1
|
Colson C, Maini PK, Byrne HM. Investigating the Influence of Growth Arrest Mechanisms on Tumour Responses to Radiotherapy. Bull Math Biol 2023; 85:74. [PMID: 37378740 DOI: 10.1007/s11538-023-01171-2] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/26/2023] [Accepted: 05/24/2023] [Indexed: 06/29/2023]
Abstract
Cancer is a heterogeneous disease and tumours of the same type can differ greatly at the genetic and phenotypic levels. Understanding how these differences impact sensitivity to treatment is an essential step towards patient-specific treatment design. In this paper, we investigate how two different mechanisms for growth control may affect tumour cell responses to fractionated radiotherapy (RT) by extending an existing ordinary differential equation model of tumour growth. In the absence of treatment, this model distinguishes between growth arrest due to nutrient insufficiency and competition for space and exhibits three growth regimes: nutrient limited, space limited (SL) and bistable (BS), where both mechanisms for growth arrest coexist. We study the effect of RT for tumours in each regime, finding that tumours in the SL regime typically respond best to RT, while tumours in the BS regime typically respond worst to RT. For tumours in each regime, we also identify the biological processes that may explain positive and negative treatment outcomes and the dosing regimen which maximises the reduction in tumour burden.
Collapse
Affiliation(s)
- Chloé Colson
- Wolfson Centre for Mathematical Biology, Mathematical Institute, University of Oxford, Radcliffe Observatory Quarter, Oxford, OX2 6GG, UK.
| | - Philip K Maini
- Wolfson Centre for Mathematical Biology, Mathematical Institute, University of Oxford, Radcliffe Observatory Quarter, Oxford, OX2 6GG, UK
| | - Helen M Byrne
- Wolfson Centre for Mathematical Biology, Mathematical Institute, University of Oxford, Radcliffe Observatory Quarter, Oxford, OX2 6GG, UK
- Ludwig Institute for Cancer Research, Nuffield Department of Medicine, University of Oxford, Roosevelt Drive, Oxford, OX3 7DQ, UK
| |
Collapse
|
2
|
Atkinson J, Bezak E, Le H, Kempson I. The current status of FLASH particle therapy: a systematic review. Phys Eng Sci Med 2023; 46:529-560. [PMID: 37160539 DOI: 10.1007/s13246-023-01266-z] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/30/2022] [Accepted: 04/20/2023] [Indexed: 05/11/2023]
Abstract
Particle therapies are becoming increasingly available clinically due to their beneficial energy deposition profile, sparing healthy tissues. This may be further promoted with ultra-high dose rates, termed FLASH. This review comprehensively summarises current knowledge based on studies relevant to proton- and carbon-FLASH therapy. As electron-FLASH literature presents important radiobiological findings that form the basis of proton and carbon-based FLASH studies, a summary of key electron-FLASH papers is also included. Preclinical data suggest three key mechanisms by which proton and carbon-FLASH are able to reduce normal tissue toxicities compared to conventional dose rates, with equipotent, or enhanced, tumour kill efficacy. However, a degree of caution is needed in clinically translating these findings as: most studies use transmission and do not conform the Bragg peak to tumour volume; mechanistic understanding is still in its infancy; stringent verification of dosimetry is rarely provided; biological assays are prone to limitations which need greater acknowledgement.
Collapse
Affiliation(s)
- Jake Atkinson
- Future Industries Institute, University of South Australia, Mawson Lakes, South Australia, 5095, Australia
| | - Eva Bezak
- Cancer Research Institute, University of South Australia, Adelaide, South Australia, 5000, Australia
- Department of Physics, University of Adelaide, North Terrace, Adelaide, South Australia, 5000, Australia
| | - Hien Le
- Department of Radiation Oncology, Royal Adelaide Hospital, Adelaide, 5000, Australia
| | - Ivan Kempson
- Future Industries Institute, University of South Australia, Mawson Lakes, South Australia, 5095, Australia.
| |
Collapse
|
3
|
Sebastian A, Spulber D, Lisouskaya A, Ptasinska S. Revealing low-temperature plasma efficacy through a dose-rate assessment by DNA damage detection combined with machine learning models. Sci Rep 2022; 12:18353. [PMID: 36319720 PMCID: PMC9626482 DOI: 10.1038/s41598-022-21783-3] [Citation(s) in RCA: 4] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/08/2022] [Accepted: 10/04/2022] [Indexed: 11/05/2022] Open
Abstract
Low-temperature plasmas have quickly emerged as alternative and unconventional types of radiation that offer great promise for various clinical modalities. As with other types of radiation, the therapeutic efficacy and safety of low-temperature plasmas are ubiquitous concerns, and assessing their dose rates is crucial in clinical settings. Unfortunately, assessing the dose rates by standard dosimetric techniques has been challenging. To overcome this difficulty, we proposed a dose-rate assessment framework that combined the predictive modeling of plasma-induced damage in DNA by machine learning with existing radiation dose-DNA damage correlations. Our results indicated that low-temperature plasmas have a remarkably high dose rate that can be tuned by various process parameters. This attribute is beneficial for inducing radiobiological effects in a more controllable manner.
