1
|
McCarthy L, Verma G, Hangel G, Neal A, Moffat BA, Stockmann JP, Andronesi OC, Balchandani P, Hadjipanayis CG. Application of 7T MRS to High-Grade Gliomas. AJNR Am J Neuroradiol 2022; 43:1378-1395. [PMID: 35618424 PMCID: PMC9575545 DOI: 10.3174/ajnr.a7502] [Citation(s) in RCA: 9] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/03/2021] [Accepted: 02/11/2022] [Indexed: 01/26/2023]
Abstract
MRS, including single-voxel spectroscopy and MR spectroscopic imaging, captures metabolites in high-grade gliomas. Emerging evidence indicates that 7T MRS may be more sensitive to aberrant metabolic activity than lower-field strength MRS. However, the literature on the use of 7T MRS to visualize high-grade gliomas has not been summarized. We aimed to identify metabolic information provided by 7T MRS, optimal spectroscopic sequences, and areas for improvement in and new applications for 7T MRS. Literature was found on PubMed using "high-grade glioma," "malignant glioma," "glioblastoma," "anaplastic astrocytoma," "7T," "MR spectroscopy," and "MR spectroscopic imaging." 7T MRS offers higher SNR, modestly improved spatial resolution, and better resolution of overlapping resonances. 7T MRS also yields reduced Cramér-Rao lower bound values. These features help to quantify D-2-hydroxyglutarate in isocitrate dehydrogenase 1 and 2 gliomas and to isolate variable glutamate, increased glutamine, and increased glycine with higher sensitivity and specificity. 7T MRS may better characterize tumor infiltration and treatment effect in high-grade gliomas, though further study is necessary. 7T MRS will benefit from increased sample size; reductions in field inhomogeneity, specific absorption rate, and acquisition time; and advanced editing techniques. These findings suggest that 7T MRS may advance understanding of high-grade glioma metabolism, with reduced Cramér-Rao lower bound values and better measurement of smaller metabolite signals. Nevertheless, 7T is not widely used clinically, and technical improvements are necessary. 7T MRS isolates metabolites that may be valuable therapeutic targets in high-grade gliomas, potentially resulting in wider ranging neuro-oncologic applications.
Collapse
Affiliation(s)
- L McCarthy
- From the Department of Neurosurgery (L.M., C.G.H.), Icahn School of Medicine at Mount Sinai, Mount Sinai Health System, New York, New York
| | - G Verma
- BioMedical Engineering and Imaging Institute (G.V., P.B.), Icahn School of Medicine at Mount Sinai, New York, New York
| | - G Hangel
- Department of Neurosurgery (G.H.)
- High-field MR Center (G.H.), Department of Biomedical Imaging and Image-Guided Therapy, Medical University of Vienna, Vienna, Austria
| | - A Neal
- Department of Medicine (A.N.), Royal Melbourne Hospital, University of Melbourne, Melbourne, Australia
- Department of Neurology (A.N.), Royal Melbourne Hospital, Melbourne, Australia
| | - B A Moffat
- The Melbourne Brain Centre Imaging Unit (B.A.M.), Department of Radiology, The University of Melbourne, Melbourne, Australia
| | - J P Stockmann
- A. A. Martinos Center for Biomedical Imaging (J.P.S., O.C.A.), Massachusetts General Hospital, Charlestown, Massachusetts
- Harvard Medical School (J.P.S., O.C.A.), Boston, Massachusetts
| | - O C Andronesi
- A. A. Martinos Center for Biomedical Imaging (J.P.S., O.C.A.), Massachusetts General Hospital, Charlestown, Massachusetts
- Harvard Medical School (J.P.S., O.C.A.), Boston, Massachusetts
| | - P Balchandani
- BioMedical Engineering and Imaging Institute (G.V., P.B.), Icahn School of Medicine at Mount Sinai, New York, New York
| | - C G Hadjipanayis
- From the Department of Neurosurgery (L.M., C.G.H.), Icahn School of Medicine at Mount Sinai, Mount Sinai Health System, New York, New York
