1
|
Wang J, Kang L, Xu W, Xiao J, Min Y, Li S, Zhou C, Yin Y, Zhang X, Zhang Q. Progranulin Plays a Protective Role in Pneumococcal Meningitis by Inhibiting Pyroptosis. Immun Inflamm Dis 2025; 13:e70140. [PMID: 39887961 PMCID: PMC11783684 DOI: 10.1002/iid3.70140] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/22/2024] [Revised: 11/19/2024] [Accepted: 01/19/2025] [Indexed: 02/01/2025] Open
Abstract
OBJECTIVE Pneumococcal meningitis is a serious infectious disease with a high mortality rate and a global presence, and survivors have different degrees of neurological sequelae as a consequence of the host response to the infection. Progranulin (PGRN) is a multifunctional autocrine growth factor that is also a major immunoregulator. We want to investigate the role for PGRN in Pneumococcal meningitis in vivo and in vitro. METHOD Mouse and cell models were established to explore the protective effect and mechanism of PGRN against pneumococcal meningitis. RESULTS Progranulin plays a protective role in pneumococcal meningitis by inhibiting pyroptosis. Pyroptosis resulted from exposure of BV-2 cells to the bacterium and this was confirmed in the in vivo model. Administration of the NLRP3 inflammasome inhibitor MCC950 to mice prior to infection inhibited pyroptosis and protected PGRN -/- mice and BV-2 cell model from meningitis. CONCLUSION This study implicates a protective role for PGRN in pneumococcal meningitis by inhibiting pyroptosis, indicating that PGRN may have therapeutic potential.
Collapse
Affiliation(s)
- Jingyao Wang
- Department of Clinical Laboratory, Children's Hospital of Chongqing Medical University, National Clinical Research Center for Child Health and Disorders, Ministry of Education Key Laboratory of Child Development and Disorders, Chongqing Key Laboratory of Pediatric Metabolism and Inflammatory DiseasesChongqing Medical UniversityChongqingPeople's Republic of China
- Key Laboratory of Diagnostic Medicine Designated by the Ministry of Education, Department of Laboratory MedicineChongqing Medical UniversityChongqingChina
- Chengdu Women's and Children's Central Hospital, School of MedicineUniversity of Electronic Science and Technology of ChinaChengduChina
| | - Lihua Kang
- Department of Clinical Laboratory, Children's Hospital of Chongqing Medical University, National Clinical Research Center for Child Health and Disorders, Ministry of Education Key Laboratory of Child Development and Disorders, Chongqing Key Laboratory of Pediatric Metabolism and Inflammatory DiseasesChongqing Medical UniversityChongqingPeople's Republic of China
- Key Laboratory of Diagnostic Medicine Designated by the Ministry of Education, Department of Laboratory MedicineChongqing Medical UniversityChongqingChina
- Department of Clinical LaboratoryWomen and Children's Hospital of Chongqing Medical UniversityChongqingPeople's Republic of China
| | - Wenlong Xu
- Key Laboratory of Diagnostic Medicine Designated by the Ministry of Education, Department of Laboratory MedicineChongqing Medical UniversityChongqingChina
| | - Jiangming Xiao
- Key Laboratory of Diagnostic Medicine Designated by the Ministry of Education, Department of Laboratory MedicineChongqing Medical UniversityChongqingChina
| | - Yajun Min
- Key Laboratory of Diagnostic Medicine Designated by the Ministry of Education, Department of Laboratory MedicineChongqing Medical UniversityChongqingChina
| | - Sijie Li
- Key Laboratory of Diagnostic Medicine Designated by the Ministry of Education, Department of Laboratory MedicineChongqing Medical UniversityChongqingChina
| | - Changlong Zhou
- Department of Neurosurgery, Yongchuan HospitalChongqing Medical UniversityChongqingPeople's Republic of China
| | - Yibing Yin
- Key Laboratory of Diagnostic Medicine Designated by the Ministry of Education, Department of Laboratory MedicineChongqing Medical UniversityChongqingChina
| | - Xuemei Zhang
