1
|
Unresectable bulky chest wall recurrent breast cancer controlled with CT-guided interstitial high-dose-rate brachytherapy and external beam radiotherapy with adjuvant hormonal therapy - case report. J Contemp Brachytherapy 2021; 13:451-457. [PMID: 34484361 PMCID: PMC8407259 DOI: 10.5114/jcb.2021.108600] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/27/2021] [Accepted: 04/30/2021] [Indexed: 11/19/2022] Open
Abstract
Purpose Bulky chest wall recurrence after mastectomy presents a therapeutic challenge because of high-dose of radiation required to control the disease, and its proximity to low-tolerance organs at risk. We report a case of successful computed tomography (CT)-guided high-dose-rate (HDR) salvage interstitial brachytherapy (ISBT) boost. Material and methods A 70-year-old female initially presented with a tumor in right breast, and was treated with mastectomy and adjuvant chemotherapy, followed by hormonal therapy for 5 years without adjuvant radiotherapy. In 2018, 20 years after the initial treatment, she developed unresectable chest wall recurrence that measured 10.5 cm × 7.3 cm × 4.5 cm, with bone and parietal pleura invasion. Biopsy revealed invasive pleomorphic lobular carcinoma [estrogen receptor (ER)-positive, progesterone receptor (PR)-negative, HER2-negative]. There was no evidence of metastatic disease. Results The patient underwent external beam radiotherapy (EBRT) plus ISBT. After EBRT of 50 Gy in 25 fractions was completed, CT-guided ISBT was performed as an outpatient treatment. HDR dose was 16 Gy delivered in 2 fractions with 2 implants. Dose was prescribed to gross tumor volume. ISBT plans were created using inverse planning simulated annealing (IPSA) algorithm. Gross tumor volume D90% plus EBRT dose was 82 Gy equivalent dose of 2 Gy (EQD2), assuming α/β of 4 for breast carcinoma. The patient continued on hormonal therapy. At the 30-month follow-up, the patient remains in remission. The tumor could not be detected by magnetic resonance imaging (MRI) or positron emission tomography (PET). There were no severe treatment-related complications. Conclusions CT-guided HDR ISBT boost can be a useful modality in individualizing treatment strategies for breast cancer patients with unresectable bulky chest wall recurrence.
Collapse
|
2
|
Yook S, Cai Z, Jeong JJ, Lu Y, Winnik MA, Pignol JP, Reilly RM. Dual-Receptor-Targeted (DRT) Radiation Nanomedicine Labeled with 177Lu Is More Potent for Killing Human Breast Cancer Cells That Coexpress HER2 and EGFR Than Single-Receptor-Targeted (SRT) Radiation Nanomedicines. Mol Pharm 2020; 17:1226-1236. [PMID: 32022567 DOI: 10.1021/acs.molpharmaceut.9b01259] [Citation(s) in RCA: 11] [Impact Index Per Article: 2.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/17/2023]
Abstract
Resistance to HER2-targeted therapies in breast cancer (BC) is associated in some cases with an increased expression of epidermal growth factor receptors (EGFR). We describe a dual-receptor-targeted (DRT) radiation nanomedicine for local intratumoral (i.t.) treatment of BC composed of 15 nm sized gold nanoparticles (AuNPs) modified with trastuzumab (TmAb) to target HER2 and panitumumab (PmAb) to target EGFR. The AuNPs were modified with poly(ethylene glycol) (PEG3k) linked to 1,4,7,10-tetraazacyclododecane-1,4,7,10-tetraacetic acid (DOTA) chelators to complex the β-particle emitter, 177Lu. Our aim was to compare the properties of these DRT-AuNP-177Lu with single-receptor-targeted (SRT)-TmAb-AuNP-177Lu or PmAb-AuNP-177Lu or nontargeted (NT)-AuNP-177Lu using human BC cells that expressed HER2, EGFR, or both receptors. To construct these radiation nanomedicines, PEG5K was linked to TmAb or PmAb, while PEG3k was linked to DOTA. These polymers were conjugated to AuNP via two Au-thiol bonds using a terminal lipoic acid (LA) group on the