1
|
Cadena-Sandoval D, Montúfar-Robles I, Barbosa-Cobos RE, Hernández-Molina G, Karen Salas-García A, Sánchez-Zauco N, Ramírez-Bello J. Interactions between TNFAIP3, PTPN22, and TRAF1-C5 gene polymorphisms in patients with primary Sjögren's syndrome. Arch Rheumatol 2024; 39:60-70. [PMID: 38774701 PMCID: PMC11104759 DOI: 10.46497/archrheumatol.2024.10108] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/11/2023] [Accepted: 04/18/2023] [Indexed: 05/24/2024] Open
Abstract
Objectives The aim of our study was to investigate whether TNFAIP3, PTPN22, and TRAF1-5 single nucleotide polymorphisms (SNPs) are associated with susceptibility, severity, or serological markers in primary Sjögren's syndrome (pSS). Patients and methods The cases and controls study was conducted between December 2021 and June 2022. TNFAIP3 rs10499194C/T, rs6920220G/A, and rs2230926T/G, PTPN22 rs2476601C/T and rs33996649G/A, and TRAF1-C5 rs10818488G/A polymorphisms were genotyped in 154 female pSS patients (mean age: 45.2±6.8 years) and 313 female control subjects (mean age: 50.3±7.5 years) using the TaqMan® SNP genotyping assay. An association analysis between TNFAIP3, PTPN22, and TRAF1-C5 SNPs and susceptibility, clinical characteristics, and serological markers of pSS was performed. Interactions between TNFAIP3, PTPN22, and TRAF1-C5 SNPs were also evaluated in patients and controls. Results The genotype and allele frequencies showed no association with susceptibility, severity, or serological markers of pSS. Nevertheless, several interactions between TNFAIP3 and TRAF1-C5 or TNFAIP3, PTPN22, and TRAF1-C5 genotypes were associated with susceptibility to pSS (p<0.01). Conclusion Individual TNFAIP3, PTPN22, and TRAF1-C5 SNPs are not associated with susceptibility, severity, or serological markers of pSS. However, genetic interactions between TRAF1-C5 and TNFAIP3 or TNFAIP3, PTPN22, and TRAF1-C5 SNPs are risk factors for pSS.
Collapse
Affiliation(s)
- Daniel Cadena-Sandoval
- Universidad Juárez Autónoma De Tabasco, Comalcalco Multidisciplinary Academic Division, Comalcalco, Tabasco, Mexico
| | | | | | - Gabriela Hernández-Molina
- Departamento De Inmunología Y Reumatología, Instituto Nacional De Ciencias Médicas Y Nutrición, Ciudad De México , Mexico
| | | | - Norma Sánchez-Zauco
- División De Diagnostico Y Tratamientos Auxiliares, Centro Médico Nacional Siglo Xxi, Ciudad De México, Mexico
| | - Julian Ramírez-Bello
- Subdirección de Investigación Clínica, Instituto Nacional De Cardiologia Ignacio Chávez, Ciudad De Mexico, Mexico
| |
Collapse
|
2
|
Montúfar-Robles I, Barbosa-Cobos RE, Romero-Díaz J, Valencia-Pacheco G, Cabello-Gutiérrez C, Ramírez-Bello J. The functional TNFAIP3 rs2230926T/G (Phe127Cys) variant confers risk to systemic lupus erythematosus in a Latin American population. Hum Immunol 2024; 85:110736. [PMID: 38042682 DOI: 10.1016/j.humimm.2023.110736] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/22/2023] [Revised: 11/03/2023] [Accepted: 11/27/2023] [Indexed: 12/04/2023]
Abstract
TNFAIP3 is a classical systemic lupus erythematosus (SLE)-associated risk locus identified by genome-wide association studies (GWASs) and replicated by candidate gene association studies primarily in Caucasians and Asians. However, in Latin American populations, its role on SLE susceptibility is not known. We conducted a case-control study to evaluate whether the TNFAIP3 rs2230926T/G (Phe127Cys) variant is associated with risk of developing SLE in a cohort of Mexican patients. The TNFAIP3 rs2230926T/G variant was analyzed in 561 patients with SLE and 499 control subjects, using TaqMan probes. We found that the G allele was associated with susceptibility to SLE under the allelic (OR 2.09, p = 0.005) and genotypic (OR 2.14, p = 0.004) models. In conclusion, our results show that TNFAIP3 rs2230926T/G is a risk factor for the development of SLE in the Mexican population.
