1
|
Jiang Y, Zhu C, Ma X, Fan D. Janus hydrogels: merging boundaries in tissue engineering for enhanced biomaterials and regenerative therapies. Biomater Sci 2024; 12:2504-2520. [PMID: 38529571 DOI: 10.1039/d3bm01875j] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 03/27/2024]
Abstract
In recent years, the design and synthesis of Janus hydrogels have witnessed a thriving development, overcoming the limitations of single-performance materials and expanding their potential applications in tissue engineering and regenerative medicine. Janus hydrogels, with their exceptional mechanical properties and excellent biocompatibility, have emerged as promising candidates for various biomedical applications, including tissue engineering and regenerative therapies. In this review, we present the latest progress in the synthesis of Janus hydrogels using commonly employed preparation methods. We elucidate the surface and interface interactions of these hydrogels and discuss the enhanced properties bestowed by the unique "Janus" structure in biomaterials. Additionally, we explore the applications of Janus hydrogels in facilitating regenerative therapies, such as drug delivery, wound healing, tissue engineering, and biosensing. Furthermore, we analyze the challenges and future trends associated with the utilization of Janus hydrogels in biomedical applications.
Collapse
Affiliation(s)
- Yingxue Jiang
- Engineering Research Center of Western Resource Innovation Medicine Green Manufacturing, Ministry of Education, School of Chemical Engineering, Northwest University, Xi'an, 710069, China.
- Shaanxi Key Laboratory of Degradable Biomedical Materials and Shaanxi R&D Center of Biomaterials and Fermentation Engineering, School of Chemical Engineering, Northwest University, Xi'an, 710069, China
- Biotech. & Biomed. Research Institute, Northwest University, Xi'an, 710069, China
| | - Chenhui Zhu
- Engineering Research Center of Western Resource Innovation Medicine Green Manufacturing, Ministry of Education, School of Chemical Engineering, Northwest University, Xi'an, 710069, China.
- Shaanxi Key Laboratory of Degradable Biomedical Materials and Shaanxi R&D Center of Biomaterials and Fermentation Engineering, School of Chemical Engineering, Northwest University, Xi'an, 710069, China
- Biotech. & Biomed. Research Institute, Northwest University, Xi'an, 710069, China
| | - Xiaoxuan Ma
- Engineering Research Center of Western Resource Innovation Medicine Green Manufacturing, Ministry of Education, School of Chemical Engineering, Northwest University, Xi'an, 710069, China.
- Shaanxi Key Laboratory of Degradable Biomedical Materials and Shaanxi R&D Center of Biomaterials and Fermentation Engineering, School of Chemical Engineering, Northwest University, Xi'an, 710069, China
- Biotech. & Biomed. Research Institute, Northwest University, Xi'an, 710069, China
| | - Daidi Fan
- Engineering Research Center of Western Resource Innovation Medicine Green Manufacturing, Ministry of Education, School of Chemical Engineering, Northwest University, Xi'an, 710069, China.