- Key Laboratory of Diagnostic Medicine Designated by the Ministry of Education, Department of Laboratory MedicineChongqing Medical UniversityChongqingChina
| | - Qun Zhang
- Department of Clinical Laboratory, Children's Hospital of Chongqing Medical University, National Clinical Research Center for Child Health and Disorders, Ministry of Education Key Laboratory of Child Development and Disorders, Chongqing Key Laboratory of Pediatric Metabolism and Inflammatory DiseasesChongqing Medical UniversityChongqingPeople's Republic of China
| |
Collapse
|
2
|
Zhang P, Ruan C, Yang G, Guan Y, Zhu Y, Li Q, Dai X, An Y, Shi X, Huang P, Chen Y, He Z, Du Z, Liu C. PGRN Inhibits Early B-cell Activation and IgE Production Through the IFITM3-STAT1 Signaling Pathway in Asthma. ADVANCED SCIENCE (WEINHEIM, BADEN-WURTTEMBERG, GERMANY) 2024; 11:e2403939. [PMID: 39412083 PMCID: PMC11615816 DOI: 10.1002/advs.202403939] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 04/14/2024] [Revised: 09/23/2024] [Indexed: 12/06/2024]
Abstract
Progranulin (PGRN) plays a critical role in bronchial asthma and the function of various immune cells. However, the mechanisms by which PGRN influences B-cell receptor (BCR) signaling and immunoglobulin E(IgE) production are not fully understood. The study aimed to elucidate the molecular mechanisms through which PGRN affects BCR signaling, B-cell differentiation, and IgE production. A PGRN knockout mouse model, along with techniques including flow cytometry, the creation of a bone marrow chimeric mouse model, total internal reflection fluorescence (TIRF), and Western blot (WB) analysis is employed, to investigate the link between PGRN and various aspects of B-cell biology. It is discovered that the absence of PGRN in mice alters peripheral B-cell subpopulations, promotes IgE class switching in a cell-intrinsic manner, and affects B-cell subpopulations. Additionally, PGRN modulates B-cell functions by regulating BCR signaling pathways, metabolic processes, and the actin cytoskeleton during early B-cell activation. Significantly, PGRN deficiency results in diminished production of NP-specific antibodies. Moreover, it is found that PGRN inhibits B-cell activation and IgE production through the PGRN-IFITM3-STAT1 signaling pathway. The findings provide new strategies for the targeted treatment of bronchial asthma, highlighting the crucial role of PGRN in B-cell signaling and IgE production.
Collapse
Affiliation(s)
- Pingping Zhang
- Department of PediatricsAffiliated Hospital of Zunyi Medical UniversityZunyi563000China
- Department of PediatricsGuizhou Children's HospitalZunyi563000China
- Collaborative Innovation Center for Tissue Injury Repair and Regenerative Medicine of Zunyi Medical UniversityZunyi563099China
| | - Changshun Ruan
- Chongqing Key Laboratory of Child Infection and ImmunityChildren's Hospital of Chongqing Medical UniversityChongqing400014China
| | - Guangli Yang
- Department of PediatricsAffiliated Hospital of Zunyi Medical UniversityZunyi563000China
- Department of PediatricsGuizhou Children's HospitalZunyi563000China
- Collaborative Innovation Center for Tissue Injury Repair and Regenerative Medicine of Zunyi Medical UniversityZunyi563099China
| | - Yaning Guan
- Department of PediatricsAffiliated Hospital of Zunyi Medical UniversityZunyi563000China
- Department of PediatricsGuizhou Children's HospitalZunyi563000China
- Collaborative Innovation Center for Tissue Injury Repair and Regenerative Medicine of Zunyi Medical UniversityZunyi563099China
| | - Yin Zhu
- Department of PediatricsAffiliated Hospital of Zunyi Medical UniversityZunyi563000China
- Department of PediatricsGuizhou Children's HospitalZunyi563000China
- Collaborative Innovation Center for Tissue Injury Repair and Regenerative Medicine of Zunyi Medical UniversityZunyi563099China
| | - Qian Li
- Department of PediatricsAffiliated Hospital of Zunyi Medical UniversityZunyi563000China
- Department of PediatricsGuizhou Children's HospitalZunyi563000China