polymers. NT-AuNP-177Lu were constructed without modification with TmAb or PmAb. MDA-MB-231-H2N, MDA-MB-468, and BT-474 human BC cells were designated as HER2mod/EGFRmod, EGFRhigh/HER2neg, and HER2high/EGFRlow, respectively, based on the expression of these receptors. Specific binding to HER2 and/or EGFR was assessed by incubating BC cells with DRT-AuNP-177Lu or TmAb-AuNP-177Lu or PmAb-AuNP-177Lu, or NT-AuNP-177Lu in the absence or presence of an excess of TmAb or PmAb or both competitors. Binding and internalization of AuNP by BC cells were assessed by dark-field microscopy. Cell fractionation studies were conducted to quantify AuNP-177Lu bound and internalized. The cytotoxicity of DRT-AuNP-177Lu was determined in clonogenic survival (CS) assays after an exposure of 5 × 105 BC cells to 3 MBq (1.4 × 1012 AuNP) for 16 h and then seeding and culturing the cells for 7-15 days. CS was compared to exposure to TmAb-AuNP-177Lu and PmAb-AuNP-177Lu or NT-AuNP-177Lu. The absorbed doses to the nucleus in these CS assays were estimated. DRT-AuNP-177Lu were specifically bound by BC cells that expressed HER2 or EGFR or both receptors. In contrast, SRT-TmAb-AuNP-177Lu and PmAb-AuNP-177Lu were bound and internalized only by BC cells that expressed HER2 or EGFR, respectively. NT-AuNP-177Lu exhibited very low binding to BC cells. DRT-AuNP-177Lu and SRT-TmAb-AuNP-177Lu or PmAb-AuNP-177Lu were internalized by BC cells in accordance with the receptor expression. Importantly, DRT-AuNP-177Lu were more potent in vitro than PmAb-AuNP-177Lu for killing MDA-MB-231-H2N cells that coexpress HER2 and EGFR (CS = 18.8 ± 1.0 vs 51.5 ± 10.4%; P = 0.006). Furthermore, DRT-AuNP-177Lu were more potent for killing BT-474 cells with high HER2 but low EGFR expression than TmAb-AuNP-177Lu (CS = 8.9 ± 3.3 vs 20.7 ± 2.4%; P = 0.007) or PmAb-AuNP-177Lu (CS = 63.9 ± 1.7%; P < 0.0001). Even for MDA-MB-468 cells that overexpress EGFR but have negligible HER2, DRT-AuNP-177Lu were more potent for cell killing than PmAb-AuNP-177Lu (CS = 3.2 ± 3.0 vs 7.5 ± 1.8%; P = 0.001) or TmAb-AuNP-177Lu (63.2 ± 3.2%; P = 0.0002). All targeted forms of AuNP-177Lu were more cytotoxic to BC cells than those of NT-AuNP-177Lu. High absorbed doses (36-119 Gy) were deposited in the nucleus of BC cells by DRT-AuNP-177Lu. We conclude that a DRT radiation nanomedicine is more potent for killing BC cells that coexpress HER2 and EGFR than SRT radiation nanomedicines. These results are promising for further evaluation of these DRT-AuNP-177Lu in vivo for the local radiation treatment of human BC tumors that coexpress HER2 and EGFR in mice following i.t. injection, especially tumors that are resistant to HER2-targeted therapies.
Collapse
Affiliation(s)
- Simmyung Yook
- Department of Pharmaceutical Sciences, University of Toronto, Toronto, ON M5S 3M2, Canada.,College of Pharmacy, Keimyung University, Daegu 42601, South Korea
| | - Zhongli Cai
- Department of Pharmaceutical Sciences, University of Toronto, Toronto, ON M5S 3M2, Canada
| | - Jenny Jooyoung Jeong
- Department of Pharmaceutical Sciences, University of Toronto, Toronto, ON M5S 3M2, Canada
| | - Yijie Lu
- Department of Chemistry, University of Toronto, Toronto, ON M5S 3H6, Canada
| | - Mitchell A Winnik
- Department of Chemistry, University of Toronto, Toronto, ON M5S 3H6, Canada.,Department of Chemical Engineering and Applied Chemistry, University of Toronto, Toronto, ON M5S 3E5, Canada
| | - Jean-Philippe Pignol
- Department of Radiation Oncology, Dalhousie University, Halifax, NS B3H 4R2, Canada
| | - Raymond M Reilly
- Department of Pharmaceutical Sciences, University of Toronto, Toronto, ON M5S 3M2, Canada.,Joint Department of Medical Imaging, University Health Network, Toronto, ON 5MG 2C4, Canada.,Department of Medical Imaging, University of Toronto, Toronto, ON M5T 1W7, Canada
| |
Collapse
|