- Shaanxi Key Laboratory of Degradable Biomedical Materials and Shaanxi R&D Center of Biomaterials and Fermentation Engineering, School of Chemical Engineering, Northwest University, Xi'an, 710069, China
- Biotech. & Biomed. Research Institute, Northwest University, Xi'an, 710069, China
| |
Collapse
|
2
|
Samelska K, Kupis M, Szymanek K, Izdebska J, Zaleska-Żmijewska A, Skopiński P. The immunology of corneal limbal stem cells: the up-to-date approach to stem cell transplantation. Cent Eur J Immunol 2023; 48:245-250. [PMID: 37901870 PMCID: PMC10604637 DOI: 10.5114/ceji.2023.132033] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/27/2023] [Accepted: 09/05/2023] [Indexed: 10/31/2023] Open
Abstract
Limbal epithelial stem cells (LSC, LESC) are multipotent cells used as regenerative treatment of the cornea in patients with limbal epithelial stem cell deficiency (LSCD, LESCD). There are different types of stem cell grafting including cultivated limbal epithelial transplantation (CET) and simple limbal epithelial transplantation (SLET). The outcomes of the techniques have been assessed as similar, with differences in the sample size required during the procedures. The most important culture components for stem cell cultivation include 3T3 murine fibroblasts, human amniotic membrane (HAM), fibrin gel, and culture medium. The culture medium may be enriched with serum or not; however, xenobiotic-free materials are preferred because of the low risk of pathogen transmission. Multiple studies have defined molecules important for maintaining the function of LSC including C/EBP δ, Bmi-1, p63 α, interleukins (IL-6), epithelial structural proteins - keratins, and antibodies against epidermal growth factor receptor (EGFR). The cell phenotype of LSC has been described with factors of transplantation success rate such as a high percentage of p63 positive cells. The article emphasizes the role of recipient tissue preparation, modern cultivation techniques and pathophysiological processes in LSC transplantation effectiveness.
Collapse
Affiliation(s)
- Katarzyna Samelska
- SPKSO Ophthalmic University Hospital, Warsaw, Poland
- Department of Ophthalmology, Medical University of Warsaw, Poland
- Laser Eye Microsurgery Centre, Clinic of Prof. Jerzy Szaflik, Warsaw, Poland
| | - Magdalena Kupis
- SPKSO Ophthalmic University Hospital, Warsaw, Poland
- Department of Ophthalmology, Medical University of Warsaw, Poland
- Laser Eye Microsurgery Centre, Clinic of Prof. Jerzy Szaflik, Warsaw, Poland
| | - Katarzyna Szymanek
- SPKSO Ophthalmic University Hospital, Warsaw, Poland
- ACL Vision Ophthalmologists – Specialized Ophthalmic Ambulatory, Warsaw, Poland
| | - Justyna Izdebska
- SPKSO Ophthalmic University Hospital, Warsaw, Poland
- Department of Ophthalmology, Medical University of Warsaw, Poland
- Laser Eye Microsurgery Centre, Clinic of Prof. Jerzy Szaflik, Warsaw, Poland
| | - Anna Zaleska-Żmijewska
- SPKSO Ophthalmic University Hospital, Warsaw, Poland
- Department of Ophthalmology, Medical University of Warsaw, Poland
- Laser Eye Microsurgery Centre, Clinic of Prof. Jerzy Szaflik, Warsaw, Poland
| | - Piotr Skopiński
- SPKSO Ophthalmic University Hospital, Warsaw, Poland
- Department of Histology and Embryology, Medical University of Warsaw, Poland
| |
Collapse
|
3
|
Poly (L-Lactic Acid) Cell-Laden Scaffolds Applied on Swine Model of Tracheal Fistula. J Surg Res 2022; 277:319-334. [PMID: 35552075 DOI: 10.1016/j.jss.2022.03.024] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/24/2021] [Revised: 02/20/2022] [Accepted: 03/21/2022] [Indexed: 11/22/2022]
Abstract
INTRODUCTION Tracheal fistula (TF) treatments may involve temporary orthosis and further ablative procedures, which can lead to infection. Thus, TF requires other therapy alternatives development. The hypothesis of this work was to demonstrate the feasibility of a tissue-engineered alternative for small TF in a preclinical model. Also, its association with suture filaments enriched with adipose tissue-derived mesenchymal stromal stem cells (AT-MSCs) was assessed to determine whether it could optimize the regenerative process. METHODS Poly (L-Lactic acid) (PLLA) membranes were manufactured by electrospinning and had morphology analyzed by scanning electron microscopy. AT-MSCs were cultured in these scaffolds and in vitro assays were performed (cytotoxicity, cellular adhesion, and viability). Subsequently, these cellular constructs were implanted in an animal small TF model. The association with suture filaments containing attached AT-MSCs was present in one animal group. After 30 d, animals were sacrificed and regenerative potential was evaluated, mainly related to the extracellular matrix remodeling, by performing histopathological (Hematoxylin-Eosin and trichrome Masson) and immunohistochemistry (Collagen I/II/III, matrix metalloproteinases-2, matrix metalloproteinases-9, vascular endothelial growth factor, and interleukin-10) analyses. RESULTS PLLA membranes presented porous fibers, randomly oriented. In vitro assays results showed that AT-MSCs attached were viable and maintained an active metabolism. Swine implanted with AT-MSCs attached to membranes and suture filaments showed aligned collagen fibers and a better regenerative progress in 30 d. CONCLUSIONS PLLA membranes with AT-MSCs attached were useful to the extracellular matrix restoration and have a high potential for small TF treatment. Also, their association with suture filaments enriched with AT-MSCs was advantageous.
