1
|
Ou YC, Huang CC, Kao YL, Ho PC, Tsai KJ. Stem Cell Therapy in Spinal Cord Injury-Induced Neurogenic Lower Urinary Tract Dysfunction. Stem Cell Rev Rep 2023; 19:1691-1708. [PMID: 37115409 DOI: 10.1007/s12015-023-10547-9] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Accepted: 04/14/2023] [Indexed: 04/29/2023]
Abstract
Spinal cord injury (SCI) is a devastating condition that enormously affects an individual's health and quality of life. Neurogenic lower urinary tract dysfunction (NLUTD) is one of the most important sequelae induced by SCI, causing complications including urinary tract infection, renal function deterioration, urinary incontinence, and voiding dysfunction. Current therapeutic methods for SCI-induced NLUTD mainly target on the urinary bladder, but the outcomes are still far from satisfactory. Stem cell therapy has gained increasing attention for years for its ability to rescue the injured spinal cord directly. Stem cell differentiation and their paracrine effects, including exosomes, are the proposed mechanisms to enhance the recovery from SCI. Several animal studies have demonstrated improvement in bladder function using mesenchymal stem cells (MSCs) and neural stem cells (NSCs). Human clinical trials also provide promising results in urodynamic parameters after MSC therapy. However, there is still uncertainty about the ideal treatment window and application protocol for stem cell therapy. Besides, data on the therapeutic effects regarding NSCs and stem cell-derived exosomes in SCI-related NLUTD are scarce. Therefore, there is a pressing need for further well-designed human clinical trials to translate the stem cell therapy into a formal therapeutic option for SCI-induced NLUTD.
Collapse
Affiliation(s)
- Yin-Chien Ou
- Institute of Clinical Medicine, College of Medicine, National Cheng Kung University, No. 1, University Road, Tainan, 701, Taiwan
- Department of Urology, National Cheng Kung University Hospital, College of Medicine, National Cheng Kung University, Tainan, Taiwan
| | - Chi-Chen Huang
- Institute of Clinical Medicine, College of Medicine, National Cheng Kung University, No. 1, University Road, Tainan, 701, Taiwan
- Section of Neurosurgery, Department of Surgery, National Cheng Kung University Hospital, College of Medicine, National Cheng Kung University, Tainan, Taiwan
| | - Yao-Lin Kao
- Department of Urology, National Cheng Kung University Hospital, College of Medicine, National Cheng Kung University, Tainan, Taiwan
| | - Pei-Chuan Ho
- Institute of Clinical Medicine, College of Medicine, National Cheng Kung University, No. 1, University Road, Tainan, 701, Taiwan
| | - Kuen-Jer Tsai
- Institute of Clinical Medicine, College of Medicine, National Cheng Kung University, No. 1, University Road, Tainan, 701, Taiwan.
- Research Center of Clinical Medicine, National Cheng Kung University Hospital , College of Medicine, National Cheng Kung University, Tainan, Taiwan.
| |
Collapse
|
2
|
Liang CC, Shaw SWS, Ko YS, Huang YH, Lee TH. Effect of amniotic fluid stem cell transplantation on the recovery of bladder dysfunction in spinal cord-injured rats. Sci Rep 2020; 10:10030. [PMID: 32572272 PMCID: PMC7308393 DOI: 10.1038/s41598-020-67163-7] [Citation(s) in RCA: 4] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/01/2019] [Accepted: 05/20/2020] [Indexed: 12/22/2022] Open
Abstract
The effects of human amniotic fluid stem cell (hAFSC) transplantation on bladder function and molecular changes in spinal cord-injured (SCI) rats were investigated. Four groups were studied: sham and SCI plus phosphate-buffered saline (SCI + PBS), human embryonic kidney 293 (HEK293) cells, and hAFSCs transplantation. In SCI + PBS rat bladders, cystometry showed increased peak voiding pressure, voiding volume, bladder capacity, residual volume, and number of non-voiding contractions, and the total elastin/collagen amount was increased but collagen concentration was decreased at days 7 and 28. Immunoreactivity and mRNA levels of IGF-1, TGF-β1, and β3-adrenoceptor were increased at days 7 and/or 28. M2 immunoreactivity and M3 mRNA levels of muscarinic receptor were increased at day 7. M2 immunoreactivity was increased, but M2/M3 mRNA and M3 immunoreactivity levels were decreased at day 28. Brain derived-neurotrophic factor mRNA was increased, but immunoreactivity was decreased at day 7. HEK293 cell transplantation caused no difference compared to SCI + PBS group. hAFSCs co-localized with neural cell markers and expressed BDNF, TGF-β1, GFAP, and IL-6. The present results showed that SCI bladders released IGF-1 and TGF-β1 to stimulate elastin and collagen for bladder wall remodelling, and hAFSC transplantation improved these changes, which involved the mechanisms of BDNF, muscarinic receptors, and β3-adrenoceptor expression.
