Wang Q, Zhang J, Li F, Chen X, Xu B. The utility of magnetic resonance spectroscopy in frame-less stereotactic needle biopsy of glioma.
J Clin Neurosci 2021;
88:102-107. [PMID:
33992167 DOI:
10.1016/j.jocn.2021.03.005]
[Citation(s) in RCA: 3] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/21/2020] [Accepted: 03/08/2021] [Indexed: 11/26/2022]
Abstract
OBJECTIVE
Proton magnetic resonance spectroscopy (1H-MRS) can benefit the differentiation of gliomas preoperative grading and facilitate guiding biopsy. This study was to investigate the optimal metabolite or metabolic ratios of MRS for the biopsy target delineating by using the technique of MRS imaging guided frame-less stereotactic biopsy.
METHODS
During a 4 year period between the Sep 2012 and Oct 2016, 57 patients (25 women, 32 men; mean age, 46.4) with histologic diagnosis of glioma, who underwent the 1H-MRS imaging guided frameless stereotactic biopsy, were retrospectively reviewed. The metabolite or metabolic ratios values of MRS was measured. And the sensitivity, specificity, accuracy as well as the area under the curve (AUC) of those parameters for glioma grading are calculated based on the receiver operating characteristic curve (ROC) analysis.
RESULTS
65 stereotactic biopsy samples from 57 patients were histopathologically clarified to HGGs (25) or LGGs (40) for quantitative analysis. The Cho, Cho/NAA and Cho/Cr values of LGGs group were significantly lower than that of HGGs (P = 0.09, 0.001, 0.003), and the NAA value of LGGs group was significantly higher than that of HGGs (P = 0.001). The cutoff value of 3.65 for the Cho/NAA ratio provided the best combination of sensitivity (92.0%), specificity (95.0%), and diagnostic accuracy (93.8%) for identifying glioma grade, which was superior to other parameters.
CONCLUSION
The results of our study provided evidence that Cho/NAA ratio had the superior diagnostic performance in distinguishing glioma grade, indicating that the spot of highest Cho/NAA ratio was optimal metabolic targets for spectroscopic guided tissue sampling in homogenous glioma.
Collapse