Collapse
Affiliation(s)
| | | | - Juanita Romero-Díaz
- Departamento de Inmunología y Reumatología, Instituto Nacional de Ciencias Médicas y Nutrición Salvador Zubirán, Mexico City, Mexico
| | - Guillermo Valencia-Pacheco
- Laboratorio de Hematología Centro de Investigaciones Regionales "Dr. Hideyo Noguchi", Universidad Autónoma de Yucatán, Yucatán, Mexico
| | - Carlos Cabello-Gutiérrez
- Departamento de Investigación en Virología y Micología, Instituto Nacional de Enfermedades Respiratorias, Mexico City, Mexico
| | - Julian Ramírez-Bello
- Subdirección de Investigación Clínica, Instituto Nacional de Cardiología Ignacio Chávez, Mexico City, Mexico.
| |
Collapse
|
3
|
Aranda-Uribe IS, Ramírez-Bello J, Victoria-Acosta G, Muñoz-González F, Barbosa-Cobos RE, Moreno J. No association of eight TNFAIP3 single nucleotide variants to rheumatoid arthritis in Mexicans. Mol Biol Rep 2022; 49:11193-11199. [DOI: 10.1007/s11033-022-07855-7] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/08/2021] [Revised: 07/18/2022] [Accepted: 08/11/2022] [Indexed: 11/30/2022]
|
4
|
Masumoto J, Zhou W, Morikawa S, Hosokawa S, Taguchi H, Yamamoto T, Kurata M, Kaneko N. Molecular biology of autoinflammatory diseases. Inflamm Regen 2021; 41:33. [PMID: 34635190 PMCID: PMC8507398 DOI: 10.1186/s41232-021-00181-8] [Citation(s) in RCA: 13] [Impact Index Per Article: 4.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/23/2021] [Accepted: 09/09/2021] [Indexed: 12/25/2022] Open
Abstract
The long battle between humans and various physical, chemical, and biological insults that cause cell injury (e.g., products of tissue damage, metabolites, and/or infections) have led to the evolution of various adaptive responses. These responses are triggered by recognition of damage-associated molecular patterns (DAMPs) and/or pathogen-associated molecular patterns (PAMPs), usually by cells of the innate immune system. DAMPs and PAMPs are recognized by pattern recognition receptors (PRRs) expressed by innate immune cells; this recognition triggers inflammation. Autoinflammatory diseases are strongly associated with dysregulation of PRR interactomes, which include inflammasomes, NF-κB-activating signalosomes, type I interferon-inducing signalosomes, and immuno-proteasome; disruptions of regulation of these interactomes leads to inflammasomopathies, relopathies, interferonopathies, and proteasome-associated autoinflammatory syndromes, respectively. In this review, we discuss the currently accepted molecular mechanisms underlying several autoinflammatory diseases.
Collapse
Affiliation(s)
- Junya Masumoto
- Department of Pathology, Ehime University Graduate School of Medicine and Proteo-Science Center, Shitsukawa 454, Toon, Ehime, 791-0295, Japan.
| | - Wei Zhou
- Department of Pathology, Ehime University Graduate School of Medicine and Proteo-Science Center, Shitsukawa 454, Toon, Ehime, 791-0295, Japan
| | - Shinnosuke Morikawa
- Department of Pathology, Ehime University Graduate School of Medicine and Proteo-Science Center, Shitsukawa 454, Toon, Ehime, 791-0295, Japan
| | - Sho Hosokawa
- Department of Pathology, Ehime University Graduate School of Medicine and Proteo-Science Center, Shitsukawa 454, Toon, Ehime, 791-0295, Japan
| | - Haruka Taguchi
- Department of Pathology, Ehime University Graduate School of Medicine and Proteo-Science Center, Shitsukawa 454, Toon, Ehime, 791-0295, Japan
| | - Toshihiro Yamamoto
- Department of Pathology, Ehime University Graduate School of Medicine and Proteo-Science Center, Shitsukawa 454, Toon, Ehime, 791-0295, Japan
| | - Mie Kurata
- Department of Pathology, Ehime University Graduate School of Medicine and Proteo-Science Center, Shitsukawa 454, Toon, Ehime, 791-0295, Japan
| | - Naoe Kaneko
- Department of Pathology, Ehime University Graduate School of Medicine and Proteo-Science Center, Shitsukawa 454, Toon, Ehime, 791-0295, Japan
| |
Collapse
|
5
|
Montúfar-Robles I, Soto ME, Jiménez-Morales S, Gamboa R, Huesca-Gómez C, Ramírez-Bello J. Polymorphisms in TNFAIP3, but not in STAT4, BANK1, BLK, and TNFSF4, are associated with susceptibility to Takayasu arteritis. Cell Immunol 2021; 365:104375. [PMID: 33975174 DOI: 10.1016/j.cellimm.2021.104375] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/19/2020] [Revised: 03/08/2021] [Accepted: 04/29/2021] [Indexed: 12/25/2022]
Abstract
