1
|
Patel B, Silwal A, Eltokhy MA, Gaikwad S, Curcic M, Patel J, Prasad S. Deciphering CD59: Unveiling Its Role in Immune Microenvironment and Prognostic Significance. Cancers (Basel) 2024; 16:3699. [PMID: 39518137 PMCID: PMC11545456 DOI: 10.3390/cancers16213699] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/18/2024] [Revised: 10/21/2024] [Accepted: 10/25/2024] [Indexed: 11/16/2024] Open
Abstract
BACKGROUND CD59, a GPI-anchored membrane protein, protects cancer cells from complement-dependent cytotoxicity (CDC) by inhibiting the formation of the membrane attack complex (MAC). It has been demonstrated to be overexpressed in most solid tumors, where it facilitates tumor cell escape from complement surveillance. The role of CD59 in cancer growth and interactions between CD59 and immune cells that modulate immune evasion has not been well explored. METHODS Using cancer patient database from The Cancer Genome Atlas (TCGA) and other public databases, we analyzed CD59 expression, its prognostic significance, and its association with immune cell infiltration in the tumor microenvironment, identifying associated genomic and functional networks and validating findings with invitro cell-line experimental data. RESULTS This article describes the abundant expression of CD59 in multiple tumors such as cervical squamous cell carcinoma (CESC), kidney renal cell carcinoma (KIRC), glioblastoma multiforme (GBM), head and neck squamous cell carcinoma (HNSC), and stomach adenocarcinoma (STAD), as well as in pan-cancer, using The Cancer Genome Atlas (TCGA) database and confirmed using multiple cancer cell lines. The expression of CD59 significantly alters the overall survival (OS) of patients with multiple malignancies such as CESC, GBM, HNSC, and STAD. Further, the correlation between CD59 and Treg and/or MDSC in the tumor microenvironment (TME) has shown to be strongly associated with poor outcomes in CESC, GBM, HNSC, and STAD as these tumors express high FOXP3 compared to KIRC. Moreover, unfavorable outcomes were strongly associated with the expression of CD59 and M2 tumor-associated macrophage infiltration in the TME via the IL10/pSTAT3 pathway in CESC and GBM but not in KIRC. In addition, TGFβ1-dominant cancers such as CESC, GBM, and HNSC showed a high correlation between CD59 and TGFβ1, leading to suppression of cytotoxic T cell activity. CONCLUSION Overall, the correlation between CD59 and immune cells predicts its prognosis as unfavorable in CESC, GBM, HNSC, and STAD while being favorable in KIRC.
Collapse
Affiliation(s)
- Bhaumik Patel
- Department of Immunotherapeutic and Biotechnology, Texas Tech University Health Science Center, Abilene, TX 79601, USA; (B.P.); (A.S.); (M.A.E.); (S.G.); (M.C.); (J.P.)
| | - Ashok Silwal
- Department of Immunotherapeutic and Biotechnology, Texas Tech University Health Science Center, Abilene, TX 79601, USA; (B.P.); (A.S.); (M.A.E.); (S.G.); (M.C.); (J.P.)
| | - Mohamed Ashraf Eltokhy
- Department of Immunotherapeutic and Biotechnology, Texas Tech University Health Science Center, Abilene, TX 79601, USA; (B.P.); (A.S.); (M.A.E.); (S.G.); (M.C.); (J.P.)
| | - Shreyas Gaikwad
- Department of Immunotherapeutic and Biotechnology, Texas Tech University Health Science Center, Abilene, TX 79601, USA; (B.P.); (A.S.); (M.A.E.); (S.G.); (M.C.); (J.P.)
| | - Marina Curcic
- Department of Immunotherapeutic and Biotechnology, Texas Tech University Health Science Center, Abilene, TX 79601, USA; (B.P.); (A.S.); (M.A.E.); (S.G.); (M.C.); (J.P.)
| | - Jalpa Patel
- Department of Immunotherapeutic and Biotechnology, Texas Tech University Health Science Center, Abilene, TX 79601, USA; (B.P.); (A.S.); (M.A.E.); (S.G.); (M.C.); (J.P.)
