1
|
Barchiki F, Fracaro L, Dominguez AC, Senegaglia AC, Vaz IM, Soares P, de Moura SAB, Brofman PRS. Biocompatibility of ABS and PLA Polymers with Dental Pulp Stem Cells Enhance Their Potential Biomedical Applications. Polymers (Basel) 2023; 15:4629. [PMID: 38139880 PMCID: PMC10747830 DOI: 10.3390/polym15244629] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/30/2023] [Revised: 11/20/2023] [Accepted: 11/21/2023] [Indexed: 12/24/2023] Open
Abstract
Polylactic Acid (PLA) and Acrylonitrile-Butadiene-Styrene (ABS) are commonly used polymers in 3D printing for biomedical applications. Dental Pulp Stem Cells (DPSCs) are an accessible and proliferative source of stem cells with significant differentiation potential. Limited knowledge exists regarding the biocompatibility and genetic safety of ABS and PLA when in contact with DPSCs. This study aimed to investigate the impact of PLA and ABS on the adhesion, proliferation, osteogenic differentiation, genetic stability, proteomics, and immunophenotypic profile of DPSCs. A total of three groups, 1- DPSC-control, 2- DPSC+ABS, and 3- DPSC+PLA, were used in in vitro experiments to evaluate cell morphology, proliferation, differentiation capabilities, genetic stability, proteomics (secretome), and immunophenotypic profiles regarding the interaction between DPSCs and polymers. Both ABS and PLA supported the adhesion and proliferation of DPSCs without exhibiting significant cytotoxic effects and maintaining the capacity for osteogenic differentiation. Genetic stability, proteomics, and immunophenotypic profiles were unaltered in DPSCs post-contact with these polymers, highlighting their biosafety. Our findings suggest that ABS and PLA are biocompatible with DPSCs and demonstrate potential in dental or orthopedic applications; the choice of the polymer will depend on the properties required in treatment. These promising results stimulate further studies to explore the potential therapeutic applications in vivo using prototyped polymers in personalized medicine.
Collapse
Affiliation(s)
- Fabiane Barchiki
- Core for Cell Technology, School of Medicine, Pontifícia Universidade Católica do Paraná (PUCPR), Curitiba 80215-901, Brazil; (L.F.); (A.C.S.); (I.M.V.); (P.R.S.B.)
- INCT—REGENERA National Institute of Science and Technology in Regenerative Medicine, Rio de Janeiro 21941-902, Brazil
| | - Letícia Fracaro
- Core for Cell Technology, School of Medicine, Pontifícia Universidade Católica do Paraná (PUCPR), Curitiba 80215-901, Brazil; (L.F.); (A.C.S.); (I.M.V.); (P.R.S.B.)
- INCT—REGENERA National Institute of Science and Technology in Regenerative Medicine, Rio de Janeiro 21941-902, Brazil
| | - Alejandro Correa Dominguez
- Laboratory of Basic Biology of Stem Cells, Carlos Chagas Institute, Fiocruz-PR, Curitiba 81350-010, Brazil;
| | - Alexandra Cristina Senegaglia
- Core for Cell Technology, School of Medicine, Pontifícia Universidade Católica do Paraná (PUCPR), Curitiba 80215-901, Brazil; (L.F.); (A.C.S.); (I.M.V.); (P.R.S.B.)
- INCT—REGENERA National Institute of Science and Technology in Regenerative Medicine, Rio de Janeiro 21941-902, Brazil
| | - Isadora May Vaz
- Core for Cell Technology, School of Medicine, Pontifícia Universidade Católica do Paraná (PUCPR), Curitiba 80215-901, Brazil; (L.F.); (A.C.S.); (I.M.V.); (P.R.S.B.)
- INCT—REGENERA National Institute of Science and Technology in Regenerative Medicine, Rio de Janeiro 21941-902, Brazil
| | - Paulo Soares
- LaBES—Laboratory of Biomaterials and Surface Engineering, Polytechnic School, Pontifícia Universidade Católica do Paraná (PUCPR), Curitiba 80215-901, Brazil;
| | - Sérgio Adriane Bezerra de Moura
- Departament of Morphology, Campus Universitário Lagoa Nova, Universidade Federal do Rio Grande do Norte (UFRN), Natal 59072-970, Brazil;
| | - Paulo Roberto Slud Brofman
- Core for Cell Technology, School of Medicine, Pontifícia Universidade Católica do Paraná (PUCPR), Curitiba 80215-901, Brazil; (L.F.); (A.C.S.); (I.M.V.); (P.R.S.B.)