Collapse
Affiliation(s)
- Amal Sebastian
- grid.131063.60000 0001 2168 0066Radiation Laboratory, University of Notre Dame, Notre Dame, IN 46556 USA ,grid.131063.60000 0001 2168 0066Department of Physics and Astronomy, University of Notre Dame, Notre Dame, IN 46556 USA
| | - Diana Spulber
- grid.131063.60000 0001 2168 0066Radiation Laboratory, University of Notre Dame, Notre Dame, IN 46556 USA ,grid.131063.60000 0001 2168 0066Department of Physics and Astronomy, University of Notre Dame, Notre Dame, IN 46556 USA ,grid.131063.60000 0001 2168 0066Department of Applied and Computational Mathematics and Statistics, University of Notre Dame, Notre Dame, IN 46556 USA
| | - Aliaksandra Lisouskaya
- grid.131063.60000 0001 2168 0066Radiation Laboratory, University of Notre Dame, Notre Dame, IN 46556 USA
| | - Sylwia Ptasinska
- grid.131063.60000 0001 2168 0066Radiation Laboratory, University of Notre Dame, Notre Dame, IN 46556 USA ,grid.131063.60000 0001 2168 0066Department of Physics and Astronomy, University of Notre Dame, Notre Dame, IN 46556 USA
| |
Collapse
|
4
|
Clement S, Campbell JM, Deng W, Guller A, Nisar S, Liu G, Wilson BC, Goldys EM. Mechanisms for Tuning Engineered Nanomaterials to Enhance Radiation Therapy of Cancer. ADVANCED SCIENCE (WEINHEIM, BADEN-WURTTEMBERG, GERMANY) 2020; 7:2003584. [PMID: 33344143 PMCID: PMC7740107 DOI: 10.1002/advs.202003584] [Citation(s) in RCA: 37] [Impact Index Per Article: 9.3] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 09/20/2020] [Indexed: 05/12/2023]
Abstract
Engineered nanomaterials that produce reactive oxygen species on exposure to X- and gamma-rays used in radiation therapy offer promise of novel cancer treatment strategies. Similar to photodynamic therapy but suitable for large and deep tumors, this new approach where nanomaterials acting as sensitizing agents are combined with clinical radiation can be effective at well-tolerated low radiation doses. Suitably engineered nanomaterials can enhance cancer radiotherapy by increasing the tumor selectivity and decreasing side effects. Additionally, the nanomaterial platform offers therapeutically valuable functionalities, including molecular targeting, drug/gene delivery, and adaptive responses to trigger drug release. The potential of such nanomaterials to be combined with radiotherapy is widely recognized. In order for further breakthroughs to be made, and to facilitate clinical translation, the applicable principles and fundamentals should be articulated. This review focuses on mechanisms underpinning rational nanomaterial design to enhance radiation therapy, the understanding of which will enable novel ways to optimize its therapeutic efficacy. A roadmap for designing nanomaterials with optimized anticancer performance is also shown and the potential clinical significance and future translation are discussed.