Collapse
|
4
|
Samelska K, Zaleska-Żmijewska A, Bałan B, Grąbczewski A, Szaflik JP, Kubiak AJ, Skopiński P. Immunological and molecular basics of the primary open angle glaucoma pathomechanism. Cent Eur J Immunol 2021; 46:111-117. [PMID: 33897292 PMCID: PMC8056342 DOI: 10.5114/ceji.2021.104328] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/03/2020] [Accepted: 10/26/2020] [Indexed: 02/07/2023] Open
Abstract
Glaucoma is a degenerative process of the optic nerve. Increased intraocular pressure is believed to be the main factor leading to the glaucomatous damage. The in vitro and in vivo animal glaucoma research models provide insight into the molecular changes in the retina in response to the injury factor. The damage is a complex process incorporating molecular and immunological changes. Such changes involve NF kB activity and complement activation. The processes affect the human antigen, JNK, MAPK, p53, MT2 and DBA/2J molecular pathways, activate the autophagy processes and compromise neuroprotective mechanisms. Activation and inhibition of immunological responses contribute to cell injury. The immunological mechanisms of glaucomatous degeneration include glial response, the complement, tumor necrosis factor α (TNF-α) pathways and toll-like receptors athways. Oxidative stress and excitotoxicity are factors contributing to cell death in glaucoma. The authors present an up-to-date review of the mechanisms involved and update on research focusing on a possible innovative glaucoma treatment.
Collapse
Affiliation(s)
- Katarzyna Samelska
- SPKSO Ophthalmic University Hospital, Warsaw, Poland
- Department of Ophthalmology, Medical University of Warsaw, Warsaw, Poland
| | - Anna Zaleska-Żmijewska
- SPKSO Ophthalmic University Hospital, Warsaw, Poland
- Department of Ophthalmology, Medical University of Warsaw, Warsaw, Poland
| | - Barbara Bałan
- Department of Immunology Biochemistry and Nutrition, Medical University of Warsaw, Warsaw, Poland
| | | | - Jacek Paweł Szaflik
- SPKSO Ophthalmic University Hospital, Warsaw, Poland
- Department of Ophthalmology, Medical University of Warsaw, Warsaw, Poland
| | | | - Piotr Skopiński
- SPKSO Ophthalmic University Hospital, Warsaw, Poland
- Department of Histology and Embryology, Medical University of Warsaw, Warsaw, Poland
| |
Collapse
|
5
|
Amini A, Chien S, Bayat M. Impact of Ultrasound Therapy on Stem Cell Differentiation - A Systematic Review. Curr Stem Cell Res Ther 2020; 15:462-472. [PMID: 32096749 DOI: 10.2174/1574888x15666200225124934] [Citation(s) in RCA: 11] [Impact Index Per Article: 2.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/18/2019] [Revised: 01/08/2020] [Accepted: 01/10/2020] [Indexed: 12/12/2022]
Abstract
OBJECTIVE This is a systematic review of the effects of low-intensity pulsed ultrasound (LIPUS) on stem cell differentiation. BACKGROUND DATA Recent studies have investigated several types of stem cells from different sources in the body. These stem cells should strictly be certified and promoted for cell therapies before being used in medical applications. LIPUS has been used extensively in treatment centers and in research to promote stem cell differentiation, function, and proliferation. MATERIALS AND METHODS The databases of PubMed, Google Scholar, and Scopus were searched for abstracts and full-text scientific papers published from 1989-2019 that reported the application of LIPUS on stem cell differentiation. Related English language articles were found using the following defined