BACKGROUND Takayasu arteritis (TAK) is considered a rare disease characterized by nonspecific inflammation of the large arteries, especially the aorta and its major branches. Because TAK is an autoimmune disease (AD), it could share susceptibility loci with other pathologies such as systemic lupus erythematosus (SLE), and rheumatoid arthritis (RA), among others. Widely explored polymorphisms in non-HLA genes, including TNFAIP3, STAT4, TNFSF4, BANK1, and BLK have been consistently associated with both SLE and RA, but they have not been evaluated in TAK. OBJECTIVE The aim of our study was to investigate whether TNFAIP3, STAT4, BANK1, BLK, and TNFSF4 polymorphisms are associated with susceptibility to TAK. METHODS The TNFAIP3 rs2230926T/G and rs5029924C/T, STAT4 rs7574865G/T, BANK1 10516487G/A, BLK rs2736340T/C, rs13277113A/G, and TNFS4 rs2205960G/T polymorphisms were genotyped in 101 cases and 276 controls by using a TaqMan SNP genotyping assay. An association analysis was performed. RESULTS The TNFAIP3 rs2230926T/G and rs5029924C/T polymorphisms were in complete linkage disequilibrium and turned out to be risk factors for TAK (OR = 4.88, p = 0.0001). The STAT4, BANK1, BLK, and TNFSF4 polymorphisms were not associated with the disease. CONCLUSIONS This is the first study documenting an association of TNFAIP3 rs2230926T/G and rs5029924C/T with TAK. Our results provide new information on the genetic bases of TAK.
Collapse
Affiliation(s)
| | - María Elena Soto
- Departamento de Inmunología, Instituto Nacional de Cardiología Ignacio Chávez, México City, Mexico
| | - Silvia Jiménez-Morales
- Laboratorio de Genómica del Cáncer, Instituto Nacional de Medicina Genómica, Mexico City, Mexico
| | - Ricardo Gamboa
- Departamento de Inmunología, Instituto Nacional de Cardiología Ignacio Chávez, México City, Mexico
| | - Claudia Huesca-Gómez
- Departamento de Inmunología, Instituto Nacional de Cardiología Ignacio Chávez, México City, Mexico
| | | |
Collapse
|
6
|
Zhang L, Yao Y, Tian J, Jiang W, Zhou S, Chen J, Xu T, Wu M. Alterations and abnormal expression of A20 in peripheral monocyte subtypes in patients with rheumatoid arthritis. Clin Rheumatol 2020; 40:341-348. [PMID: 32488768 DOI: 10.1007/s10067-020-05137-w] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/30/2020] [Revised: 04/21/2020] [Accepted: 05/01/2020] [Indexed: 10/24/2022]
Abstract
As the precursors of macrophages and osteoclasts, monocytes play an important role in the pathogenesis of rheumatoid arthritis (RA). Since the deficiency of zinc-finger protein A20 in myeloid cells triggers erosive polyarthritis resembling RA, A20 in monocytes may play a protective role in RA. In the present study, we aimed to investigate the abnormality of monocyte subtypes and the expression of zinc-finger protein A20 in RA. Peripheral blood mononuclear cells and clinical data were collected from RA patients and healthy controls (HCs). Monocyte subtypes and A20 expression were determined through flow cytometry and compared between the two groups. Correlations between monocyte subtypes, A20 expression, and clinical data were analyzed. A total of 43 RA patients and 23 HCs were included in the present study. RA patients had higher absolute monocyte counts (p < 0.001) in the peripheral blood. The proportions and counts of intermediate monocytes (IMs) (both p < 0.001) and non-classical monocytes (NCMs) were higher (both p < 0.001) in RA patients. The expression of A20 in IMs (p < 0.001) was lower in RA patients compared with that in the HCs. Furthermore, the expression of A20 in IMs was negatively correlated with the anti-cyclic citrullinated peptide (CCP) antibody level in RA patients (r = - 0.409, p = 0.01). The expression of A20 in NCMs was positively correlated with modified total Sharp score (mTSS) in RA patients (r = 0.471, p = 0.02). Collectively, we proved that IMs and NCMs were increased in RA patients, suggesting that they played a suggestive role in the pathogenesis of RA. Furthermore, the downregulation of A20 in IMs might be correlated with anti-CCP antibody production. The A20 expression in NCMs might affect bone erosion in RA. Key Points • IMs and NCMs were increased in the peripheral blood of RA patients, suggesting their pathogenic role in RA. • The decreased expression of zinc-finger protein A20 in IMs of RA patients suggested the protective role of A20 in RA. • The negative correlation between the A20 expression in IMs and anti-CCP antibody revealed that A20 in IMs might be related to the formation of anti-CCP antibodies. • The positive correlation between the A20 expression in NCMs and mTSS revealed that A20 in NCMs might affect the bone erosion in RA.
