1
|
Malone J, Tanskanen AS, Hill C, Zuckermann Cynamon A, Hoang L, MacAulay C, McAlpine JN, Lane PM. Multimodal Optical Imaging of Ex Vivo Fallopian Tubes to Distinguish Early and Occult Tubo-Ovarian Cancers. Cancers (Basel) 2024; 16:3618. [PMID: 39518057 PMCID: PMC11544883 DOI: 10.3390/cancers16213618] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/10/2024] [Revised: 10/22/2024] [Accepted: 10/25/2024] [Indexed: 11/16/2024] Open
Abstract
Background: There are currently no effective screening measures to detect early or occult tubo-ovarian cancers, resulting in late-stage detection and high mortality. This work explores whether an optical imaging catheter can detect early-stage tubo-ovarian cancers or precursor lesions where they originate in the fallopian tubes. Methods: This device collects co-registered optical coherence tomography (OCT) and autofluorescence imaging (AFI). OCT provides three-dimensional assessment of underlying tissue structures; autofluorescence imaging provides functional contrast of endogenous fluorophores. Ex vivo fallopian tubes (n = 28; n = 7 cancer patients) are imaged; we present methods for the calculation of and analyze eleven imaging biomarkers related to fluorescence, optical attenuation, and OCT texture for their potential to detect tubo-ovarian cancers and other lesions of interest. Results: We visualize folded plicae, vessel-like structures, tissue layering, hemosiderin deposits, and regions of fibrotic change. High-grade serous ovarian carcinoma appears as reduced autofluorescence paired with homogenous OCT and reduced mean optical attenuation. Specimens containing cancerous lesions demonstrate a significant increase in median autofluorescence intensity and decrease in Shannon entropy compared to specimens with no lesion. Non-cancerous specimens demonstrate an increase in optical attenuation in the fimbriae when compared to the isthmus or the ampulla. Conclusions: We conclude that this approach shows promise and merits further investigation of its diagnostic potential.
Collapse
Affiliation(s)
- Jeanie Malone
- Department of Integrative Oncology, British Columbia Cancer Research Institute, 675 W 10th Avenue, Vancouver, BC V5Z 1L3, Canada (P.M.L.)
- School of Biomedical Engineering, University of British Columbia, 251-2222 Health Sciences Mall, Vancouver, BC V6T 1Z3, Canada
| | - Adrian S. Tanskanen
- Department of Integrative Oncology, British Columbia Cancer Research Institute, 675 W 10th Avenue, Vancouver, BC V5Z 1L3, Canada (P.M.L.)
- School of Biomedical Engineering, University of British Columbia, 251-2222 Health Sciences Mall, Vancouver, BC V6T 1Z3, Canada
| | - Chloe Hill
- Department of Integrative Oncology, British Columbia Cancer Research Institute, 675 W 10th Avenue, Vancouver, BC V5Z 1L3, Canada (P.M.L.)
- School of Engineering Science, Simon Fraser University, 8888 University Drive, Burnaby, BC V5A 1S6, Canada
| | - Allan Zuckermann Cynamon
- Department of Integrative Oncology, British Columbia Cancer Research Institute, 675 W 10th Avenue, Vancouver, BC V5Z 1L3, Canada (P.M.L.)
- School of Engineering Science, Simon Fraser University, 8888 University Drive, Burnaby, BC V5A 1S6, Canada
| | - Lien Hoang
- Department of Pathology and Laboratory Medicine, University of British Columbia and Vancouver General Hospital, 910 West 10 Avenue, Vancouver, BC V5Z 1M9, Canada
| | - Calum MacAulay
- Department of Integrative Oncology, British Columbia Cancer Research Institute, 675 W 10th Avenue, Vancouver, BC V5Z 1L3, Canada (P.M.L.)
- Department of Pathology and Laboratory Medicine, University of British Columbia and Vancouver General Hospital, 910 West 10 Avenue, Vancouver, BC V5Z 1M9, Canada
| | - Jessica N. McAlpine
- Department Obstetrics and Gynaecology, Division Gynecologic Oncology, University of British Columbia and BC Cancer, 2775 Laurel St, 6th Floor, Vancouver, BC V5Z 1M9, Canada
| | - Pierre M. Lane
- Department of Integrative Oncology, British Columbia Cancer Research Institute, 675 W 10th Avenue, Vancouver, BC V5Z 1L3, Canada (P.M.L.)