keywords: low-intensity pulsed ultrasound, stem cell, differentiation. Criteria for inclusion in the review were: LIPUS with frequencies of 1-3 MHz and pulsed ultrasound intensity of <500 mW/cm2. Duration, exposure time, and cell sources were taken into consideration. RESULTS Fifty-two articles were selected based on the inclusion criteria. Most articles demonstrated that the application of LIPUS had positive effects on stem cell differentiation. However, some authors recommended that LIPUS combined with other physical therapy aides was more effective in stem cell differentiation. CONCLUSION LIPUS significantly increases the level of stem cell differentiation in cells derived mainly from bone marrow mesenchymal stem cells. There is a need for further studies to analyze the effect of LIPUS on cells derived from other sources, particularly adipose tissue-derived mesenchymal stem cells, for treating hard diseases, such as osteoporosis and diabetic foot ulcer. Due to a lack of reporting on standard LIPUS parameters in the field, more experiments comparing the protocols for standardization of LIPUS parameters are needed to establish the best protocol, which would allow for the best results.
Collapse
Affiliation(s)
- Abdollah Amini
- Department of Biology and Anatomical Sciences, School of Medicine, Shahid Beheshti University of Medical Sciences, Tehran, Iran
| | - Sufan Chien
- Price Institute of Surgical Research, University of Louisville, Louisville, KY, United States
| | - Mohammad Bayat
- Department of Biology and Anatomical Sciences, School of Medicine, Shahid Beheshti University of Medical Sciences, Tehran, Iran.,Price Institute of Surgical Research, University of Louisville, Louisville, KY, United States
| |
Collapse
|
6
|
Li Y, Zhou Y. Interleukin-17: The Role for Pathological Angiogenesis in Ocular Neovascular Diseases. TOHOKU J EXP MED 2019; 247:87-98. [PMID: 30773517 DOI: 10.1620/tjem.247.87] [Citation(s) in RCA: 23] [Impact Index Per Article: 4.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/18/2022]
Abstract
Ocular neovascular diseases are featured by abnormal angiogenesis in the eye, and they seriously threaten the human visual health. These diseases include proliferative diabetic retinopathy (PDR), age-related macular degeneration (AMD), retinopathy of prematurity (ROP), and retinal vein occlusion (RVO). In fact, ocular neovascular diseases represent the leading causes of vision impairment and blindness worldwide. Ocular neovascularization, the process of pathological vessel formation in eye, underlies ocular neovascular diseases. Cytokines have important regulatory roles in neovascularization through immunological networks. Interleukin (IL)-17, the signature cytokine produced by T helper 17 (Th17) cells, has proven to be involved in ocular neovascularization. However, roles of IL-17 in ocular neovascular diseases still remain controversial. This review provides an overview of the functional roles of IL-17 in ocular neovascular diseases from basic research to clinical evidence by focusing on PDR, AMD, ROP, and RVO. The possible roles of IL-17 in neovascularization are achieved through a regulatory network of cytoskeleton remodeling, vascular endothelial growth factor (VEGF), VEGF-related cytokines, and complement components. Current applications as well as potential therapies targeting IL-17 with genome editing systems are also outlined and discussed. Targeting IL-17 might be a promising therapeutic strategy against ocular neovascular diseases.