| |
Collapse
|
2
|
Kochalska K, Oakden W, Słowik T, Chudzik A, Pankowska A, Łazorczyk A, Kozioł P, Andres-Mach M, Pietura R, Rola R, Stanisz GJ, Orzylowska A. Dietary supplementation with Lactobacillus rhamnosus JB-1 restores brain neurochemical balance and mitigates the progression of mood disorder in a rat model of chronic unpredictable mild stress. Nutr Res 2020; 82:44-57. [PMID: 32961399 DOI: 10.1016/j.nutres.2020.06.019] [Citation(s) in RCA: 21] [Impact Index Per Article: 4.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/15/2020] [Revised: 06/22/2020] [Accepted: 06/26/2020] [Indexed: 12/20/2022]
Abstract
Major depressive disorder is a stress-related disease associated with brain metabolic dysregulation in the glutamine-glutamate/γ-aminobutyric acid (Gln-Glu/GABA) cycle. Recent studies have demonstrated that microbiome-gut-brain interactions have the potential to influence mental health. The hypothesis of this study was that Lactobacillus rhamnosus JB-1 (LR-JB1™) dietary supplementation has a positive impact on neuro-metabolism which can be quantified in vivo using magnetic resonance spectroscopy (MRS). A rat model of depressive-like disorder, chronic unpredictable mild stress (CUMS), was used. Baseline comparisons of MRS and behavior were obtained in a control group and in a stressed group subjected to CUMS. Of the 22 metabolites measured using MRS, stressed rats had significantly lower concentrations of GABA, glutamate, glutamine + glutathione, glutamate + glutamine, total creatine, and total N-acetylaspartate (tNAA). Stressed rats were then separated into 2 groups and supplemented with either LR-JB1™ or placebo and re-evaluated after 4 weeks of continued CUMS. The LR-JB1™ microbiotic diet restored these metabolites to levels previously observed in controls, while the placebo diet resulted in further significant decrease of glutamate, total choline, and tNAA. LR-JB1™ treated animals also exhibited calmer and more relaxed behavior, as compared with placebo treated animals. In summary, significant cerebral biochemical downregulation of major brain metabolites following prolonged stress were measured in vivo using MRS, and these decreases were reversed using a microbiotic dietary supplement of LR-JB1™, even in the presence of continued stress, which also resulted in a reduction of stress-induced behavior in a rat model of depressive-like disorder.
Collapse
Affiliation(s)
| | - Wendy Oakden
- Physical Sciences, Sunnybrook Research Institute, Toronto, ON, Canada
| | - Tymoteusz Słowik
- Center of Experimental Medicine, Medical University of Lublin, Lublin, Poland
| | - Agata Chudzik
- Department of Neurosurgery and Pediatric Neurosurgery, Medical University of Lublin, Lublin, Poland
| | - Anna Pankowska
- Department of Radiography, Medical University of Lublin, Lublin, Poland
| | - Artur Łazorczyk
- Department of Radiography, Medical University of Lublin, Lublin, Poland
| | - Paulina Kozioł
- Department of Radiography, Medical University of Lublin, Lublin, Poland
| | - Marta Andres-Mach
- Isobolographic Analysis Laboratory, Institute of Rural Health, Lublin, Poland
| | - Radosław Pietura
- Department of Radiography, Medical University of Lublin, Lublin, Poland
| | - Radosław Rola
- Department of Neurosurgery and Pediatric Neurosurgery, Medical University of Lublin, Lublin, Poland
| | - Greg J Stanisz
- Physical Sciences, Sunnybrook Research Institute, Toronto, ON, Canada; Department of Neurosurgery and Pediatric Neurosurgery, Medical University of Lublin, Lublin, Poland; Department of Medical Biophysics, University of Toronto, ON, Canada
| | - Anna Orzylowska
- Department of Neurosurgery and Pediatric Neurosurgery, Medical University of Lublin, Lublin, Poland.
| |
Collapse
|