Collapse
Affiliation(s)
- Lu Zhang
- Department of Rheumatology and Immunology, The Third Affiliated Hospital of Soochow University, Changzhou, Jiangsu Province, People's Republic of China
| | - Yao Yao
- Department of Rheumatology and Immunology, The Third Affiliated Hospital of Soochow University, Changzhou, Jiangsu Province, People's Republic of China
| | - Junmei Tian
- Department of Rheumatology and Immunology, The Third Affiliated Hospital of Soochow University, Changzhou, Jiangsu Province, People's Republic of China
| | - Wanlan Jiang
- Department of Rheumatology and Immunology, The Third Affiliated Hospital of Soochow University, Changzhou, Jiangsu Province, People's Republic of China
| | - Shiliang Zhou
- Department of Rheumatology and Immunology, The Third Affiliated Hospital of Soochow University, Changzhou, Jiangsu Province, People's Republic of China
| | - Jinyun Chen
- Department of Rheumatology and Immunology, The Third Affiliated Hospital of Soochow University, Changzhou, Jiangsu Province, People's Republic of China
| | - Ting Xu
- Department of Rheumatology and Immunology, The Third Affiliated Hospital of Soochow University, Changzhou, Jiangsu Province, People's Republic of China.
| | - Min Wu
- Department of Rheumatology and Immunology, The Third Affiliated Hospital of Soochow University, Changzhou, Jiangsu Province, People's Republic of China.
| |
Collapse
|
7
|
A De Novo Frameshift Mutation in TNFAIP3 Impairs A20 Deubiquitination Function to Cause Neuropsychiatric Systemic Lupus Erythematosus. J Clin Immunol 2019; 39:795-804. [PMID: 31625129 DOI: 10.1007/s10875-019-00695-4] [Citation(s) in RCA: 14] [Impact Index Per Article: 2.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/13/2019] [Accepted: 09/20/2019] [Indexed: 10/25/2022]
Abstract
PURPOSE Genome-wide association study of systemic lupus erythematosus (SLE) revealed tumor necrosis factor alpha-induced protein 3 (TNFAIP3, A20) as a susceptibility gene. Here, we report a de novo mutation in TNFAIP3 in a Chinese patient with neuropsychiatric SLE (NPSLE). METHODS Whole exome sequencing was performed for the patient and healthy members from the family. Suspected pathogenic variants were further analyzed and co-segregation was confirmed by Sanger sequencing. Real-time PCR and western blot were performed with peripheral blood mononuclear cells (PBMCs) and patient-derived T cells. Transfected HEK293T cells, human umbilical vein endothelial cells, normal human astrocytes, and microglia were used for in vitro studies. RESULTS A de novo frameshift mutation in TNFAIP3 was found in the NPSLE patient. Western blot analysis showed activated NF-κB and mitogen-activated protein kinase pathways. Real-time PCR revealed elevated expression of pro-inflammatory cytokines. On immunoprecipitation assay, the mutant A20 altered the K63-linked ubiquitin level of TRAF6 via its ubiquitin-editing function. CONCLUSIONS The mutant A20 may play a role in weakening the tight junction of the blood-brain barrier to cause neurologic symptoms. We report a rare variant of TNFAIP3 in a patient with NPSLE and reveal its autoimmune disease-causing mechanism in both peripheral tissues and the central nervous system.