- Collaborative Innovation Center for Tissue Injury Repair and Regenerative Medicine of Zunyi Medical UniversityZunyi563099China
| | - Xin Dai
- Zhanjiang Institute of Clinical MedicineZhanjiang Central HospitalGuangdong Medical UniversityZhanjiang524037China
- Department of HematologyCentral People's Hospital of ZhanjiangZhanjiang524037China
| | - Yang An
- Department of PediatricsAffiliated Hospital of Zunyi Medical UniversityZunyi563000China
- Department of PediatricsGuizhou Children's HospitalZunyi563000China
- Collaborative Innovation Center for Tissue Injury Repair and Regenerative Medicine of Zunyi Medical UniversityZunyi563099China
| | - Xiaoqi Shi
- Department of PediatricsAffiliated Hospital of Zunyi Medical UniversityZunyi563000China
- Department of PediatricsGuizhou Children's HospitalZunyi563000China
- Collaborative Innovation Center for Tissue Injury Repair and Regenerative Medicine of Zunyi Medical UniversityZunyi563099China
| | - Pei Huang
- Department of PediatricsAffiliated Hospital of Zunyi Medical UniversityZunyi563000China
- Department of PediatricsGuizhou Children's HospitalZunyi563000China
- Collaborative Innovation Center for Tissue Injury Repair and Regenerative Medicine of Zunyi Medical UniversityZunyi563099China
| | - Yan Chen
- Department of PediatricsAffiliated Hospital of Zunyi Medical UniversityZunyi563000China
- Department of PediatricsGuizhou Children's HospitalZunyi563000China
- Collaborative Innovation Center for Tissue Injury Repair and Regenerative Medicine of Zunyi Medical UniversityZunyi563099China
| | - Zhixu He
- Department of PediatricsAffiliated Hospital of Zunyi Medical UniversityZunyi563000China
- Department of PediatricsGuizhou Children's HospitalZunyi563000China
- Collaborative Innovation Center for Tissue Injury Repair and Regenerative Medicine of Zunyi Medical UniversityZunyi563099China
| | - Zuochen Du
- Department of PediatricsAffiliated Hospital of Zunyi Medical UniversityZunyi563000China
- Department of PediatricsGuizhou Children's HospitalZunyi563000China
- Collaborative Innovation Center for Tissue Injury Repair and Regenerative Medicine of Zunyi Medical UniversityZunyi563099China
| | - Chaohong Liu
- Department of Pathogen Biology School of Basic MedicineTongji Medical College and State Key Laboratory for Diagnosis and Treatment of Severe Zoonotic Infectious DiseasesHuazhong University of Science and Technology Wuhan Hubei ChinaHubei430074China
| |
Collapse
|
3
|
Yang F, Cheng MH, Pan HF, Gao J. Progranulin: A promising biomarker and therapeutic target for fibrotic diseases. Acta Pharm Sin B 2024; 14:3312-3326. [PMID: 39220875 PMCID: PMC11365408 DOI: 10.1016/j.apsb.2024.04.026] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/01/2024] [Revised: 03/29/2024] [Accepted: 04/12/2024] [Indexed: 09/04/2024] Open
Abstract
Progranulin (PGRN), a multifunctional growth factor-like protein expressed by a variety of cell types, serves an important function in the physiologic and pathologic processes of fibrotic diseases, including wound healing and the inflammatory response. PGRN was discovered to inhibit pro-inflammation effect by competing with tumor necrosis factor-alpha (TNF-α) binding to TNF receptors. Notably, excessive tissue repair in the development of inflammation causes tissue fibrosis. Previous investigations have indicated the significance of PGRN in regulating inflammatory responses. Recently, multiple studies have shown that PGRN was linked to fibrogenesis, and was considered to monitor the formation of fibrosis in multiple organs, including liver, cardiovascular, lung and skin. This paper is a comprehensive review summarizing our current knowledge of PGRN, from its discovery to the role in fibrosis. This is followed by an in-depth look at the characteristics of PGRN, consisting of its structure, basic function and intracellular signaling. Finally, we will discuss the potential of PGRN in the diagnosis and treatment of fibrosis.