| | - Sahdeo Prasad
- Masonic Cancer Center, University of Minnesota, Minneapolis, MN 55455, USA
| |
Collapse
|
2
|
Maiorano BA, Maiorano MFP, Lorusso D, Maiello E. Ovarian Cancer in the Era of Immune Checkpoint Inhibitors: State of the Art and Future Perspectives. Cancers (Basel) 2021; 13:4438. [PMID: 34503248 PMCID: PMC8430975 DOI: 10.3390/cancers13174438] [Citation(s) in RCA: 41] [Impact Index Per Article: 13.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/30/2021] [Revised: 08/31/2021] [Accepted: 09/01/2021] [Indexed: 12/18/2022] Open
Abstract
BACKGROUND Ovarian cancer (OC) represents the eighth most common cancer and the fifth leading cause of cancer-related deaths among the female population. In an advanced setting, chemotherapy represents the first-choice treatment, despite a high recurrence rate. In the last ten years, immunotherapy based on immune checkpoint inhibitors (ICIs) has profoundly modified the therapeutic scenario of many solid tumors. We sought to summarize the main findings regarding the clinical use of ICIs in OC. METHODS We searched PubMed, Embase, and Cochrane Databases, and conference abstracts from international congresses (such as ASCO, ESMO, SGO) for clinical trials, focusing on ICIs both as monotherapy and as combinations in the advanced OC. RESULTS 20 studies were identified, of which 16 were phase I or II and 4 phase III trials. These trials used ICIs targeting PD1 (nivolumab, pembrolizumab), PD-L1 (avelumab, aterolizumab, durvalumab), and CTLA4 (ipilimumab, tremelimumab). There was no reported improvement in survival, and some trials were terminated early due to toxicity or lack of response. Combining ICIs with chemotherapy, anti-VEGF therapy, or PARP inhibitors improved response rates and survival in spite of a worse safety profile. CONCLUSIONS The identification of biomarkers with a predictive role for ICIs' efficacy is mandatory. Moreover, genomic and immune profiling of OC might lead to better treatment options and facilitate the design of tailored trials.
Collapse
Affiliation(s)
- Brigida Anna Maiorano
- Oncology Unit, Foundation Casa Sollievo della Sofferenza IRCCS, 71013 San Giovanni Rotondo, Italy;
- Department of Translational Medicine and Surgery, Catholic University of the Sacred Heart, 00168 Rome, Italy
| | - Mauro Francesco Pio Maiorano
- Division of Obstetrics and Gynecology, Biomedical and Human Oncological Science, University of Bari “Aldo Moro”, 70121 Bari, Italy;
| | - Domenica Lorusso
- Gynecologic Oncology Unit, Catholic University of the Sacred Heart, 00168 Rome, Italy;
- Scientific Directorate, Fondazione Policlinico “A.Gemelli” IRCCS, 00168 Rome, Italy
| | - Evaristo Maiello
- Oncology Unit, Foundation Casa Sollievo della Sofferenza IRCCS, 71013 San Giovanni Rotondo, Italy;
| |
Collapse
|
3
|
Marchetti C, De Felice F, Romito A, Iacobelli V, Sassu CM, Corrado G, Ricci C, Scambia G, Fagotti A. Chemotherapy resistance in epithelial ovarian cancer: Mechanisms and emerging treatments. Semin Cancer Biol 2021; 77:144-166. [PMID: 34464704 DOI: 10.1016/j.semcancer.2021.08.011] [Citation(s) in RCA: 64] [Impact Index Per Article: 21.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/31/2020] [Revised: 08/24/2021] [Accepted: 08/26/2021] [Indexed: 12/12/2022]
Abstract
Ovarian cancer (OC) remains a fatal malignancy because most patients experience recurrent disease, which is resistant to chemotherapy. The outcomes for patients with platinum-resistant OC are poor, response rates to further chemotherapy are low and median survival is lower than 12 months. The complexity of platinum-resistant OC, which comprises a heterogeneous spectrum of diseases, is indeed far from being completely understood. Therefore, comprehending tumors' biological behaviour to identify reliable biomarkers, which may predict responses to therapies, is a demanding challenge to improve OC management. In the age of precision medicine, efforts to overcome platinum resistance in OC represent a dynamic and vast field in which innovative drugs and clinical trials rapidly develop. This review will present the exceptional biochemical environment implicated in OC and highlights mechanisms of chemoresistance. Furthermore, innovative molecules and new therapeutic opportunities are presented, along with currently available therapies and ongoing clinical trials.