Collapse
|
8
|
Associations of TRAF1/C5 rs10818488 and rs3761847 polymorphisms with genetic susceptibility to rheumatoid arthritis: a case-control study and updated meta-analysis. Cent Eur J Immunol 2019; 44:159-173. [PMID: 31530986 PMCID: PMC6745538 DOI: 10.5114/ceji.2019.87067] [Citation(s) in RCA: 7] [Impact Index Per Article: 1.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/24/2017] [Accepted: 01/22/2018] [Indexed: 02/07/2023] Open
Abstract
The results on associations of tumor necrosis factor (TNF)-receptor associated factor 1/complement component 5 (TRAF1/C5) rs10818488 and rs3761847 polymorphisms with rheumatoid arthritis (RA) are controversial, thus this study was performed to examine whether the aforementioned polymorphisms were associated with RA in a Chinese population. Furthermore, an updated meta-analysis was conducted. The polymorphisms were genotyped in 328 Chinese RA patients and 449 healthy controls. Studies examining the association of TRAF1/C5 rs10818488 and/or rs3761847 polymorphism with RA were exhaustively searched. No significant difference in either genotype or allele distribution between RA patients and controls was found. The updated meta-analysis was conducted based on 19 articles including the present study. A significant association of RA with TRAF1/C5 rs10818488 polymorphism G allele in Europeans (OR = 0.843, 95% CI = 0.730-0.975, p = 0.021) and in Asians (OR = 1.070, 95% CI = 1.009-1.136, p = 0.024) was found. Additionally, a significant association of RA with TRAF1/C5 rs10818488 polymorphism G allele under the recessive model in Asians (OR = 1.129, 95% CI = 1.023-1.246, p = 0.016) and in Africans (OR = 0.657, 95% CI = 0.507-0.851, p = 0.001) was found. Only a borderline significant association of RA with TRAF1/C5 rs3761847 polymorphism A allele was found in Europeans. Non-significant associations of RA with TRAF1/C5 rs10818488 and rs3761847 polymorphisms were found in our study. The updated meta-analysis results demonstrate that TRAF1/C5 rs10818488 polymorphism is associated with RA in Europeans, Asians and Africans, and TRAF1/C5 rs3761847 polymorphism is associated with RA in Europeans with borderline significant evidence.
Collapse
|
9
|
Goljan Geremek A, Puscinska E, Czystowska M, Skoczylas A, Bednarek M, Nowinski A, Gorecka D, Demkow U, Sliwinski P. Methotrexate treatment efficacy in sarcoidosis might be related to TNF-α polymorphism: real life preliminary study. SARCOIDOSIS VASCULITIS AND DIFFUSE LUNG DISEASES 2019; 36:261-273. [PMID: 32476962 DOI: 10.36141/svdld.v36i4.7708] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Subscribe] [Scholar Register] [Received: 03/27/2019] [Accepted: 07/11/2019] [Indexed: 11/02/2022]
Abstract
Introduction Methotrexate therapy improves lung function in selected sarcoidosis patients. Variation in TNF gene was associated with response to treatment. Aim: To determine the predictive role of-308 G/A, -857C/T, -863 C/A and -1031 T/C TNF-α polymorphism in the efficacy of MTX for progressive pulmonary sarcoidosis. Material and Methods Twenty-eight sarcoidosis patients treated with MTX (6-24 months) were genotyped for TNF-α polymorphisms: -1031 T/C, -857C/T, -308 G/A and -863 C/A. Pulmonary function test (PFT) were performed every 6 months to determine treatment response, until the drug withdrawal. Results No correlation between the initial clinical presentation of sarcoidosis and TNF α polymorphisms was found, neither for every allele nor for combined genotypes distribution. According to PFT evaluation we have discovered 3 types of response to MTX: early (ER), late (LR) and No-response (NR). TNF-α-308 A allele carriers have got significantly higher chance to be LR, p=0.02, RRI:83%. TNF-α-308 GG genotype transferred the 3-fold higher probability of early vs late response to MTX, p=0.02. Combined genotyping allowed to distinguish LR from ER and NR groups. ER and NR patients are genetically similar (-857CC-308GG). LR are "genetically" different group of patients (-857C/T-308GG or -857CC-308A/G) with 5-fold greater probability to be LR than TNF-α-857CC-308GG patients, p=0,005 sensitivity 85%, specificity: 43%, PPV 58%, NPV 75%. TNF-α-308GG-857CC patients have significantly lower chance to be LR comparing to other response type p=0.03 OR=0,075 95% CI=0.07-0.08. Conclusion Two types of positive response to MTX therapy (early and late) in chronic respiratory sarcoidosis are associated with polymorphic changes in TNF gene.