- INCT—REGENERA National Institute of Science and Technology in Regenerative Medicine, Rio de Janeiro 21941-902, Brazil
| |
Collapse
|
2
|
Mazlan MA, Anas MA, Nor Izmin NA, Abdullah AH. Effects of Infill Density, Wall Perimeter and Layer Height in Fabricating 3D Printing Products. MATERIALS (BASEL, SWITZERLAND) 2023; 16:695. [PMID: 36676432 PMCID: PMC9867140 DOI: 10.3390/ma16020695] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Subscribe] [Scholar Register] [Received: 12/09/2022] [Revised: 01/03/2023] [Accepted: 01/05/2023] [Indexed: 06/17/2023]
Abstract
Three-dimensional printing is widely used in many fields, including engineering, architecture and even medical purposes. The focus of the study is to obtain the ideal weight-to-performance ratio for making a 3D-printed part. The end products of the 3D-printed part are hugely affected by not only the material but also the printing parameters. The printing parameters to be highlighted for this study are the infill density, wall perimeter and layer height, which are the commonly adjusted parameters in 3D printing. The study will be divided into two parts, the simulation analysis and the experimental analysis, to confirm both results toward the trend of Young's modulus for the material. It will then be analyzed and discussed toward any differences between the two results. The results showed that increasing the value of all three parameters will increase the tensile elasticity of the part.
Collapse
Affiliation(s)
- Mohammad Azeeb Mazlan
- College of Engineering, School of Mechanical Engineering, Universiti Teknologi MARA, Shah Alam 40450, Selangor, Malaysia
| | - Mohamad Azizi Anas
- College of Engineering, School of Mechanical Engineering, Universiti Teknologi MARA, Shah Alam 40450, Selangor, Malaysia
| | - Nor Aiman Nor Izmin
- Interdisciplinary Graduate School of Engineering Sciences, Kyushu University, Fukuoka 816-8580, Japan
| | - Abdul Halim Abdullah
- Biomechanical & Clinical Engineering (BioMeC) Research Group, College of Engineering, Universiti Teknologi MARA, Shah Alam 40450, Selangor, Malaysia
| |
Collapse
|
3
|
Personalized Superficial HDR Brachytherapy—Dosimetric Verification of Dose Distribution with Lead Shielding of Critical Organs in the Head and Neck Region. J Pers Med 2022; 12:jpm12091432. [PMID: 36143217 PMCID: PMC9504935 DOI: 10.3390/jpm12091432] [Citation(s) in RCA: 4] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/15/2022] [Revised: 08/27/2022] [Accepted: 08/30/2022] [Indexed: 11/21/2022] Open
Abstract
Background: Surface brachytherapy, usually characterized by a high dose gradient, allows the dose to be precisely deposited in the irradiated area while protecting critical organs. When the lesion is located in the nasal or ocular region, the organ of vision must be protected. The aim of this study was to verify the dose distributions near critical organs in the head and neck region during a brachytherapy procedure using lead shielding of the eye. Methods: Anthropomorphic phantom using 3D-printing technology was prepared. The doses deposited at a point in the lens of the eye and on the surface of the eyelid, directly under the lead shield were calculated and measured using EBT3 radiochromic films. Comparison of doses planned in the treatment planning system using the TG-43 formalism, TG-186 formalism, and measured were also performed. Results: Comparing the planned and calculated doses with TG186 formalism it can be assumed that the use of lead shields is a method for protecting the organ of vision from the adverse effects of ionizing radiation. Conclusions: The decision to use a lead shield during facial surface brachytherapy procedures should be made on a patient-by-patient basis and based on model-based calculation methods recommended by TG186.