Collapse
Affiliation(s)
- Claudia Marchetti
- Division of Gynecologic Oncology, Fondazione Policlinico Universitario A. Gemelli IRCCS, Roma, Italy.
| | - Francesca De Felice
- Division of Radiotherapy and Oncology, Policlinico Umberto I, Roma, Italy; Università La Sapienza, Roma, Italy
| | - Alessia Romito
- Gynecology and Breast Care Center, Mater Olbia Hospital, Olbia, Italy
| | - Valentina Iacobelli
- Division of Gynecologic Oncology, Fondazione Policlinico Universitario A. Gemelli IRCCS, Roma, Italy; Department Woman and Child Health Sciences, Catholic University of the Sacred Heart, Rome, Italy
| | - Carolina Maria Sassu
- Department of Maternal and Child Health and Urological Sciences, "Sapienza" University of Rome, Polyclinic Umberto I, Rome, Italy
| | - Giacomo Corrado
- Division of Gynecologic Oncology, Fondazione Policlinico Universitario A. Gemelli IRCCS, Roma, Italy
| | - Caterina Ricci
- Division of Gynecologic Oncology, Fondazione Policlinico Universitario A. Gemelli IRCCS, Roma, Italy
| | - Giovanni Scambia
- Division of Gynecologic Oncology, Fondazione Policlinico Universitario A. Gemelli IRCCS, Roma, Italy; Department Woman and Child Health Sciences, Catholic University of the Sacred Heart, Rome, Italy
| | - Anna Fagotti
- Division of Gynecologic Oncology, Fondazione Policlinico Universitario A. Gemelli IRCCS, Roma, Italy; Department Woman and Child Health Sciences, Catholic University of the Sacred Heart, Rome, Italy
| |
Collapse
|
4
|
Zhang R, Liu Q, Peng J, Wang M, Gao X, Liao Q, Zhao Y. Pancreatic cancer-educated macrophages protect cancer cells from complement-dependent cytotoxicity by up-regulation of CD59. Cell Death Dis 2019; 10:836. [PMID: 31685825 PMCID: PMC6828776 DOI: 10.1038/s41419-019-2065-4] [Citation(s) in RCA: 20] [Impact Index Per Article: 4.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/14/2019] [Revised: 10/10/2019] [Accepted: 10/16/2019] [Indexed: 12/11/2022]
Abstract
Tumor-associated macrophages (TAMs) are versatile immune cells that promote a variety of malignant behaviors of pancreatic cancer. CD59 is a GPI-anchored membrane protein that prevents complement activation by inhibiting the formation of the membrane attack complex, which may protect cancer cells from complement-dependent cytotoxicity (CDC). The interactions between CD59, TAMs and pancreatic cancer remain largely unknown. A tissue microarray of pancreatic cancer patients was used to evaluate the interrelationship of CD59 and TAMs and their survival impacts were analyzed. In a coculture system, THP-1 cells were used as a model to study the function of TAMs and the roles of pancreatic cancer-educated macrophages in regulating the expression of CD59 in pancreatic cancer cells were demonstrated by real-time PCR, western blot and immunofluorescence staining. The effects of macrophages on regulating CDC in pancreatic cancer cells were demonstrated by an in vitro study. To explore the potential mechanisms, RNA sequencing of pancreatic cancer cells with or without co-culture of THP-1 macrophages was performed, and the results showed that the IL-6R/STAT3 signaling pathway might participate in the regulation, which was further demonstrated by target-siRNA transfection, antibody neutralization and STAT3 inhibitors. Our data revealed that the infiltration of TAMs and the expression of CD59 of pancreatic cancer were paralleled, and higher infiltration of TAMs and higher expression of CD59 predicted worse survival of pancreatic cancer patients. Pancreatic cancer-educated macrophages could protect cancer cells from CDC by up-regulating CD59 via the IL-6R/STAT3 signaling pathway. These findings uncovered the novel mechanisms between TAMs and CD59, and contribute to providing a new promising target for the immunotherapy of pancreatic cancer.