Collapse
Affiliation(s)
- Anna Goljan Geremek
- 2nd Department of Respiratory Medicine, National Tuberculosis and Lung Diseases Research Institute, Warsaw Poland
| | - Elzbieta Puscinska
- 2nd Department of Respiratory Medicine, National Tuberculosis and Lung Diseases Research Institute, Warsaw Poland
| | - Monika Czystowska
- 2nd Department of Respiratory Medicine, National Tuberculosis and Lung Diseases Research Institute, Warsaw Poland
| | - Agnieszka Skoczylas
- Geriatrics Clinic, National Institute of Geriatrics, Rheumatology and Rehabilitation, Warsaw, Poland
| | - Michal Bednarek
- 2nd Department of Respiratory Medicine, National Tuberculosis and Lung Diseases Research Institute, Warsaw Poland
| | - Adam Nowinski
- 2nd Department of Respiratory Medicine, National Tuberculosis and Lung Diseases Research Institute, Warsaw Poland
| | - Dorota Gorecka
- 2nd Department of Respiratory Medicine, National Tuberculosis and Lung Diseases Research Institute, Warsaw Poland
| | - Urszula Demkow
- Laboratory Diagnostics and Clinical Immunology, Medical University of Warsaw, Poland
| | - Pawel Sliwinski
- 2nd Department of Respiratory Medicine, National Tuberculosis and Lung Diseases Research Institute, Warsaw Poland
| |
Collapse
|
10
|
Niu ZY, Li WL, Jiang DL, Li YS, Xie XJ. Mir-483 inhibits colon cancer cell proliferation and migration by targeting TRAF1. Kaohsiung J Med Sci 2018; 34:479-486. [PMID: 30173777 DOI: 10.1016/j.kjms.2018.04.005] [Citation(s) in RCA: 13] [Impact Index Per Article: 2.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/14/2017] [Revised: 04/11/2018] [Accepted: 04/23/2018] [Indexed: 01/27/2023] Open
Abstract
MicroRNAs are important regulators during human growth and development. Emerging evidence indicates that microRNAs play important roles in colorectal cancer. The aim of this study is to reveal the biological function and direct target gene of miR-483 in colorectal cancer. The biological function of miR-483 on the proliferation and migration of colon cancer cells was then examined by Edu assay and transwell assay, respectively. Our findings revealed that miR-483 mimic could significantly inhibit cell proliferation and migration. The target gene of miR-483 was predicted by target scan software and identified by a dual fluorescence reporter system which showed that TRAF1 was a direct target gene of miR-483 in SW480 cell line. These data suggest that miR-483 is a colorectal cancer suppressor which could inhibit cell proliferation and migration, possibly via targeting TRAF1. The miR-483 could be a potential treatment target for colorectal cancer.
Collapse
Affiliation(s)
- Zi-Yu Niu
- Department of Gastroenterology I, Qingdao Municipal Hospital, Qingdao, PR China
| | - Wen-Li Li
- Department of Gastroenterology I, Qingdao Municipal Hospital, Qingdao, PR China
| | - Da-Lei Jiang
- Department of Gastroenterology I, Qingdao Municipal Hospital, Qingdao, PR China
| | - Yan-Song Li
- Ultrasonography, Qingdao Municipal Hospital, Qingdao, PR China
| | - Xiang-Jun Xie
- Department of Gastroenterology I, Qingdao Municipal Hospital, Qingdao, PR China.