Collapse
Affiliation(s)
- Ching-Chung Liang
- Female Urology Section, Department of Obstetrics and Gynecology, Chang Gung Memorial Hospital Linkou Medical Center, Taoyuan, Taiwan.,College of Medicine, Chang Gung University, Taoyuan, Taiwan
| | - Sheng-Wen Steven Shaw
- College of Medicine, Chang Gung University, Taoyuan, Taiwan.,Division of Obstetrics, Department of Obstetrics and Gynecology, Chang Gung Memorial Hospital Linkou Medical Center, Taoyuan, Taiwan.,Prenatal Cell and Gene Therapy Group, Institute for Women's Health, University College London, London, UK
| | - Yu-Shien Ko
- College of Medicine, Chang Gung University, Taoyuan, Taiwan.,The First Cardiovascular Division, Department of Internal Medicine, Chang Gung Memorial Hospital, Linkou Medical Center, Taoyuan, Taiwan
| | - Yung-Hsin Huang
- Female Urology Section, Department of Obstetrics and Gynecology, Chang Gung Memorial Hospital Linkou Medical Center, Taoyuan, Taiwan
| | - Tsong-Hai Lee
- College of Medicine, Chang Gung University, Taoyuan, Taiwan. .,Stroke Center and Department of Neurology, Chang Gung Memorial Hospital, Linkou Medical Center, Taoyuan, Taiwan.
| |
Collapse
|
3
|
Stem Cell Therapy for Neurogenic Bladder After Spinal Cord Injury: Clinically Possible? Int Neurourol J 2020; 24:S3-10. [PMID: 32482052 PMCID: PMC7285699 DOI: 10.5213/inj.2040150.075] [Citation(s) in RCA: 4] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/01/2020] [Accepted: 05/09/2020] [Indexed: 12/29/2022] Open
Abstract
Neurogenic bladder (NB) after spinal cord injury (SCI) is a common complication that inhibits normal daily activities and reduces the quality of life. Regrettably, the current therapeutic methods for NB are inadequate. Therefore, numerous studies have been conducted to develop new treatments for NB associated with SCI. Moreover, a myriad of preclinical and clinical trials on the effects and safety of stem cell therapy in patients with SCI have been performed, and several studies have demonstrated improvements in urodynamic parameters, as well as in sensory and motor function, after stem cell therapy. These results are promising; however, further high-quality clinical studies are necessary to compensate for a lack of randomized trials, the modest number of participants, variation in the types of stem cells used, and inconsistency in routes of administration.
Collapse
|
4
|
Salehi-pourmehr H, Rahbarghazi R, Mahmoudi J, Roshangar L, Chapple CR, Hajebrahimi S, Abolhasanpour N, Azghani MR. Intra-bladder wall transplantation of bone marrow mesenchymal stem cells improved urinary bladder dysfunction following spinal cord injury. Life Sci 2019; 221:20-28. [DOI: 10.1016/j.lfs.2019.02.011] [Citation(s) in RCA: 10] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/11/2018] [Revised: 01/25/2019] [Accepted: 02/04/2019] [Indexed: 12/14/2022]
|
5
|
Zhu H, Poon W, Liu Y, Leung GKK, Wong Y, Feng Y, Ng SCP, Tsang KS, Sun DTF, Yeung DK, Shen C, Niu F, Xu Z, Tan P, Tang S, Gao H, Cha Y, So KF, Fleischaker R, Sun D, Chen J, Lai J, Cheng W, Young W. Phase I-II Clinical Trial Assessing Safety and Efficacy of Umbilical Cord Blood Mononuclear Cell Transplant Therapy of Chronic Complete Spinal Cord Injury. Cell Transplant 2018; 25:1925-1943. [PMID: 27075659 DOI: 10.3727/096368916x691411] [Citation(s) in RCA: 78] [Impact Index Per Article: 13.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/13/2022] Open
Abstract
Umbilical cord blood-derived mononuclear cell (UCB-MNC) transplants improve recovery in animal spinal cord injury (SCI) models. We transplanted UCB-MNCs into 28 patients with chronic complete SCI in Hong Kong (HK) and Kunming (KM). Stemcyte Inc. donated UCB-MNCs isolated from human leukocyte antigen (HLA ≥4:6)-matched UCB units. In HK, four patients received four 4-μl injections (1.6 million cells) into dorsal entry zones above and below the injury site, and another four received 8-μl injections (3.2 million cells). The eight patients were an average of 13 years after C5-T10 SCI. Magnetic resonance diffusion tensor imaging of five patients showed white matter gaps at the injury site before treatment. Two patients had fiber bundles growing across the injury site by 12 months, and the rest had narrower white matter gaps. Motor, walking index of SCI (WISCI), and spinal cord independence measure (SCIM) scores did not change. In KM, five groups of four patients received four 4-μl (1.6 million cells), 8-μl (3.2 million cells), 16-μl injections (6.4 million cells), 6.4 million cells plus 30 mg/kg methylprednisolone (MP), or 6.4 million cells plus MP and a 6-week course of oral lithium carbonate (750 mg/day). KM patients averaged 7 years after C3-T11 SCI and received 3-6 months of intensive locomotor training. Before surgery, only two patients walked 10 m with assistance and did not need assistance for bladder or bowel management before surgery. The rest could not walk or do their bladder and bowel management without assistance. At about a year (41-87 weeks), WISCI and SCIM scores improved: 15/20 patients walked 10 m ( p = 0.001) and 12/20 did not need assistance for bladder management ( p = 0.001) or bowel management ( p = 0.002). Five patients converted from complete to incomplete (two sensory, three motor; p = 0.038) SCI. We conclude that UCB-MNC transplants and locomotor training improved WISCI and SCIM scores. We propose further clinical trials.