Collapse
Affiliation(s)
- Fan Yang
- Pediatric Translational Medicine Institute, Shanghai Children's Medical Center, School of Medicine, Shanghai Jiao Tong University, Shanghai 200000, China
- Department of Ophthalmology, the First Affiliated Hospital of Anhui Medical University, Hefei 230022, China
| | - Ming-Han Cheng
- Pediatric Translational Medicine Institute, Shanghai Children's Medical Center, School of Medicine, Shanghai Jiao Tong University, Shanghai 200000, China
| | - Hai-Feng Pan
- Department of Epidemiology and Biostatistics, School of Public Health, Anhui Medical University, Hefei 230022, China
- Inflammation and Immune Mediated Diseases Laboratory of Anhui Province, Hefei 230022, China
| | - Jian Gao
- Pediatric Translational Medicine Institute, Shanghai Children's Medical Center, School of Medicine, Shanghai Jiao Tong University, Shanghai 200000, China
| |
Collapse
|
4
|
Du Z, Huang L, Dai X, Yang D, Niu L, Miller H, Ruan C, Li H, Hu L, Zhou L, Jian D, Sun J, Shi X, Huang P, Chen Y, Zhao X, Liu C. Progranulin regulates the development and function of NKT2 cells through EZH2 and PLZF. Cell Death Differ 2022; 29:1901-1912. [PMID: 35449211 PMCID: PMC9525702 DOI: 10.1038/s41418-022-00973-6] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/19/2021] [Revised: 02/23/2022] [Accepted: 03/01/2022] [Indexed: 11/09/2022] Open
Abstract
T helper 2 (Th2) cytokine production by invariant natural killer T (iNKT) cells is involved in the development of asthma, but the regulation of Th2 cytokines in iNKT cells remains unknown. Although it is known that progranulin (PGRN) induces the production of Th2 cytokines in iNKT cells in vivo, the underlying mechanism is not clear. This study aims to investigate the role of PGRN in iNKT cells. The effects of PGRN on the differentiation of iNKT cells was detected by flow cytometry. Then stimulation of iNKT cells and airway resistance were carried out to evaluate the function of PGRN on iNKT cells. Furthermore, the mechanisms of PGRN in regulating iNKT cells was investigated by RT-PCR, WB, confocal and luciferase reporter assays. The absolute number of iNKT cells decreased in PGRN KO mice despite an increase in the percentage of iNKT cells. Furthermore, analyzing the subsets of iNKT cells, we found that NKT2 cells and their IL-4 production were reduced. Mechanistically, the decrease in NKT2 cells in the PGRN KO mice was caused by increased expression of enhancer of zeste homolog 2 (EZH2), that in turn caused increased degradation and altered nuclear localization of PLZF. Interestingly, PGRN signaling decreased expression of EZH2 and treatment of the PGRN KO mice with the EZH2 specific inhibitor GSK343 rescued the defect in NKT2 differentiation, IL-4 generation, and PLZF expression. Altogether, We have revealed a new pathway (PGRN-EZH2-PLZF), which regulates the Th2 responses of iNKT cells and provides a potentially new target for asthma treatment.
Collapse
Affiliation(s)
- Zuochen Du
- Chongqing Key Laboratory of Child Infection and Immunity, Children's Hospital of Chongqing Medical University, Chongqing, China
- Department of Pediatric Research Institute, Children's Hospital of Chongqing Medical University, Chongqing, China
- Ministry of Education Key Laboratory of Child Development and Disorder, Children's Hospital of Chongqing Medical University, Chongqing, China
- International Science and Technology Cooperation base of Child development and Critical Disorders, Children's Hospital of Chongqing Medical University, Chongqing, China
- The Second Department of Pediatrics, Affiliated Hospital of Zunyi Medical University, Zunyi, Guizhou Province, China
| | - Lu Huang
- Chongqing Key Laboratory of Child Infection and Immunity, Children's Hospital of Chongqing Medical University, Chongqing, China
- Department of Pediatric Research Institute, Children's Hospital of Chongqing Medical University, Chongqing, China
- Ministry of Education Key Laboratory of Child Development and Disorder, Children's Hospital of Chongqing Medical University, Chongqing, China
- International Science and Technology Cooperation base of Child development and Critical Disorders, Children's Hospital of Chongqing Medical University, Chongqing, China
| | - Xin Dai
- Department of Pathogen Biology, Tongji Medical College, Huazhong University of Science and Technology, Wuhan, China
| | - Di Yang
- Chongqing Key Laboratory of Child Infection and Immunity, Children's Hospital of Chongqing Medical University, Chongqing, China
- Department of Pediatric Research Institute, Children's Hospital of Chongqing Medical University, Chongqing, China
- Ministry of Education Key Laboratory of Child Development and Disorder, Children's Hospital of Chongqing Medical University, Chongqing, China
- International Science and Technology Cooperation base of Child development and Critical Disorders, Children's Hospital of Chongqing Medical University, Chongqing, China
| | - Linlin Niu
- Chongqing Key Laboratory of Child Infection and Immunity, Children's Hospital of Chongqing Medical University, Chongqing, China
- Department of Pediatric Research Institute, Children's Hospital of Chongqing Medical University, Chongqing, China