| |
Collapse
|
11
|
Association of TNFAIP3 and TNIP1 polymorphisms with systemic lupus erythematosus risk: A meta-analysis. Gene 2018; 668:155-165. [PMID: 29783072 DOI: 10.1016/j.gene.2018.05.062] [Citation(s) in RCA: 13] [Impact Index Per Article: 2.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/18/2017] [Revised: 05/12/2018] [Accepted: 05/16/2018] [Indexed: 02/01/2023]
Abstract
OBJECT With the development of GWAS, both TNFAIP3 and TNIP1 were revealed to be susceptibility genes of SLE. However, some other studies revealed no association between TNFAIP3, TNIP1 and SLE susceptibility. In order to estimate such association more precisely and systemically, a meta-analysis was conducted. METHOD Studies on the association between TNFAIP3 rs2230926, TNIP1 rs7708392 and SLE risk were carefully selected via searching 3 databases (Pubmed, Embase, and Web of Science). A fixed- or random-effect model was used according to the heterogeneity, and a subgroup analysis by ethnicity was also performed. RESULTS 26 studies from 18 articles involving a total of 21,372 patients and 30,165 controls were analyzed for TNFAIP3 rs2230926. A significant association between the minor G allele of TNFAIP3 rs2230926 and SLE risk was found via a random-effect model (OR = 1.643, 95% CI = (1.462, 1.847), p < 0.01). In the subgroup analysis by ethnicity, significant correlations were also found in all Caucasians, Asians, and Africans (OR = 1.675, 95% CI = (1.353, 2.074), p < 0.01; OR = 1.738, 95% CI = (1.557, 1.940), p < 0.01; OR = 1.324, 95% CI = (1.029, 1.704), p < 0.05). As for TNIP1 rs7708392, 21 studies from 12 articles involving 24,716 cases and 32,200 controls were analyzed. A significant association of the minor C allele of TNIP1 rs7708392 and SLE risk was found via a random-effect model (OR = 1.247, 95% CI = (1.175, 1.323), p < 0.01). In the subgroup analysis by ethnicity, significant correlations were found in Caucasians, and Africans (OR = 1.317, 95% CI = (1.239, 1.401), p < 0.01; OR = 1.210, 95% CI = (1.108, 1.322), p < 0.01). However, there was no significant association in Asians (OR = 1.122, 95% CI = (0.953, 1.321), p > 0.05). CONCLUSION The minor G allele of TNFAIP3 rs2230926 was associated with increased risk of SLE in all Caucasians, Asians, and Africans. The minor C allele of TNIP1 rs7708392 was associated with the increased risk of SLE in Caucasians and Africans, while it was not associated with SLE susceptibility in Asians.
Collapse
|
12
|
Lou L, Bao W, Liu X, Song H, Wang Y, Zhang K, Gao W, Li H, Tu Z, Wang S. An Autoimmune Disease-Associated Risk Variant in the TNFAIP3 Gene Plays a Protective Role in Brucellosis That Is Mediated by the NF-κB Signaling Pathway. J Clin Microbiol 2018; 56:e01363-17. [PMID: 29343543 PMCID: PMC5869838 DOI: 10.1128/jcm.01363-17] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.2] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/25/2017] [Accepted: 01/05/2018] [Indexed: 12/21/2022] Open
Abstract
Naturally occurring functional variants (rs148314165 and rs200820567, collectively referred to as TT>A) reduce the expression of the tumor necrosis factor alpha-induced protein 3 (TNFAIP3) gene, a negative regulator of NF-κB signaling, and predispose individuals to autoimmune disease. In this analysis, we conducted a genetic association study of the TT>A variants in 1,209 controls and 150 patients with brucellosis, an infectious disease, and further assessed the role of the variants in brucellosis. Our data demonstrated that the TT>A variants were correlated with cases of brucellosis (P = 0.002; odds ratio [OR] = 0.34) and with individuals who had a positive serum agglutination test (SAT) result (titer of >1/160) (P = 4.2 × 10-6; OR = 0.23). A functional study demonstrated that brucellosis patients carrying the protective allele (A) showed significantly lower expression levels of the TNFAIP3 gene in their peripheral blood mononuclear cells and showed increased NF-κB signaling. Monocytes from individuals carrying the A allele that were stimulated with Brucella abortus had lower mRNA levels of TNFAIP3 and produced more interleukin-10 (IL-10), IL-6, and IL-1β than those from TT allele carriers. These data showed that autoimmune disease-associated risk variants, TT>A, of the TNFAIP3 locus play a protective role in the pathogenesis of brucellosis. Our findings suggest that a disruption of the normal function of the TNFAIP3 gene might serve as a therapeutic target for the treatment of brucellosis.
