Genetics, Breeding and Reproduction of Shaanxi Province, College of Animal Science and Technology, Northwest A&F University, Yangling 712100, China; (Y.L.); (Z.K.)
| | - Haijing Zhu
- Shaanxi Provincial Engineering and Technology Research Center of Cashmere Goats, Yulin University, Yulin 719000, China; (Y.B.); (R.Y.); (H.Z.); (L.Q.)
- Life Science Research Center, Yulin University, Yulin 719000, China
- Shaanxi Province “Four Subjects One Union” Sheep and Goat Engineering & Technology University & Enterprise Alliance Research Center, Yulin 719000, China
| | - Lei Qu
- Shaanxi Provincial Engineering and Technology Research Center of Cashmere Goats, Yulin University, Yulin 719000, China; (Y.B.); (R.Y.); (H.Z.); (L.Q.)
- Life Science Research Center, Yulin University, Yulin 719000, China
- Shaanxi Province “Four Subjects One Union” Sheep and Goat Engineering & Technology University & Enterprise Alliance Research Center, Yulin 719000, China
| | - Xianyong Lan
- Key Laboratory of Animal Genetics, Breeding and Reproduction of Shaanxi Province, College of Animal Science and Technology, Northwest A&F University, Yangling 712100, China; (Y.L.); (Z.K.)
- Correspondence: (X.L.); (X.S.)
| | - Xiaoyue Song
- Shaanxi Provincial Engineering and Technology Research Center of Cashmere Goats, Yulin University, Yulin 719000, China; (Y.B.); (R.Y.); (H.Z.); (L.Q.)
- Life Science Research Center, Yulin University, Yulin 719000, China
- Shaanxi Province “Four Subjects One Union” Sheep and Goat Engineering & Technology University & Enterprise Alliance Research Center, Yulin 719000, China
- Correspondence: (X.L.); (X.S.)
| |
Collapse
|