- School of Biomedical Engineering, University of British Columbia, 251-2222 Health Sciences Mall, Vancouver, BC V6T 1Z3, Canada
- School of Engineering Science, Simon Fraser University, 8888 University Drive, Burnaby, BC V5A 1S6, Canada
| |
Collapse
|
2
|
Belda-Perez R, Cimini C, Valbonetti L, Orsini T, D'Elia A, Massari R, Di Carlo C, Paradiso A, Maqsood S, Scavizzi F, Raspa M, Bernabò N, Barboni B. Exploring swine oviduct anatomy through micro-computed tomography: a 3D modeling perspective. Front Vet Sci 2024; 11:1456524. [PMID: 39290503 PMCID: PMC11405376 DOI: 10.3389/fvets.2024.1456524] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/28/2024] [Accepted: 08/14/2024] [Indexed: 09/19/2024] Open
Abstract
The oviduct plays a crucial role in the reproductive process, serving as the stage for fertilization and the early stages of embryonic development. When the environment of this organ has been mimicked, it has been shown to enhance in vitro embryo epigenetic reprogramming and to improve the yield of the system. This study explores the anatomical intricacies of two oviduct regions, the uterotubal junction (UTJ) and the ampullary-isthmic junction (AIJ) by using micro-computed tomography (MicroCT). In this study, we have characterized and 3D-reconstructed the oviduct structure, by measuring height and width of the oviduct's folds, along with the assessments of fractal dimension, lacunarity and shape factor. Results indicate distinct structural features in UTJ and AIJ, with UTJ displaying small, uniformly distributed folds and high lacunarity, while AIJ shows larger folds with lower lacunarity. Fractal dimension analysis reveals values for UTJ within 1.189-1.1779, while AIJ values range from 1.559-1.770, indicating differences in structural complexity between these regions. Additionally, blind sacs or crypts are observed, akin to those found in various species, suggesting potential roles in sperm sequestration or reservoir formation. These morphological differences align with functional variations and are essential for developing an accurate 3D model. In conclusion, this research provides information about the oviduct anatomy, leveraging MicroCT technology for detailed 3D reconstructions, which can significantly contribute to the understanding of geometric-morphological characteristics influencing functional traits, providing a foundation for a biomimetic oviduct-on-a-chip.
Collapse
Affiliation(s)
- Ramses Belda-Perez
- Department of Biosciences and Technology for Food, Agriculture and Environment, University of Teramo, Teramo, Italy
- Physiology of Reproduction Group, Department of Physiology, Faculty of Veterinary Medicine, International Excellence Campus for Higher Education and Research (Campus Mare Nostrum), University of Murcia, Murcia, Spain
| | - Costanza Cimini
- Department of Biosciences and Technology for Food, Agriculture and Environment, University of Teramo, Teramo, Italy
| | - Luca Valbonetti
- Department of Biosciences and Technology for Food, Agriculture and Environment, University of Teramo, Teramo, Italy
| | - Tiziana Orsini
- Institute of Biochemistry and Cell Biology (CNR-IBBC/EMMA/Infrafrontier/IMPC), National Research Council, Rome, Italy
| | - Annunziata D'Elia
- Institute of Biochemistry and Cell Biology (CNR-IBBC/EMMA/Infrafrontier/IMPC), National Research Council, Rome, Italy
| | - Roberto Massari
- Institute of Biochemistry and Cell Biology (CNR-IBBC/EMMA/Infrafrontier/IMPC), National Research Council, Rome, Italy
| | - Carlo Di Carlo
- Department of Biosciences and Technology for Food, Agriculture and Environment, University of Teramo, Teramo, Italy
| | - Alessia Paradiso
- Department of Biosciences and Technology for Food, Agriculture and Environment, University of Teramo, Teramo, Italy
| | - Seerat Maqsood
- Department of Biosciences and Technology for Food, Agriculture and Environment, University of Teramo, Teramo, Italy
| | - Ferdinando Scavizzi
- Institute of Biochemistry and Cell Biology (CNR-IBBC/EMMA/Infrafrontier/IMPC), National Research Council, Rome, Italy
| | - Marcello Raspa
- Institute of Biochemistry and Cell Biology (CNR-IBBC/EMMA/Infrafrontier/IMPC), National Research Council, Rome, Italy
| | - Nicola Bernabò
- Department of Biosciences and Technology for Food, Agriculture and Environment, University of Teramo, Teramo, Italy
| | - Barbara Barboni
- Department of Biosciences and Technology for Food, Agriculture and Environment, University of Teramo, Teramo, Italy
| |
Collapse
|
3
|
Seraj H, Nazari MA, Atai AA, Amanpour S, Azadi M. A Review: Biomechanical Aspects of the Fallopian Tube Relevant to its Function in Fertility. Reprod Sci 2024; 31:1456-1485. [PMID: 38472710 DOI: 10.1007/s43032-024-01479-x] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/06/2023] [Accepted: 02/07/2024] [Indexed: 03/14/2024]