Collapse
Affiliation(s)
- Ronghua Zhang
- Department of General Surgery, Peking Union Medical College Hospital, Peking Union Medical College & Chinese Academy of Medical Sciences, Beijing, 100730, China
| | - Qiaofei Liu
- Department of General Surgery, Peking Union Medical College Hospital, Peking Union Medical College & Chinese Academy of Medical Sciences, Beijing, 100730, China
| | - Junya Peng
- Department of Center Lab, Peking Union Medical College Hospital, Peking Union Medical College & Chinese Academy of Medical Sciences, Beijing, 100730, China
| | - Mengyi Wang
- Department of General Surgery, Peking Union Medical College Hospital, Peking Union Medical College & Chinese Academy of Medical Sciences, Beijing, 100730, China
| | - Xiang Gao
- Department of General Surgery, Peking Union Medical College Hospital, Peking Union Medical College & Chinese Academy of Medical Sciences, Beijing, 100730, China
| | - Quan Liao
- Department of General Surgery, Peking Union Medical College Hospital, Peking Union Medical College & Chinese Academy of Medical Sciences, Beijing, 100730, China.
| | - Yupei Zhao
- Department of General Surgery, Peking Union Medical College Hospital, Peking Union Medical College & Chinese Academy of Medical Sciences, Beijing, 100730, China.
| |
Collapse
|
5
|
Myeloid-derived suppressor cells in ovarian cancer: friend or foe? Cent Eur J Immunol 2017; 42:383-389. [PMID: 29472817 PMCID: PMC5820985 DOI: 10.5114/ceji.2017.72823] [Citation(s) in RCA: 8] [Impact Index Per Article: 1.1] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/04/2016] [Accepted: 09/07/2016] [Indexed: 12/20/2022] Open
Abstract
Although previous decades contributed to major progress in targeted therapy of many malignancies, the treatment of gynaecological cancers remains a challenging task. In the evidence of rising cancer mortality, the search for new methods of treatment is a dire need. Exploring the mechanisms of interaction between tumour cells and host immune response may allow the introduction of new, effective therapies – not as toxic and far more efficient than conventional methods of cancer treatment. Epithelial ovarian cancer (EOC) is typically diagnosed at advanced stages. Its incidence and mortality rate is high. Powerful diagnostic tools for this kind of cancer are still under investigation. Multiple mechanisms existing in the ovarian tumour network create a specific immunosuppressive microenvironment, in which accumulation of myeloid-derived suppressor cells (MDSCs) may be a critical component for diagnosis and treatment. This review attempts to verify current knowledge on the role of MDSCs in EOC.
Collapse
|
6
|
Saygin C, Wiechert A, Rao VS, Alluri R, Connor E, Thiagarajan PS, Hale JS, Li Y, Chumakova A, Jarrar A, Parker Y, Lindner DJ, Nagaraj AB, Kim JJ, DiFeo A, Abdul-Karim FW, Michener C, Rose PG, DeBernardo R, Mahdi H, McCrae KR, Lin F, Lathia JD, Reizes O. CD55 regulates self-renewal and cisplatin resistance in endometrioid tumors. J Exp Med 2017; 214:2715-2732. [PMID: 28838952 PMCID: PMC5584126 DOI: 10.1084/jem.20170438] [Citation(s) in RCA: 56] [Impact Index Per Article: 8.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/08/2017] [Revised: 05/22/2017] [Accepted: 06/27/2017] [Indexed: 12/26/2022] Open
Abstract
CD55 is a membrane complement regulatory protein that attenuates complement-mediated cytotoxicity. Saygin et al. elucidate a new role for CD55 as a signaling hub for cancer stem cell self-renewal and cisplatin resistance pathways in endometrioid tumors and open a new line of research into chemotherapeutic-refractory cancers. Effective targeting of cancer stem cells (CSCs) requires neutralization of self-renewal and chemoresistance, but these phenotypes are often regulated by distinct molecular mechanisms. Here we report the ability to target both of these phenotypes via CD55, an intrinsic cell surface complement inhibitor, which was identified in a comparative analysis between CSCs and non-CSCs in endometrioid cancer models. In this context, CD55 functions in a complement-independent manner and required lipid raft localization for CSC maintenance and cisplatin resistance. CD55 regulated self-renewal and core pluripotency genes via ROR2/JNK signaling and in parallel cisplatin resistance via lymphocyte-specific protein tyrosine kinase (LCK) signaling, which induced DNA repair genes. Targeting LCK signaling via saracatinib, an inhibitor currently undergoing clinical evaluation, sensitized chemoresistant cells to cisplatin. Collectively, our findings identify CD55 as a unique signaling node that drives self-renewal and therapeutic resistance through a bifurcating signaling axis and provides an opportunity to target both signaling pathways in endometrioid tumors.