Collapse
Affiliation(s)
- Hui Zhu
- Kunming General Hospital of Chengdu Military Command, Yunnan, P.R. China.,Kunming Tongren Hospital, Yunnan, P.R. China
| | - Waisang Poon
- Prince of Wales Hospital, Division of Neurosurgery, Department of Surgery, Chinese University of Hong Kong, Shatin, Hong Kong, SAR, P.R. China
| | - Yansheng Liu
- Kunming General Hospital of Chengdu Military Command, Yunnan, P.R. China.,Kunming Tongren Hospital, Yunnan, P.R. China
| | | | - Yatwa Wong
- Queen Mary Hospital, University of Hong Kong, Hong Kong, SAR, P.R. China
| | - Yaping Feng
- Kunming General Hospital of Chengdu Military Command, Yunnan, P.R. China
| | - Stephanie C P Ng
- Prince of Wales Hospital, Division of Neurosurgery, Department of Surgery, Chinese University of Hong Kong, Shatin, Hong Kong, SAR, P.R. China
| | - Kam Sze Tsang
- Prince of Wales Hospital, Division of Neurosurgery, Department of Surgery, Chinese University of Hong Kong, Shatin, Hong Kong, SAR, P.R. China
| | - David T F Sun
- Prince of Wales Hospital, Division of Neurosurgery, Department of Surgery, Chinese University of Hong Kong, Shatin, Hong Kong, SAR, P.R. China
| | - David K Yeung
- Prince of Wales Hospital, Division of Neurosurgery, Department of Surgery, Chinese University of Hong Kong, Shatin, Hong Kong, SAR, P.R. China
| | - Caihong Shen
- Kunming General Hospital of Chengdu Military Command, Yunnan, P.R. China.,Kunming Tongren Hospital, Yunnan, P.R. China
| | - Fang Niu
- Kunming General Hospital of Chengdu Military Command, Yunnan, P.R. China.,Kunming Tongren Hospital, Yunnan, P.R. China
| | - Zhexi Xu
- Kunming General Hospital of Chengdu Military Command, Yunnan, P.R. China.,Kunming Tongren Hospital, Yunnan, P.R. China
| | - Pengju Tan
- Kunming General Hospital of Chengdu Military Command, Yunnan, P.R. China.,Kunming Tongren Hospital, Yunnan, P.R. China
| | - Shaofeng Tang
- Kunming General Hospital of Chengdu Military Command, Yunnan, P.R. China
| | - Hongkun Gao
- Kunming General Hospital of Chengdu Military Command, Yunnan, P.R. China.,Kunming Tongren Hospital, Yunnan, P.R. China
| | - Yun Cha
- Kunming General Hospital of Chengdu Military Command, Yunnan, P.R. China
| | - Kwok-Fai So
- Department of Ophthalmology and State Key Laboratory of Brain and Cognitive Science, The University of Hong Kong, SAR, P.R. China.,GHM Institute of CNS Regeneration, and Medical Key Laboratory of Brain Function and Diseases, Jinan University, Guangzhou, P.R. China.,China Spinal Cord Injury Network, Hong Kong Science Technology Park, Hong Kong, SAR, P.R. China
| | | | - Dongming Sun
- W. M. Keck Center for Collaborative Neuroscience, Rutgers University, Piscataway, NJ, USA
| | - John Chen
- China Spinal Cord Injury Network, Hong Kong Science Technology Park, Hong Kong, SAR, P.R. China
| | - Jan Lai
- China Spinal Cord Injury Network, Hong Kong Science Technology Park, Hong Kong, SAR, P.R. China
| | - Wendy Cheng
- China Spinal Cord Injury Network, Hong Kong Science Technology Park, Hong Kong, SAR, P.R. China
| | - Wise Young
- China Spinal Cord Injury Network, Hong Kong Science Technology Park, Hong Kong, SAR, P.R. China.,W. M. Keck Center for Collaborative Neuroscience, Rutgers University, Piscataway, NJ, USA
| |
Collapse
|
6
|
Effects of pudendal neuromodulation on bladder function in chronic spinal cord-injured rats. J Formos Med Assoc 2016; 115:703-13. [DOI: 10.1016/j.jfma.2015.07.010] [Citation(s) in RCA: 5] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/26/2014] [Revised: 07/02/2015] [Accepted: 07/02/2015] [Indexed: 02/02/2023] Open
|
7
|