Abstract
The fallopian tube (FT) plays a crucial role in the reproductive process by providing an ideal biomechanical and biochemical environment for fertilization and early embryo development. Despite its importance, the biomechanical functions of the FT that originate from its morphological aspects, and ultrastructural aspects, as well as the mechanical properties of FT, have not been studied nor used sufficiently, which limits the understanding of fertilization, mechanotrasduction, and mechanobiology during embryo development, as well as the replication of the FT in laboratory settings for infertility treatments. This paper reviews and revives valuable information on human FT reported in medical literature in the past five decades relevant to the biomechanical aspects of FT. In this review, we summarized the current state of knowledge concerning the morphological, ultrastructural aspects, and mechanical properties of the human FT. We also investigate the potential arising from a thorough consideration of the biomechanical functions and exploring often neglected mechanical aspects. Our investigation encompasses both macroscopic measurements (such as length, diameter, and thickness) and microscopic measurements (including the height of epithelial cells, the percentage of ciliated cells, cilia structure, and ciliary beat frequency). Our primary focus has been on healthy women of reproductive age. We have examined various measurement techniques, encompassing conventional metrology, 2D histological data as well as new spatial measurement techniques such as micro-CT.
Collapse
Affiliation(s)
- Hasan Seraj
- School of Mechanical Engineering, College of Engineering, University of Tehran, Tehran, Iran
| | - Mohammad Ali Nazari
- School of Mechanical Engineering, College of Engineering, University of Tehran, Tehran, Iran.
- Department of Speech and Cognition, CNRS UMR 5216, Grenoble Institute of Technology, Grenoble, France.
| | - Ali Asghar Atai
- School of Mechanical Engineering, College of Engineering, University of Tehran, Tehran, Iran
| | - Saeid Amanpour
- Vali-E-Asr Reproductive Health Research Center, Tehran University of Medical Sciences, Tehran, Iran
- Cancer Biology Research Center, Tehran University of Medical Sciences, Tehran, Iran
| | - Mojtaba Azadi
- School of Engineering, College of Science and Engineering, San Francisco State University, San Francisco, CA, USA.
| |
Collapse
|
4
|
Papazoglou AS, Karagiannidis E, Liatsos A, Bompoti A, Moysidis DV, Arvanitidis C, Tsolaki F, Tsagkaropoulos S, Theocharis S, Tagarakis G, Michaelson JS, Herrmann MD. Volumetric Tissue Imaging of Surgical Tissue Specimens Using Micro-Computed Tomography: An Emerging Digital Pathology Modality for Nondestructive, Slide-Free Microscopy-Clinical Applications of Digital Pathology in 3 Dimensions. Am J Clin Pathol 2023; 159:242-254. [PMID: 36478204 DOI: 10.1093/ajcp/aqac143] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/16/2022] [Accepted: 10/14/2022] [Indexed: 12/14/2022] Open
Abstract
OBJECTIVES Micro-computed tomography (micro-CT) is a novel, nondestructive, slide-free digital imaging modality that enables the acquisition of high-resolution, volumetric images of intact surgical tissue specimens. The aim of this systematic mapping review is to provide a comprehensive overview of the available literature on clinical applications of micro-CT tissue imaging and to assess its relevance and readiness for pathology practice. METHODS A computerized literature search was performed in the PubMed, Scopus, Web of Science, and CENTRAL databases. To gain insight into regulatory and financial considerations for performing and examining micro-CT imaging procedures in a clinical setting, additional searches were performed in medical device databases. RESULTS Our search identified 141 scientific articles published between 2000 and 2021 that described clinical applications of micro-CT tissue imaging. The number of relevant publications is progressively increasing, with the specialties of pulmonology, cardiology, otolaryngology, and oncology being most commonly concerned. The included studies were mostly performed in pathology departments. Current micro-CT devices have already been cleared for clinical use, and a Current Procedural Terminology (CPT) code exists for reimbursement of micro-CT imaging procedures. CONCLUSIONS Micro-CT tissue imaging enables accurate volumetric measurements and evaluations of entire surgical specimens at microscopic resolution across a wide range of clinical applications.