Collapse
Affiliation(s)
- Sandhya Clement
- ARC Centre of Excellence for Nanoscale BiophotonicsThe Graduate School of Biomedical EngineeringUniversity of New South WalesHigh StreetKensingtonNew South Wales2052Australia
| | - Jared M. Campbell
- ARC Centre of Excellence for Nanoscale BiophotonicsThe Graduate School of Biomedical EngineeringUniversity of New South WalesHigh StreetKensingtonNew South Wales2052Australia
| | - Wei Deng
- ARC Centre of Excellence for Nanoscale BiophotonicsThe Graduate School of Biomedical EngineeringUniversity of New South WalesHigh StreetKensingtonNew South Wales2052Australia
| | - Anna Guller
- ARC Centre of Excellence for Nanoscale BiophotonicsThe Graduate School of Biomedical EngineeringUniversity of New South WalesHigh StreetKensingtonNew South Wales2052Australia
- Institute for Regenerative MedicineSechenov First Moscow State Medical University (Sechenov University)Trubetskaya StreetMoscow119991Russia
| | - Saadia Nisar
- ARC Centre of Excellence for Nanoscale BiophotonicsThe Graduate School of Biomedical EngineeringUniversity of New South WalesHigh StreetKensingtonNew South Wales2052Australia
| | - Guozhen Liu
- ARC Centre of Excellence for Nanoscale BiophotonicsThe Graduate School of Biomedical EngineeringUniversity of New South WalesHigh StreetKensingtonNew South Wales2052Australia
| | - Brian C. Wilson
- Department of Medical BiophysicsUniversity of Toronto/Princess Margaret Cancer CentreUniversity Health NetworkColledge StreetTorontoOntarioON M5G 2C1Canada
| | - Ewa M. Goldys
- ARC Centre of Excellence for Nanoscale BiophotonicsThe Graduate School of Biomedical EngineeringUniversity of New South WalesHigh StreetKensingtonNew South Wales2052Australia
| |
Collapse
|
5
|
Li C, Li X, You J, Liang B, Su X, Huang Y, Chen Y, Hu Q, Deng J, Wang H, Pu Y, Liu H, Ma Y, Wang W, Wu H, Zhang Y. Impact of radiation source activity on short- and long-term outcomes of cervical carcinoma patients treated with high-dose-rate brachytherapy: A retrospective cohort study. Gynecol Oncol 2020; 159:365-372. [PMID: 32933759 DOI: 10.1016/j.ygyno.2020.08.037] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/26/2020] [Accepted: 08/31/2020] [Indexed: 11/15/2022]
Abstract
OBJECTIVE High-dose-rate (HDR) afterloading brachytherapy using Iridium-192 source involves large radiation activity varieties due to fast decay. It was unknown but clinically desirable to evaluate its impacts on patient outcomes to support more informed decisions. METHODS Data of 510 cervical carcinoma (CC) patients were retrospectively included. High-radioactive (HR) and low-radioactive (LR) groups were statistically defined per patient-specific average mean-dose-rate (MDR) of all fractions. The cutoffs were calculated using R-3.6.1 packages based on significance of correlation with binary outcome or survival time. Categorized 1-month and 3-month follow-up results were analyzed as short-term outcomes. Long-term outcomes were evaluated using local recurrence-free survival (LRFS) and metastatic recurrence-free survival (MRFS). Propensity-score-matched (PSM) pairs were generated to reduce bias. RESULTS The median follow-up time was 47.1 months (interquartile range: 33.9 months-66.4 months), involving MDR varieties of up to 9 folds ranging from 6059.99 cGy/h to 54013.66 cGy/h due to 17 source replacements at intervals ranging from 93 days-199 days. Both short-term (1-month: p = 0.22; 3-month: p = 0.79) and long-term (LRFS: p = 0.10; MRFS: p = 0.46) outcomes showed no significant difference between HR and LR. Subgroup analysis displayed significantly better results in LR for stage I-II (3-month, p = 0.02) and stage II (LRFS, p = 0.04) patients. Both LRFS and MRFS of LR were significantly non-inferior to HR (p ≤ 0.02). CONCLUSIONS LR is clinically non-inferior or partially superior to HR for CC treatment using HDR, which dispels concerns of potentially undermined patient outcomes when source replacement is delayed.
Collapse
Affiliation(s)
- Chenguang Li
- Key Laboratory of Carcinogenesis and Translational Research (Ministry of Education/Beijing), Department of Radiation Oncology, Peking University Cancer Hospital & Institute, Beijing 100142, China.
| | - Xiaofan Li
- Key Laboratory of Carcinogenesis and Translational Research (Ministry of Education/Beijing), Department of Radiation Oncology, Peking University Cancer Hospital & Institute, Beijing 100142, China.
| | - Jing You
- Key Laboratory of Carcinogenesis and Translational Research (Ministry of Education/Beijing), Department of Radiation Oncology, Peking University Cancer Hospital & Institute, Beijing 100142, China.
| | - Baosheng Liang
- Department of Biostatistics, Health Science Center, Peking University, Beijing 100191, China; Institute of Medical Technology, Peking University Health Science Center, Beijing 100191, China.
| | - Xing Su
- Key Laboratory of Carcinogenesis and Translational Research (Ministry of Education/Beijing), Department of Radiation Oncology, Peking University Cancer Hospital & Institute, Beijing 100142, China.
