Bednarska O, Biskou O, Israelsen H, Winberg ME, Walter S, Keita ÅV. A postbiotic fermented oat gruel may have a beneficial effect on the colonic mucosal barrier in patients with irritable bowel syndrome.
Front Nutr 2022;
9:1004084. [PMID:
36570171 PMCID:
PMC9773395 DOI:
10.3389/fnut.2022.1004084]
[Citation(s) in RCA: 4] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/26/2022] [Accepted: 11/17/2022] [Indexed: 12/13/2022] Open
Abstract
Background
Impaired intestinal permeability and microbial dysbiosis are important pathophysiological mechanisms underlying irritable bowel syndrome (IBS). ReFerm®, also called Profermin®, is a postbiotic product of oat gruel fermented with Lactobacillus plantarum 299v. In this study, we investigated whether ReFerm® has a beneficial effect on the intestinal epithelial barrier function in patients with IBS.
Materials and methods
Thirty patients with moderate to severe IBS-diarrhoea (IBS-D) or IBS-mixed (IBS-M) were treated with enema containing ReFerm® or placebo. The patients underwent sigmoidoscopy with biopsies obtained from the distal colon at baseline and after 14 days of treatment with ReFerm® or placebo twice daily. The biopsies were mounted in Ussing chambers, and paracellular and transcellular permeabilities were measured for 120 min. In addition, the effects of ReFerm® or placebo on the epithelial barrier were investigated in vitro using Caco-2 cells.
Results
ReFerm® reduced paracellular permeability (p < 0.05) and increased transepithelial resistance (TER) over time (p < 0.01), whereas the placebo had no significant effect in patients. In ReFerm®-treated Caco-2 cells, paracellular and transcellular permeabilities were decreased compared to the control (p < 0.05) and placebo (p < 0.01). TER was increased in Caco-2 ReFerm®-treated cells, and normalised TER was increased in ReFerm®-treated Caco-2 cells compared to control (p < 0.05) and placebo-treated (p < 0.05) cells.
Conclusion
ReFerm® significantly reduced paracellular permeability and improved TER in colonic biopsies collected from patients with IBS and in a Caco-2 cell model. Our results offer new insights into the potential benefits of ReFerm® in IBS management. Further studies are needed to identify the molecular mechanisms underlying the barrier-protective properties of ReFerm®.
Clinical trial registration
[https://clinicaltrials.gov/], identifier [NCT05475314].
Collapse