Collapse
Affiliation(s)
- Caner Saygin
- Department of Cellular and Molecular Medicine, Lerner Research Institute, Cleveland Clinic, Cleveland, OH
| | - Andrew Wiechert
- Department of Cellular and Molecular Medicine, Lerner Research Institute, Cleveland Clinic, Cleveland, OH.,Department of Obstetrics and Gynecology, Women's Health Institute, Cleveland Clinic, Cleveland, OH
| | - Vinay S Rao
- Department of Cellular and Molecular Medicine, Lerner Research Institute, Cleveland Clinic, Cleveland, OH
| | - Ravi Alluri
- Department of Cellular and Molecular Medicine, Lerner Research Institute, Cleveland Clinic, Cleveland, OH
| | - Elizabeth Connor
- Department of Cellular and Molecular Medicine, Lerner Research Institute, Cleveland Clinic, Cleveland, OH.,Department of Obstetrics and Gynecology, Women's Health Institute, Cleveland Clinic, Cleveland, OH
| | - Praveena S Thiagarajan
- Department of Cellular and Molecular Medicine, Lerner Research Institute, Cleveland Clinic, Cleveland, OH
| | - James S Hale
- Department of Cellular and Molecular Medicine, Lerner Research Institute, Cleveland Clinic, Cleveland, OH
| | - Yan Li
- Department of Immunology, Lerner Research Institute, Cleveland Clinic, Cleveland, OH
| | - Anastasia Chumakova
- Department of Cellular and Molecular Medicine, Lerner Research Institute, Cleveland Clinic, Cleveland, OH
| | - Awad Jarrar
- Department of Cellular and Molecular Medicine, Lerner Research Institute, Cleveland Clinic, Cleveland, OH
| | - Yvonne Parker
- Department of Translational Hematology and Oncology Research, Taussig Cancer Institute, Cleveland Clinic, Cleveland, OH
| | - Daniel J Lindner
- Department of Translational Hematology and Oncology Research, Taussig Cancer Institute, Cleveland Clinic, Cleveland, OH
| | - Anil Belur Nagaraj
- Case Comprehensive Cancer Center, Case Western Reserve University, Cleveland, OH
| | - J Julie Kim
- Department of Obstetrics and Gynecology, Northwestern University, Chicago, IL
| | - Analisa DiFeo
- Case Comprehensive Cancer Center, Case Western Reserve University, Cleveland, OH
| | - Fadi W Abdul-Karim
- Pathology and Laboratory Medicine Institute, Department of Anatomical Pathology, Cleveland Clinic, Cleveland, OH
| | - Chad Michener
- Department of Obstetrics and Gynecology, Women's Health Institute, Cleveland Clinic, Cleveland, OH
| | - Peter G Rose
- Department of Obstetrics and Gynecology, Women's Health Institute, Cleveland Clinic, Cleveland, OH
| | - Robert DeBernardo
- Department of Obstetrics and Gynecology, Women's Health Institute, Cleveland Clinic, Cleveland, OH
| | - Haider Mahdi
- Department of Obstetrics and Gynecology, Women's Health Institute, Cleveland Clinic, Cleveland, OH
| | - Keith R McCrae
- Department of Cellular and Molecular Medicine, Lerner Research Institute, Cleveland Clinic, Cleveland, OH
| | - Feng Lin
- Department of Immunology, Lerner Research Institute, Cleveland Clinic, Cleveland, OH
| | - Justin D Lathia
- Department of Cellular and Molecular Medicine, Lerner Research Institute, Cleveland Clinic, Cleveland, OH .,Case Comprehensive Cancer Center, Case Western Reserve University, Cleveland, OH.,Department of Molecular Medicine, Cleveland Clinic Lerner College of Medicine, Case Western Reserve University, Cleveland, OH
| | - Ofer Reizes
- Department of Cellular and Molecular Medicine, Lerner Research Institute, Cleveland Clinic, Cleveland, OH .,Case Comprehensive Cancer Center, Case Western Reserve University, Cleveland, OH.,Department of Molecular Medicine, Cleveland Clinic Lerner College of Medicine, Case Western Reserve University, Cleveland, OH
| |
Collapse
|