Collapse
|
4
|
Brancewicz-Steinmetz E, Sawicki J. Bonding and Strengthening the PLA Biopolymer in Multi-Material Additive Manufacturing. MATERIALS (BASEL, SWITZERLAND) 2022; 15:ma15165563. [PMID: 36013700 PMCID: PMC9416234 DOI: 10.3390/ma15165563] [Citation(s) in RCA: 4] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Received: 07/21/2022] [Revised: 08/05/2022] [Accepted: 08/11/2022] [Indexed: 06/01/2023]
Abstract
3D printing is a revolutionary additive manufacturing method that enables rapid prototyping and design flexibility. A variety of thermoplastic polymers can be used in printing. As it is necessary to reduce the consumption of petrochemical resources, alternative solutions are being researched, and the interest in using bioplastics and biocomposites is constantly growing. Often, however, the properties of biopolymers are insufficient and need to be improved to compete with petroleum-based plastics. The paper aims to analyze the available information on elements produced from more than one material, with additive manufacturing resulting from 3D printing using biopolymer Polylactic Acid (PLA). The study notes the possibility of modifying and improving the properties of PLA using layered printing or by modifying PLA filaments. Several modifications improving and changing the properties of PLA were also noted, including printing parameters when combined with other materials: process temperatures, filling, and surface development for various sample geometries.
Collapse
|
5
|
Biele¸da G, Marach A, Boehlke M, Zwierzchowski G, Malicki J. 3D-printed surface applicators for brachytherapy: a phantom study. J Contemp Brachytherapy 2021; 13:549-562. [PMID: 34759980 PMCID: PMC8565625 DOI: 10.5114/jcb.2021.110304] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/10/2021] [Accepted: 08/03/2021] [Indexed: 12/02/2022] Open
Abstract
PURPOSE Brachytherapy is a great alternative for restrictive surgical procedures in facial cancers. Moreover, dose distribution is more beneficial compared with teleradiotherapy during treatment of lesions located on anatomical curves. However, repetitiveness of application is the main issue associated with using commercial applicators. The risk of its displacement is very unfavorable due to large dose gradients in brachytherapy. The aim of this study was to develop a process of preparation of applicators using 3D printing technology. MATERIAL AND METHODS In planning system, circular volumes near the nose, eye, and ear were determined on transverse layers of an anthropomorphic phantom. Next, boluses with a thickness of 5 mm and 10 mm were designed for each of the layers. Channels in the 10 mm bolus were designed in such a way to place the catheters into the layers. Prepared applicators were printed using polylactic acid (PLA) filament. Plans to irradiate the films for their calibration and plans for treatment prepared in the treatment planning system were conducted. A special phantom was created to calibrate the radiochromic films. Dose distribution around the designed applicators was measured in an anthropomorphic phantom using films within the layers of phantom. Comparison of doses was performed with two-dimensional gamma analysis using OmniPro I'mRT software. RESULTS The obtained results confirmed compliance of the planned and measured doses in 92%; the analysis of gamma parameter showed 1%/1 mm for acceptability level of 95%. Moreover, the initial dosimetric analysis for gamma criteria with 2%/2 mm showed compliance at 99%. CONCLUSIONS The results of the present study confirm potential clinical usefulness of the applicators obtained with the use of 3D printing for brachytherapy.
Collapse
Affiliation(s)
- Grzegorz Biele¸da
- Electroradiology Department, Poznan University of Medical Sciences, Poznan´, Poland
- Medical Physics Department, Greater Poland Cancer Centre, Poznan´, Poland
| | - Anna Marach
- Medical Physics Department, Greater Poland Cancer Centre, Poznan´, Poland
| | - Marek Boehlke
- Medical Physics Department, West Pomeranian Oncology Center, Strzałowska, Szczecin, Poland
| | - Grzegorz Zwierzchowski
- Electroradiology Department, Poznan University of Medical Sciences, Poznan´, Poland
- Medical Physics Department, Greater Poland Cancer Centre, Poznan´, Poland
| | - Julian Malicki
- Electroradiology Department, Poznan University of Medical Sciences, Poznan´, Poland
- Medical Physics Department, Greater Poland Cancer Centre, Poznan´, Poland
| |
Collapse
|