Collapse
Affiliation(s)
| | - Efstratios Karagiannidis
- First Department of Cardiology, AHEPA University Hospital, Aristotle University of Thessaloniki, Thessaloniki, Greece
| | - Alexandros Liatsos
- First Department of Cardiology, AHEPA University Hospital, Aristotle University of Thessaloniki, Thessaloniki, Greece
| | - Andreana Bompoti
- Diagnostic Imaging, Peterborough City Hospital, North West Anglia NHS Foundation Trust, Peterborough, UK
| | - Dimitrios V Moysidis
- First Department of Cardiology, AHEPA University Hospital, Aristotle University of Thessaloniki, Thessaloniki, Greece
| | - Christos Arvanitidis
- Institute of Marine Biology, Biotechnology and Aquaculture, Hellenic Centre for Marine Research, Heraklion, Crete, Greece.,LifeWatch ERIC, Sector II-II, Seville, Spain
| | - Fani Tsolaki
- Department of Cardiothoracic Surgery, AHEPA University Hospital, Thessaloniki, Greece
| | | | - Stamatios Theocharis
- First Department of Pathology, National and Kapoditrian University of Athens, Athens, Greece
| | - Georgios Tagarakis
- Department of Cardiothoracic Surgery, AHEPA University Hospital, Thessaloniki, Greece
| | - James S Michaelson
- Department of Pathology, Massachusetts General Hospital and Harvard Medical School, Boston, MA, USA
| | - Markus D Herrmann
- Department of Pathology, Massachusetts General Hospital and Harvard Medical School, Boston, MA, USA
| |
Collapse
|
5
|
Castro PT, Aranda OL, Ribeiro G, Araujo Júnior E, Machado AS, Werner H. Fallopian tube: Three-dimensional reconstruction and virtual navigation using microtomography. JOURNAL OF CLINICAL ULTRASOUND : JCU 2022; 50:852-853. [PMID: 35599633 DOI: 10.1002/jcu.23242] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 11/09/2021] [Revised: 04/30/2022] [Accepted: 05/02/2022] [Indexed: 06/15/2023]
Affiliation(s)
- Pedro Teixeira Castro
- Fetal Medicine Department, Clínica Diagnóstico por Imagem (CDPI), Rio de Janeiro, Brazil
| | - Osvaldo Luiz Aranda
- Department of Obstetrics and Gynecology, Severino Sombra University, Vassouras, Brazil
| | - Gerson Ribeiro
- Department of Arts and Design, Pontifícia Universidade Católica (PUC-Rio), Rio de Janeiro, Brazil
| | - Edward Araujo Júnior
- Department of Obstetrics, Paulista School of Medicine - Federal University of São Paulo (EPM-UNIFESP), São Paulo, Brazil
| | - Alessandra Silveira Machado
- Nuclear Engineering Program (PEN/COPPE), Federal University of Rio de Janeiro (UFRJ), Rio de Janeiro, Brazil
| | - Heron Werner
- Fetal Medicine Department, Clínica Diagnóstico por Imagem (CDPI), Rio de Janeiro, Brazil
| |
Collapse
|
6
|
Castro PT, Aranda OL, Alves HDL, Lopes RT, Werner H, Araujo Júnior E. Fallopian tube vascularization observed by microfocus computed tomography. Radiol Bras 2020; 53:36-37. [PMID: 32313335 PMCID: PMC7159048 DOI: 10.1590/0100-3984.2018.0120] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/22/2022] Open
Affiliation(s)
| | - Osvaldo Luiz Aranda
- Universidade Federal do Rio de Janeiro, Brazil; Hospital Universitário Severino Sombra, Brazil
| | | | | | | | - Edward Araujo Júnior
- Universidade Federal de São Paulo, Brazil; Universidade Municipal de São Caetano do Sul, Brazil
| |
Collapse
|