- Ministry of Education Key Laboratory of Child Development and Disorder, Children's Hospital of Chongqing Medical University, Chongqing, China
- International Science and Technology Cooperation base of Child development and Critical Disorders, Children's Hospital of Chongqing Medical University, Chongqing, China
| | - Heather Miller
- The Laboratory of Intracellular Parasites, Rocky Mountain Laboratories, National Institute of Allergy and Infectious Diseases, National Institutes of Health, Hamilton, MT, USA
| | - Changshun Ruan
- Chongqing Key Laboratory of Child Infection and Immunity, Children's Hospital of Chongqing Medical University, Chongqing, China
- Department of Pediatric Research Institute, Children's Hospital of Chongqing Medical University, Chongqing, China
- Ministry of Education Key Laboratory of Child Development and Disorder, Children's Hospital of Chongqing Medical University, Chongqing, China
- International Science and Technology Cooperation base of Child development and Critical Disorders, Children's Hospital of Chongqing Medical University, Chongqing, China
| | - Han Li
- Chongqing Key Laboratory of Child Infection and Immunity, Children's Hospital of Chongqing Medical University, Chongqing, China
- Department of Pediatric Research Institute, Children's Hospital of Chongqing Medical University, Chongqing, China
- Ministry of Education Key Laboratory of Child Development and Disorder, Children's Hospital of Chongqing Medical University, Chongqing, China
- International Science and Technology Cooperation base of Child development and Critical Disorders, Children's Hospital of Chongqing Medical University, Chongqing, China
| | - Leling Hu
- Chongqing Key Laboratory of Child Infection and Immunity, Children's Hospital of Chongqing Medical University, Chongqing, China
- Department of Pediatric Research Institute, Children's Hospital of Chongqing Medical University, Chongqing, China
- Ministry of Education Key Laboratory of Child Development and Disorder, Children's Hospital of Chongqing Medical University, Chongqing, China
- International Science and Technology Cooperation base of Child development and Critical Disorders, Children's Hospital of Chongqing Medical University, Chongqing, China
| | - Lijia Zhou
- Chongqing Key Laboratory of Child Infection and Immunity, Children's Hospital of Chongqing Medical University, Chongqing, China
- Department of Pediatric Research Institute, Children's Hospital of Chongqing Medical University, Chongqing, China
- Ministry of Education Key Laboratory of Child Development and Disorder, Children's Hospital of Chongqing Medical University, Chongqing, China
- International Science and Technology Cooperation base of Child development and Critical Disorders, Children's Hospital of Chongqing Medical University, Chongqing, China
| | - Ding Jian
- Chongqing Key Laboratory of Child Infection and Immunity, Children's Hospital of Chongqing Medical University, Chongqing, China
- Department of Pediatric Research Institute, Children's Hospital of Chongqing Medical University, Chongqing, China
- Ministry of Education Key Laboratory of Child Development and Disorder, Children's Hospital of Chongqing Medical University, Chongqing, China
- International Science and Technology Cooperation base of Child development and Critical Disorders, Children's Hospital of Chongqing Medical University, Chongqing, China
| | - Jian Sun
- The Second Department of Pediatrics, Affiliated Hospital of Zunyi Medical University, Zunyi, Guizhou Province, China
| | - Xiaoqi Shi
- The Second Department of Pediatrics, Affiliated Hospital of Zunyi Medical University, Zunyi, Guizhou Province, China
| | - Pei Huang
- The Second Department of Pediatrics, Affiliated Hospital of Zunyi Medical University, Zunyi, Guizhou Province, China
| | - Yan Chen
- The Second Department of Pediatrics, Affiliated Hospital of Zunyi Medical University, Zunyi, Guizhou Province, China
| | - Xiaodong Zhao
- Chongqing Key Laboratory of Child Infection and Immunity, Children's Hospital of Chongqing Medical University, Chongqing, China.
- Department of Pediatric Research Institute, Children's Hospital of Chongqing Medical University, Chongqing, China.
- Ministry of Education Key Laboratory of Child Development and Disorder, Children's Hospital of Chongqing Medical University, Chongqing, China.
- International Science and Technology Cooperation base of Child development and Critical Disorders, Children's Hospital of Chongqing Medical University, Chongqing, China.
| | - Chaohong Liu
- Chongqing Key Laboratory of Child Infection and Immunity, Children's Hospital of Chongqing Medical University, Chongqing, China.
- Department of Pediatric Research Institute, Children's Hospital of Chongqing Medical University, Chongqing, China.
- Ministry of Education Key Laboratory of Child Development and Disorder, Children's Hospital of Chongqing Medical University, Chongqing, China.
- International Science and Technology Cooperation base of Child development and Critical Disorders, Children's Hospital of Chongqing Medical University, Chongqing, China.