Collapse
Affiliation(s)
- Yuanjun Li
- Department of Ophthalmology, The Second Xiangya Hospital, Central South University.,Department of Ophthalmology, Guangdong Provincial Key Laboratory of Malignant Tumor Epigenetics and Gene Regulation, Sun Yat-sen Memorial Hospital
| | - Yedi Zhou
- Department of Ophthalmology, The Second Xiangya Hospital, Central South University.,Hunan Clinical Research Center of Ophthalmic Disease
| |
Collapse
|
7
|
Amniotic cells share clusters of differentiation of fibroblasts and keratinocytes, influencing their ability to proliferate and aid in wound healing while impairing their angiogenesis capability. Eur J Pharmacol 2019; 854:167-178. [PMID: 30826324 DOI: 10.1016/j.ejphar.2019.02.043] [Citation(s) in RCA: 9] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/18/2018] [Revised: 02/22/2019] [Accepted: 02/26/2019] [Indexed: 12/19/2022]
Abstract
An alternative to cultured skin cell grafts usage in burn treatment is the graft of allogenic stem cells. We verified whether amniotic stem cells are better than the present therapeutic standard: grafts of autologous keratinocytes and fibroblasts along with autologous adipose-derived stem cells, and whether amniotic stem cells can support the growth of autologous keratinocytes and fibroblasts in the culture. The study was performed on the material from 18 amnia. Skin cells were obtained from 3 patients. In order to assess the influence of stem cells on keratinocytes and fibroblasts, the following experiments were performed: impact on viability and cell cycle, wound healing capability, angiogenesis capability, influence on the proliferation speed and capability to differentiate into skin cells. We demonstrated that human amniotic membrane-derived mesenchymal stem cells (hAMMSCs) share amniotic proteins with skin cells. Amniotic stem cells may replace skin fibroblasts in grafts due to the close similarity in their surface antigens, with significantly larger proliferative potential and ability to stimulate wound healing. It was shown that adding amniotic cells to both keratinocytes and fibroblast cultures accelerates directional migration by ≥ 40%. We confirmed in this study the influence of amniotic cells on the proliferation and cell cycle of fibroblasts and keratinocytes. Amniotic stem cells can be successfully used not only as a first choice graft but also to replace 3T3 line cells, supporting the proliferation of the cells during the culturing, as well as a supplementary graft supporting an autologous graft of keratinocytes and fibroblasts.
Collapse
|
8
|
Azadian E, Arjmand B, Khodaii Z, Ardeshirylajimi A. A comprehensive overview on utilizing electromagnetic fields in bone regenerative medicine. Electromagn Biol Med 2019; 38:1-20. [PMID: 30661411 DOI: 10.1080/15368378.2019.1567527] [Citation(s) in RCA: 13] [Impact Index Per Article: 2.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/20/2022]
Abstract
Stem cells are one of the most important sources to develope a new strategy for repairing bone lesions through tissue engineering. Osteogenic differentiation of stem cells can be affected by various factors such as biological, chemical, physiological, and physical ones. The application of ELF-EMFs has been the subject of many research in bone tissue engineering and evidence suggests that this exogenous physical stimulus can promote osteogenic differentiation in several types of cells. The purpose of this paper is to review the current knowledge on the effects of EMFs on stem cells in bone tissue engineering studies. We recapitulated and analyzed 39 articles that were focused on the application of EMFs for bone tissue engineering purposes. We tabulated scattered information from these articles for easy use and tried to provide an overview of conducted research and identify the knowledge gaps in the field.