Kim JH, Shim SR, Doo SW, Yang WJ, Yoo BW, Kim JM, Ko YM, Song ES, Lim IS, Lee HJ, Song YS. Bladder recovery by stem cell based cell therapy in the bladder dysfunction induced by spinal cord injury: systematic review and meta-analysis. PLoS One 2015; 10:e0113491. [PMID: 25781610 PMCID: PMC4363872 DOI: 10.1371/journal.pone.0113491] [Citation(s) in RCA: 13] [Impact Index Per Article: 1.4] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/06/2014] [Accepted: 10/23/2014] [Indexed: 12/26/2022] Open
Abstract
BACKGROUND Bladder dysfunction induced by spinal cord injury (SCI) can become problematic and severely impair the quality of life. Preclinical studies of spinal cord injury have largely focused on the recovery of limb function while neglecting to investigate bladder recovery. OBJECTIVE The present study was performed to investigate and review the effect of stem cell-based cell therapy on bladder recovery in SCI. METHODS We conducted a meta-analysis of urodynamic findings of experimental trials that included studies of stem cell-based cell therapy in SCI. Relevant studies were searched using MEDLINE, EMBASE and Cochrane Library (January 1990 - December 2012). Final inclusion was determined by a urodynamic study involving detailed numerical values. Urodynamic parameters for analysis included voiding pressure, residual urine, bladder capacity and non-voiding contraction (NVC). Meta-analysis of the data, including findings from urodynamic studies, was performed using the Mantel-Haenszel method. RESULTS A total of eight studies were included with a sample size of 224 subjects. The studies were divided into different subgroups by different models of SCI. After a stem cell-based cell therapy, voiding pressure (-6.35, p <0.00001, I2 = 77%), NVC (-3.58, p <0.00001, I2 = 82%), residual urine (-024, p = 0.004, I2 = 95%) showed overall significant improvement. Bladder capacity showed improvement after treatment only in the transection type (-0.23, p = 0.0002, I2 = 0%). CONCLUSION After stem cell-based cell therapy in SCI, partial bladder recovery including improvement of voiding pressure, NVC, and residual urine was demonstrated. Additional studies are needed to confirm the detailed mechanism and to obtain an ideal treatment strategy for bladder recovery.
Collapse
Affiliation(s)
- Jae Heon Kim
- Department of Urology, Soonchunyang University Hospital, Soonchunhyang University School of Medicine, Seoul, Korea
| | - Sung Ryul Shim
- Institute for clinical molecular biology research, Soonchunyang University Hospital, Soonchunhyang University School of Medicine, Seoul, Korea
| | - Seung Whan Doo
- Department of Urology, Soonchunyang University Hospital, Soonchunhyang University School of Medicine, Seoul, Korea
| | - Won Jae Yang
- Department of Urology, Soonchunyang University Hospital, Soonchunhyang University School of Medicine, Seoul, Korea
| | - Byung Wook Yoo
- Department of Family Medicine, Soonchunhyang University School of Medicine, Seoul, Korea
| | - Joyce Mary Kim
- International Clinic Center, Soonchunhyang University Hospital, Seoul, Korea
| | - Young Myoung Ko
- Department of Industrial and Management Engineering, Pohang University of Science and Technology, Pohang, Korea
| | - Eun Seop Song
- Department of Obstetrics and Gynecology, Inha University School of Medicine, Incheon, Korea
| | - Ik Sung Lim
- Department of Industrial Management and Engineering, Namseoul University College of Engineering, Cheonan, Korea
| | - Hong Jun Lee
- Medical Research Institute, Chung-Ang University College of Medicine, Seoul, Korea
- * E-mail: (HJL); (YSS)
| | - Yun Seob Song
- Department of Urology, Soonchunyang University Hospital, Soonchunhyang University School of Medicine, Seoul, Korea
- * E-mail: (HJL); (YSS)
| |
Collapse
|