- Department of Pathogen Biology, Tongji Medical College, Huazhong University of Science and Technology, Wuhan, China.
| |
Collapse
|
5
|
Jafari-Gharabaghlou D, Vaghari-Tabari M, Oghbaei H, Lotz L, Zarezadeh R, Rastgar Rezaei Y, Ranjkesh M, Nouri M, Fattahi A, Nikanfar S, Dittrich R. Role of adipokines in embryo implantation. Endocr Connect 2021; 10:R267-R278. [PMID: 34559064 PMCID: PMC8558901 DOI: 10.1530/ec-21-0288] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 08/24/2021] [Accepted: 09/24/2021] [Indexed: 11/08/2022]
Abstract
Embryo implantation is a complex process in which multiple molecules acting together under strict regulation. Studies showed the production of various adipokines and their receptors in the embryo and uterus, where they can influence the maternal-fetal transmission of metabolites and embryo implantation. Therefore, these cytokines have opened a novel area of study in the field of embryo-maternal crosstalk during early pregnancy. In this respect, the involvement of adipokines has been widely reported in the regulation of both physiological and pathological aspects of the implantation process. However, the information about the role of some recently identified adipokines is limited. This review aims to highlight the role of various adipokines in embryo-maternal interactions, endometrial receptivity, and embryo implantation, as well as the underlying molecular mechanisms.
Collapse
Affiliation(s)
- Davoud Jafari-Gharabaghlou
- Student Research Committee, Tabriz University of Medical Sciences, Tabriz, Iran
- Department of Clinical Biochemistry and Laboratory Medicine, Faculty of Medicine, Tabriz University of Medical Sciences, Tabriz, Iran
| | - Mostafa Vaghari-Tabari
- Department of Clinical Biochemistry and Laboratory Medicine, Faculty of Medicine, Tabriz University of Medical Sciences, Tabriz, Iran
| | - Hajar Oghbaei
- Department of Physiology, Tabriz University of Medical Sciences, Tabriz, Iran
| | - Laura Lotz
- Department of Obstetrics and Gynecology, Erlangen University Hospital, Friedrich-Alexander University of Erlangen–Nürnberg, Erlangen, Germany
| | - Reza Zarezadeh
- Department of Clinical Biochemistry and Laboratory Medicine, Faculty of Medicine, Tabriz University of Medical Sciences, Tabriz, Iran
| | - Yeganeh Rastgar Rezaei
- Department of Medical Biotechnology, Faculty of Advanced Medical Sciences, Tabriz University of Medical Sciences, Tabriz, Iran
| | - Mahnaz Ranjkesh
- Medical Radiation Science Research Group (MRSRG), Tabriz University of Medical Sciences, Tabriz, Iran
| | - Mohammad Nouri
- Department of Clinical Biochemistry and Laboratory Medicine, Faculty of Medicine, Tabriz University of Medical Sciences, Tabriz, Iran
- Department of Reproductive Biology, Faculty of Advanced Medical Sciences, Tabriz University of Medical Sciences, Tabriz, Iran
| | - Amir Fattahi
- Department of Obstetrics and Gynecology, Erlangen University Hospital, Friedrich-Alexander University of Erlangen–Nürnberg, Erlangen, Germany
- Stem Cell Research Center, Tabriz University of Medical Sciences, Tabriz, Iran
- Correspondence should be addressed to A Fattahi or S Nikanfar: or
| | - Saba Nikanfar
- Department of Clinical Biochemistry and Laboratory Medicine, Faculty of Medicine, Tabriz University of Medical Sciences, Tabriz, Iran
- Correspondence should be addressed to A Fattahi or S Nikanfar: or
| | - Ralf Dittrich
- Department of Obstetrics and Gynecology, Erlangen University Hospital, Friedrich-Alexander University of Erlangen–Nürnberg, Erlangen, Germany
| |
Collapse
|
6
|
Liu M, Shan M, Zhang Y, Guo Z. Progranulin Protects Against Airway Remodeling Through the Modulation of Autophagy via HMGB1 Suppression in House Dust Mite-Induced Chronic Asthma. J Inflamm Res 2021; 14:3891-3904. [PMID: 34408470 PMCID: PMC8367219 DOI: 10.2147/jir.s322724] [Citation(s) in RCA: 11] [Impact Index Per Article: 2.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/03/2021] [Accepted: 07/23/2021] [Indexed: 12/17/2022] Open
Abstract
Purpose Airway remodeling is an important feature of chronic asthma, and yet there are few effective therapeutic strategies. Progranulin (PGRN) has been shown to have lung protective functions, but the role of PGRN in asthmatic airway remodeling is unclear. We aim to explore the protective potential of PGRN on house dust mite (HDM)-induced airway remodeling and the underlying mechanisms. Methods In this study, a murine model of chronic asthma was established by HDM sensitization and challenge. Recombinant PGRN was intranasally administrated to mice during the phase of HDM challenge. TGF-β1-treated human airway epithelial BEAS-2B cells were utilized to explore the effect of PGRN on airway epithelia exposed to profibrotic conditions and molecular mechanisms. Results We found that PGRN treatment attenuated HDM-induced airway remodeling, as evidenced by the suppression of collagen accumulation, mucus overproduction and airway smooth muscle synthesis in HDM-challenged asthmatic mice lungs. Meanwhile, PGRN also reversed the increased levels of autophagy markers and autophagosomes in airway epithelia under mimic asthmatic conditions, thereby controlling the fibrotic process in vivo and in vitro. Specifically, overexpressed HMGB1 and the subsequent RAGE/MAPKs signaling activation due to HDM exposure were abrogated in PGRN-treated asthmatic mice. Furthermore, knockdown of HMGB1 expression significantly restrained the fibrosis formation in TGF-β1-induced airway epithelia accompanied by the downregulation of autophagic activity. However, enhancement of extracellular HMGB1 levels blunted the inhibition of autophagic flux by PGRN in airway epithelia, thereby resulting in the augmentation of collagen synthesis and fibrosis. Conclusion Taken together, our data revealed that PGRN protected against asthmatic airway remodeling by negatively regulating autophagy via HMGB1 suppression, which might provide new insights into the therapeutic options for HDM-induced chronic asthma.