Collapse
Affiliation(s)
- Esmaeel Azadian
- a Urogenital Stem Cell Research Center , Shahid Beheshti University of Medical Sciences , Tehran , Iran.,b Department of Tissue Engineering and Applied Cell Sciences, School of Advanced Technologies in Medicine , Shahid Beheshti University of Medical Sciences , Tehran , Iran
| | - Bahar Arjmand
- a Urogenital Stem Cell Research Center , Shahid Beheshti University of Medical Sciences , Tehran , Iran.,b Department of Tissue Engineering and Applied Cell Sciences, School of Advanced Technologies in Medicine , Shahid Beheshti University of Medical Sciences , Tehran , Iran
| | - Zohreh Khodaii
- c Dietary supplements and Probiotics research center , Alborz University of Medical Sciences , Karaj , Iran.,d Department of Biochemistry, Genetics and Nutrition, Faculty of Medicine , Alborz University of Medical Sciences , Karaj , Iran
| | - Abdolreza Ardeshirylajimi
- a Urogenital Stem Cell Research Center , Shahid Beheshti University of Medical Sciences , Tehran , Iran.,b Department of Tissue Engineering and Applied Cell Sciences, School of Advanced Technologies in Medicine , Shahid Beheshti University of Medical Sciences , Tehran , Iran
| |
Collapse
|
9
|
Seyed MA, Vijayaraghavan K. Evaluation of an Improved Chitosan Scaffold Cross-Linked With Polyvinyl Alcohol and Amine Coupling Through 1-Ethyl-3-(3-Dimethyl Aminopropyl)-Carbodiimide (EDC) and 2 N-Hydroxysuccinimide (NHS) for Corneal Applications. Open Access Maced J Med Sci 2018; 6:1561-1570. [PMID: 30337966 PMCID: PMC6182522 DOI: 10.3889/oamjms.2018.322] [Citation(s) in RCA: 14] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/04/2018] [Revised: 07/26/2018] [Accepted: 07/27/2018] [Indexed: 12/25/2022] Open
Abstract
BACKGROUND: Corneal blindness resulting from various medical conditions affects millions worldwide. The rapid developing tissue engineering field offers design of a scaffold with mechanical properties and transparency similar to that of the natural cornea. AIM: The present study aimed at to prepare and investigate the properties of PVA/chitosan blended scaffold by further cross-linking with 1-Ethyl-3-(3-dimethyl aminopropyl)-carbodiimide (EDC) and 2 N-Hydroxysuccinimide (NHS) as potential in vitro carrier for human limbal stem cells delivery. MATERIAL AND METHODS: Acetic acid dissolved chitosan was added to PVA solution, uniformly mixed with a homogenizer until the mixture was in a colloidal state, followed by H2SO4 and formaldehyde added and the sample was allowed to cool, subsequently it was poured into a tube and heated in an oven at 60°C for 50 minutes. Finally, samples were soaked in a cross-linking bath with EDC, NHS and NaOH in H2O/EtOH for 24 h consecutively stirred to cross-link the polymeric chains, reduce degradation. After soaking in the bath, the samples were carefully washed with 2% glycine aqueous solution several times to remove the remaining amount of cross-linkers, followed by washed with water to remove residual agents. Later the cross-linked scaffold subjected for various characterization and biological experiments. RESULTS: After viscosity measurement, the scaffold was observed by Fourier transform infrared (FT-IR). The water absorbency of PVA/Chitosan was increased 361% by swelling. Compression testing demonstrated that by increasing the amount of chitosan, the strength of the scaffold could be increased to 16×10−1 MPa. Our degradation results revealed by mass loss using equation shows that scaffold degraded gradually imply slow degradation. In vitro tests showed good cell proliferation and growth in the scaffold. Our assay results confirmed that the membrane could increase the cells adhesion and growth on the substrate. CONCLUSION: Hence, we strongly believe the use of this improved PVA/chitosan scaffold has potential to cut down the disadvantages of the human amniotic membrane (HAM) for corneal epithelium in ocular surface surgery and greater mechanical strength in future after successful experimentation with clinical trials.
Collapse
Affiliation(s)
- Mohamed Ali Seyed
- Department of Clinical Biochemistry, Faculty of Medicine, University of Tabuk, Tabuk 71491, Saudi Arabia
| | - Kavitha Vijayaraghavan
- Department of Chemical Engineering, Agni College of Technology, Old Mahabalipuram Road, Thalambur, Chennai, Tamil Nadu 600130, India
| |
Collapse
|