Collapse
Affiliation(s)
- Lixin Lou
- Department of Infectious Diseases, The First Hospital of Jilin University, Jilin, China
| | - Wanguo Bao
- Department of Infectious Diseases, The First Hospital of Jilin University, Jilin, China
| | - Xianjun Liu
- The Bethune Institute of Epigenetic Medicine, The First Hospital of Jilin University, Jilin, China
| | - Hongxiao Song
- Department of Translational Medicine, The First Hospital, Jilin University, Jilin, China
| | - Yang Wang
- Department of Infectious Diseases, The First Hospital of Jilin University, Jilin, China
| | - Kaiyu Zhang
- Department of Infectious Diseases, The First Hospital of Jilin University, Jilin, China
| | - Wenjing Gao
- The Bethune Institute of Epigenetic Medicine, The First Hospital of Jilin University, Jilin, China
| | - Haijun Li
- Department of Translational Medicine, The First Hospital, Jilin University, Jilin, China
| | - Zhengkun Tu
- Department of Translational Medicine, The First Hospital, Jilin University, Jilin, China
| | - Shaofeng Wang
- The Bethune Institute of Epigenetic Medicine, The First Hospital of Jilin University, Jilin, China
| |
Collapse
|
13
|
Das T, Chen Z, Hendriks RW, Kool M. A20/Tumor Necrosis Factor α-Induced Protein 3 in Immune Cells Controls Development of Autoinflammation and Autoimmunity: Lessons from Mouse Models. Front Immunol 2018. [PMID: 29515565 PMCID: PMC5826380 DOI: 10.3389/fimmu.2018.00104] [Citation(s) in RCA: 105] [Impact Index Per Article: 17.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/21/2022] Open
Abstract
Immune cell activation is a stringently regulated process, as exaggerated innate and adaptive immune responses can lead to autoinflammatory and autoimmune diseases. Perhaps the best-characterized molecular pathway promoting cell activation is the nuclear factor-κB (NF-κB) signaling pathway. Stimulation of this pathway leads to transcription of numerous pro-inflammatory and cell-survival genes. Several mechanisms tightly control NF-κB activity, including the key regulatory zinc finger (de)ubiquitinating enzyme A20/tumor necrosis factor α-induced protein 3 (TNFAIP3). Single nucleotide polymorphisms (SNPs) in the vicinity of the TNFAIP3 gene are associated with a spectrum of chronic systemic inflammatory diseases, indicative of its clinical relevance. Mice harboring targeted cell-specific deletions of the Tnfaip3 gene in innate immune cells such as macrophages spontaneously develop autoinflammatory disease. When immune cells involved in the adaptive immune response, such as dendritic cells or B-cells, are targeted for A20/TNFAIP3 deletion, mice develop spontaneous inflammation that resembles human autoimmune disease. Therefore, more knowledge on A20/TNFAIP3 function in cells of the immune system is beneficial in our understanding of autoinflammation and autoimmunity. Using the aforementioned mouse models, novel A20/TNFAIP3 functions have recently been described including control of necroptosis and inflammasome activity. In this review, we discuss the function of the A20/TNFAIP3 enzyme and its critical role in various innate and adaptive immune cells. Finally, we discuss the latest findings on TNFAIP3 SNPs in human autoinflammatory and autoimmune diseases and address that genotyping of TNFAIP3 SNPs may guide treatment decisions.
Collapse
Affiliation(s)
- Tridib Das
- Department of Pulmonary Medicine, Erasmus MC, Rotterdam, Netherlands
| | - Zhongli Chen
- Department of Pulmonary Medicine, Erasmus MC, Rotterdam, Netherlands
| | - Rudi W Hendriks
- Department of Pulmonary Medicine, Erasmus MC, Rotterdam, Netherlands
| | - Mirjam Kool
- Department of Pulmonary Medicine, Erasmus MC, Rotterdam, Netherlands
| |
Collapse
|
14
|
Abstract
PURPOSE OF REVIEW Our understanding on genetic basis of SLE has been advanced through genome-wide association studies. We review recent progress in lupus genetics with a focus on SLE-associated loci that have been functionally characterized, and discuss the potential for clinical translation of genetics data. RECENT FINDINGS Over 100 loci have been confirmed to show robust association with SLE and many share with other immune-mediated diseases. Although causative variants captured at these established loci are limited, they guide biological studies of gene targets for functional characterization which highlight the importance of aberrant recognition of self-nucleic acid, type I interferon overproduction, and defective immune cell signaling underlying the pathogenesis of SLE. Increasing examples illustrate a predictive value of genetic findings in susceptibility/prognosis prediction, clinical classification, and pharmacological implication. Genetic findings provide a foundation for better understanding of disease pathogenic mechanisms and opportunities for target selection in lupus drug development.
Collapse
|