| | - Yuliang Huang
- Key Laboratory of Carcinogenesis and Translational Research (Ministry of Education/Beijing), Department of Radiation Oncology, Peking University Cancer Hospital & Institute, Beijing 100142, China.
| | - Yi Chen
- Department of Radiation Oncology, Peking University Third Hospital, Beijing, China.
| | - Qiaoqiao Hu
- Key Laboratory of Carcinogenesis and Translational Research (Ministry of Education/Beijing), Department of Radiation Oncology, Peking University Cancer Hospital & Institute, Beijing 100142, China.
| | - Jun Deng
- Department of Therapeutic Radiology, Yale University, New Haven, CT 06511, United States.
| | - Haiyang Wang
- Key Laboratory of Carcinogenesis and Translational Research (Ministry of Education/Beijing), Department of Radiation Oncology, Peking University Cancer Hospital & Institute, Beijing 100142, China.
| | - Yichen Pu
- Key Laboratory of Carcinogenesis and Translational Research (Ministry of Education/Beijing), Department of Radiation Oncology, Peking University Cancer Hospital & Institute, Beijing 100142, China.
| | - Hongjia Liu
- Key Laboratory of Carcinogenesis and Translational Research (Ministry of Education/Beijing), Department of Radiation Oncology, Peking University Cancer Hospital & Institute, Beijing 100142, China.
| | - Yanan Ma
- Key Laboratory of Carcinogenesis and Translational Research (Ministry of Education/Beijing), Department of Radiation Oncology, Peking University Cancer Hospital & Institute, Beijing 100142, China.
| | - Weihu Wang
- Key Laboratory of Carcinogenesis and Translational Research (Ministry of Education/Beijing), Department of Radiation Oncology, Peking University Cancer Hospital & Institute, Beijing 100142, China.
| | - Hao Wu
- Key Laboratory of Carcinogenesis and Translational Research (Ministry of Education/Beijing), Department of Radiation Oncology, Peking University Cancer Hospital & Institute, Beijing 100142, China; Institute of Medical Technology, Peking University Health Science Center, Beijing 100191, China.
| | - Yibao Zhang
- Key Laboratory of Carcinogenesis and Translational Research (Ministry of Education/Beijing), Department of Radiation Oncology, Peking University Cancer Hospital & Institute, Beijing 100142, China; Institute of Medical Technology, Peking University Health Science Center, Beijing 100191, China.
| |
Collapse
|
6
|
Kulinich TM, Krastelev EG, Bykov Y, Smirnov VP, Shishkin AM, Ivanov AV, Bozhenko VK. Investigation of the level of DNA double-strand breaks and mechanisms of cell death under irradiation of lung cancer and melanoma cells with ultra-high dose rate photon radiation. BULLETIN OF RUSSIAN STATE MEDICAL UNIVERSITY 2018. [DOI: 10.24075/brsmu.2018.066] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/22/2022]
Abstract
Research into the effects of radiation delivered at ultrahigh dose rates > 1 × 107 Gy/min to biological objects is a new promising area of radiobiology. The unique characteristics of the high-current nanosecond electron accelerator Mir-M enable its use in medical and biological research, specifically in the experiments aimed at investigating the effect of therapeutic doses at a dose rate up to 100 MGy/s. In this work we study the effects of ultrahigh dose rate photon radiation on human lung carcinoma (A549) and melanoma (MelMtp-x) cells lines and compare them with those of the therapeutic gamma unit Rokus-AM. We show that ultrahigh dose rates induce more significant damage in the studied cell lines at doses between 2 and 7 Gy, radioresistant melanoma being more sensitive to photon radiation delivered at ultrahigh dose rates.
Collapse
Affiliation(s)
- TM Kulinich
- Russian Scientific Center of Roentgenoradiology, Moscow, Russia
| | - EG Krastelev
- Joint Institute for High Temperatures of the Russian Academy of Sciences, Moscow, Russia
| | - YuA Bykov
- Joint Institute for High Temperatures of the Russian Academy of Sciences, Moscow
| | - VP Smirnov
- Joint Institute for High Temperatures of the Russian Academy of Sciences, Moscow; Research Institute of Technical Physics and Automation of Rosatom, Moscow
| | - AM Shishkin
- Russian Scientific Center of Roentgenoradiology, Moscow
| | - AV Ivanov
- Russian Scientific Center of Roentgenoradiology, Moscow
| | - VK Bozhenko
- Russian Scientific Center of Roentgenoradiology, Moscow
| |
Collapse
|