Collapse
Affiliation(s)
- Meixuan Liu
- Department of Respiratory Medicine, Shanghai East Hospital, School of Medicine, Tongji University, Shanghai, 200123, People's Republic of China.,Department of Respiratory Medicine, Shanghai East Clinical Medical College, Nanjing Medical University, Shanghai, 200123, People's Republic of China
| | - Mengtian Shan
- Department of Respiratory Medicine, Shanghai East Hospital, School of Medicine, Tongji University, Shanghai, 200123, People's Republic of China
| | - Yunxuan Zhang
- Department of Pharmacy, Huadong Hospital, Fudan University, Shanghai, 200040, People's Republic of China
| | - Zhongliang Guo
- Department of Respiratory Medicine, Shanghai East Hospital, School of Medicine, Tongji University, Shanghai, 200123, People's Republic of China.,Department of Respiratory Medicine, Shanghai East Clinical Medical College, Nanjing Medical University, Shanghai, 200123, People's Republic of China
| |
Collapse
|
7
|
Fang W, Zhou T, Shi H, Yao M, Zhang D, Qian H, Zeng Q, Wang Y, Jin F, Chai C, Chen T. Progranulin induces immune escape in breast cancer via up-regulating PD-L1 expression on tumor-associated macrophages (TAMs) and promoting CD8 + T cell exclusion. JOURNAL OF EXPERIMENTAL & CLINICAL CANCER RESEARCH : CR 2021; 40:4. [PMID: 33390170 PMCID: PMC7780622 DOI: 10.1186/s13046-020-01786-6] [Citation(s) in RCA: 129] [Impact Index Per Article: 32.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 09/16/2020] [Accepted: 11/23/2020] [Indexed: 02/07/2023]
Abstract
Background Progranulin (PGRN), as a multifunctional growth factor, is overexpressed in multiple tumors, but the role of PGRN on tumor immunity is still unclear. Here, we studied the effect of PGRN on breast cancer tumor immunity and its possible molecular mechanism. Methods The changes of macrophage phenotypes after PGRN treatment were detected by western blot, quantitative polymerase chain reaction (PCR) and flow cytometry. Western blot was used to study the signal molecular mechanism of PGRN regulating this process. The number and localization of immune cells in Wild-type (WT) and PGRN−/− breast cancer tissues were analyzed by immunohistochemical staining and immunofluorescence techniques. The activation and proliferation of CD8+ T cells were measured by flow cytometry. Results After being treated with PGRN, the expressions of M2 markers and programmed death ligand 1 (PD-L1) on macrophages increased significantly. Signal transducer and activator of transcription 3 (STAT3) signaling pathway inhibitor Stattic significantly inhibited the expression of PD-L1 and M2 related markers induced by PGRN. In WT group, CD8 were co-localized with macrophages and PD-L1, but not tumor cells. The number of immune cells in PGRN−/− breast cancer tissue increased, and their infiltration into tumor parenchyma was also enhanced. Moreover, in the co-culture system, WT peritoneal macrophages not only reduced the ratio of activated CD8+ T cells but also reduced the proportion of proliferating CD8+ T cells. The addition of programmed death receptor 1 (PD-1) and PD-L1 neutralizing antibodies effectively reversed this effect and restored the immune function of CD8+ T cells. Conclusion These results demonstrate that PGRN promotes M2 polarization and PD-L1 expression by activating the STAT3 signaling pathway. Furthermore, through PD-1/PD-L1 interaction, PGRN can promote the breast tumor immune escape. Our research may provide new ideas and targets for clinical breast cancer immunotherapy. Supplementary Information The online version contains supplementary material available at 10.1186/s13046-020-01786-6.
Collapse
Affiliation(s)
- Wenli Fang
- Key Laboratory of Clinical Laboratory Diagnostics (Ministry of Education), College of Laboratory Medicine, Chongqing Medical University, Chongqing, 400016, People's Republic of China
| | - Ting Zhou
- Key Laboratory of Clinical Laboratory Diagnostics (Ministry of Education), College of Laboratory Medicine, Chongqing Medical University, Chongqing, 400016, People's Republic of China
| | - He Shi
- Key Laboratory of Clinical Laboratory Diagnostics (Ministry of Education), College of Laboratory Medicine, Chongqing Medical University, Chongqing, 400016, People's Republic of China
| | - Mengli Yao
- Key Laboratory of Clinical Laboratory Diagnostics (Ministry of Education), College of Laboratory Medicine, Chongqing Medical University, Chongqing, 400016, People's Republic of China
| | - Dian Zhang
- Key Laboratory of Clinical Laboratory Diagnostics (Ministry of Education), College of Laboratory Medicine, Chongqing Medical University, Chongqing, 400016, People's Republic of China
| | - Husun Qian
- Key Laboratory of Clinical Laboratory Diagnostics (Ministry of Education), College of Laboratory Medicine, Chongqing Medical University, Chongqing, 400016, People's Republic of China
| | - Qian Zeng
- Key Laboratory of Clinical Laboratory Diagnostics (Ministry of Education), College of Laboratory Medicine, Chongqing Medical University, Chongqing, 400016, People's Republic of China
| | - Yange Wang
- Key Laboratory of Clinical Laboratory Diagnostics (Ministry of Education), College of Laboratory Medicine, Chongqing Medical University, Chongqing, 400016, People's Republic of China
| | - Fangfang Jin
- Key Laboratory of Clinical Laboratory Diagnostics (Ministry of Education), College of Laboratory Medicine, Chongqing Medical University, Chongqing, 400016, People's Republic of China
| | - Chengsen Chai
- Key Laboratory of Clinical Laboratory Diagnostics (Ministry of Education), College of Laboratory Medicine, Chongqing Medical University, Chongqing, 400016, People's Republic of China
| | - Tingmei Chen
- Key Laboratory of Clinical Laboratory Diagnostics (Ministry of Education), College of Laboratory Medicine, Chongqing Medical University, Chongqing, 400016, People's Republic of China.
| |
Collapse
|
8
|
Folding of Truncated Granulin Peptides. Biomolecules 2020; 10:biom10081152. [PMID: 32781704 PMCID: PMC7463432 DOI: 10.3390/biom10081152] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/26/2020] [Revised: 08/01/2020] [Accepted: 08/04/2020] [Indexed: 12/01/2022] Open
Abstract
Granulins are a family of unique protein growth factors which are found in a range of species and have several bioactivities that include cell proliferation and wound healing. They typically contain six disulfide bonds, but the sequences, structures and bioactivities vary significantly. We have previously shown that an N-terminally truncated version of a granulin from the human liver fluke, Opisthorchis viverrini, can fold independently into a “mini-granulin” structure and has potent wound healing properties in vivo. The incorporation of a non-native third disulfide bond, with respect to the full-length granulin module, was critical for the formation of regular secondary structure in the liver fluke derived peptide. By contrast, this third disulfide bond is not required for a carp granulin-1 truncated peptide to fold independently. This distinction led us to explore granulins from the zebrafish model organism. Here we show that the mini-granulin fold occurs in a naturally occurring paragranulin (half-domain) from zebrafish, and is also present in a truncated form of a full-length zebrafish granulin, suggesting this structure might be a common property in either naturally occurring or engineered N-terminally truncated granulins and the carp granulin-1 folding is an anomaly. The in vitro folding yield is significantly higher in the naturally occurring paragranulin, but only the truncated zebrafish granulin peptide promoted the proliferation of fibroblasts consistent with a growth factor function, and therefore the function of the paragranulin remains unknown. These findings provide insight into the folding and evolution of granulin domains and might be useful in the elucidation of the structural features important for bioactivity to aid the design of more potent and stable analogues for the development of novel wound healing agents.
Collapse
|